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Scientific success 
from the perspective 
of the strength of weak ties
Agata Fronczak*, Maciej J. Mrowinski & Piotr Fronczak

We present the first complete verification of Granovetter’s theory of social networks using a massive 
dataset, i.e. DBLP computer science bibliography database. For this purpose, we study a coauthorship 
network, which is considered one of the most important examples that contradicts the universality 
of this theory. We achieve this goal by rejecting the assumption of the symmetry of social ties. Our 
approach is grounded in well-established heterogeneous (degree-based) mean-field theory commonly 
used to study dynamical processes on complex networks. Granovetter’s theory is based on two 
hypotheses that assign different roles to interpersonal, information-carrying connections. The first 
hypothesis states that strong ties carrying the majority of interaction events are located mainly 
within densely connected groups of people. The second hypothesis maintains that these groups are 
connected by sparse weak ties that are of vital importance for the diffusion of information—individuals 
who have access to weak ties have an advantage over those who do not. Given the scientific 
collaboration network, with strength of directed ties measured by the asymmetric fraction of joint 
publications, we show that scientific success is strongly correlated with the structure of a scientist’s 
collaboration network. First, among two scientists, with analogous achievements, the one with 
weaker ties tends to have the higher h-index, and second, teams connected by such ties create more 
cited publications.

Social networks (SN), representing patterns of human interactions, have been the subject of both empirical and 
theoretical research since at least the middle of the last  century1. At the beginning of the twenty-first century, 
there was a breakthrough in social network analysis (SNA)2,3. With the era of widespread digitization, which 
provided access to huge electronic databases, new empirical methods of SNA have emerged and replaced tradi-
tional approaches based on questionnaires and interviews. These new methods, rooted in big data mining, finally 
allowed for the verification of many well-established theoretical SN ideas, in some cases confirming their validity 
and in others failing to do  so4. In this regard, the present status of Granovetter’s weak-tie  theory5,6 of SN, one of 
the oldest and most influential theories in sociology, is still vague. There are convincing studies that show the 
validity of its selected aspects (e.g.,7–10), but there are also many that question it (e.g.,11–13). Our analysis presented 
in this paper is unique because, using a massive dataset, not only do we confirm Granovetter’s weak tie theory 
in its full spectrum but also indicate a possible source of problems related to research questioning its validity.

Granovetter’s theory is based on two hypotheses. The first pertains to the structure of social networks and 
the second to their dynamics (the way in which the afore-mentioned structure influences the flow of informa-
tion in the network). It is significant that although most empirical studies have focused on the first hypothesis, 
far less research has been undertaken to verify the second. One possible reason is that the second hypothesis 
involves notions relative to the nature and importance of information that are hard to quantify and measure. 
In this study, we clearly confirm both hypotheses—and Granovetter’s theory in its entirety—in the context of a 
scientific collaboration network.

The scientific collaboration  network14–18 is particularly well suited to the overarching goal of this paper (i.e., 
complete confirmation of Granovetter’s theory) because: (i) connections (ties) between network nodes (scientists) 
are well defined, and their  weight19 (strength of ties) is easy to measure (e.g., through joint publications); (ii) 
scientific publications themselves are also a specific proxy of information flow in the studied network (diffusion 
of  innovations20); and (iii) the number of citations is an obvious measure of their significance. Easy access to 
large datasets is also important, making our conclusions statistically reliable.
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The network we investigated has all the features of a complex  network21. In particular, it shows the scale-free 
node degree distribution P(k) ∝ k−γ with the characteristic exponent γ ≃ 2.3 . In the theory of complex net-
works, this value of γ is alarming in the sense that it indicates that the network requires special treatment, includ-
ing methods of results averaging different to the ones used in homogeneous systems. In relation to Granovetter’s 
theory, this means that in such networks, basic concepts, such as tie strength and neighbourhood overlap, should 
be defined in a more careful manner than in homogeneous networks. Their incorrect definition may, instead 
of confirming the theory, result in its contradiction. In all known empirical studies on Granovetter’s theory, 
interpersonal ties are assumed to be positive and symmetric. However, it is obvious that social relations do not 
usually follow this assumption (see, for example, the theory of social  balance22,23 or the concept of multirelational 
organization of  SN24,25). For example, the scientific collaboration between a young scientist and an established 
one can hardly be called symmetric.

In his original  paper5, Granovetter treated ties as if they were positive and symmetric, but he also noted that 
“the comprehensive theory might require discussion of negative and/or asymmetric ties”. We follow this sug-
gestion in this study and reject the assumption about the symmetry of social ties, which is omnipresent in the 
literature on the subject. The validity of this approach can be explained by intuition trained in the field of complex 
networks. Granovetter argued that “the degree of overlap of two individuals’ friendship networks varies directly 
with the strength of their tie to one another”. However, from the theory of complex networks, we know that in 
social networks with a high degree of heterogeneity (e.g., due to scale-free node degree distribution), the sizes 
of ego-networks of two connected nodes may differ drastically. Therefore, their common neighbours can be a 
significant part of the neighbourhood of one node and an insignificant part of the neighbourhood of the other, 
resulting in a completely different perception of the strength of the link on both ends.

In what follows, we show that the above reasoning, which assumes the asymmetry of tie strength, allows for 
a quantitative validation of Granovetter’s theory in scientific collaboration networks, that have resisted such 
verification so far. We use the DBLP Computer Science Bibliography dataset, which includes information on 
nearly five million computer science papers (i.e., their publication dates, lists of authors and citation records) 
authored by over four million scientists (see “Data availability” section for more details).

Results
In the standard approach to scientific collaboration networks, the nodes represent authors, and an undirected 
internode connection occurs when two authors have published at least one paper together. When considered 
as binary networks—without any additional features assigned to nodes and connections—these networks show 
numerous structural similarities to other SNs (e.g. high clustering, small-world effect, skewed degree distribu-
tion and clear community structure; Fig. 1a,b,c)14–17. However, when edges are assigned weights representing, 
for example, the number of joint publications, then, although macroscopic characteristics of scientific col-
laboration networks (e.g., distributions of connection weights and node strengths; Fig. 1d) still correspond to 
those observed in typical  SNs7,26, their microscopic structure related to the location of strong and weak ties is 
completely different. Dense, local neighbourhoods of nodes consist of weak ties, while strong ties act as bridges 
between local research groups. The atypical properties of scientific collaboration networks have been confirmed 
in several independent  studies9,11,27.

Specifically, as shown in Ref.11, these unusual weight-topology correlations can be seen by analysing the 
relationship between the tie strength, wij , of two scientists i and j, and the overlap, Oij , of their ego-networks. As 
indicated by Onnela et al.7, the overlap of two connected individuals is the ratio of the number of their common 
neighbours, nij , to the number of all their neighbours:

where ki and kj represent degrees of the considered individuals. In typical  SNs30–33, the above-defined overlap is 
an increasing function of the tie strength, wij , while analyses of scientific collaboration networks show something 
completely different. As can be seen in Fig. 2a, in the studied network of computer scientists, with wij standing 
for the number of joint  publications34, for the vast majority of connections ( 98% ), the overlap decreases with 
connection weight. This relationship indicates that weak ties mainly reside inside dense network neighbour-
hoods, whereas strong ties act as connectors between them. It has been hypothesized that this counterintuitive 
observation could be attributed to different driving mechanisms of tie formation and reinforcement in scientific 
collaboration networks in comparison to other social  networks11. In what follows, we argue that the observation 
is related to the definitions of the tie strength and neighbourhood overlap that are not properly suited to the 
structure of the studied network.

First, let us deal with the definition of the overlap (1) (referred to as symmetric overlap). In Fig. 3a, this local 
measure is shown in the case of a link connecting nodes with significantly different degrees. In such cases, for 
ki ≪ kj , Eq. (1) can be simplified to Oij ≃ nij/kj , which shows that it is strongly biased towards nodes with high 
degrees, distorting the image of the common neighbourhood as seen from the perspective of nodes with small 
degrees. This drawback of symmetric overlap gains importance in networks with highly skewed, fat-tailed node 
degree distributions P(k). In such networks, as brilliantly exploited by the degree-based mean-field theory of 
complex  networks35–37, node degree distributions for nearest neighbours are even more fat-tailed than the origi-
nal distributions P(k). As a result, the number of edges in such networks connecting nodes with high and low 
degrees can be very high, leading to an unintended overrepresentation of strongly connected nodes by Eq. (1).

To overcome problems with symmetric overlap, we introduce the concept of asymmetric overlap:

(1)Oij =
nij

(ki − 1)+ (kj − 1)− nij
,
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This can be used to describe the overlap between the neighbourhoods of two connected nodes from the perspec-
tive of each node separately. In the context of complex networks, this new definition is free from the shortcomings 
of the previous one. In particular, it copes well with connected nodes (collaborating scientists) whose degrees 
(ego-networks) differ significantly—that is, when their common neighbours (if any) are a significant part of the 
neighbourhood of one node and an insignificant part of the neighbourhood of the other. In such cases, the values 
of Qij and Qji corresponding to the same tie are different (see Fig. 3b,c). The value of Qij that is close to 1 means 
that almost all neighbours of i are also neighbours of j. The value of Qji close to 0 means that only a small part of 
the neighbourhood of j belongs to the neighbourhood of i.

The concept of asymmetric overlap naturally leads to the idea of directed networks and justifies the introduc-
tion of asymmetric tie strength:

where pi stands for the number of all publications of the i-th  scientist38. The intuitive rationale behind Eq. (3) 
is as follows: For a young scientist, with a small number of publications, each publication makes a significant 
contribution to his or her publication output, just as each co-author is an important part of his or her research 
environment (cf. Eqs. (2) and (3)). However, the importance of each publication and collaboration from the per-
spective of an established scientist with a large number of publications and an extensive network of collaborators 

(2)Qij =
nij

ki − 1
�= Qji .

(3)vij =
wij

pi
�= vji ,

Figure 1.  Basic structural properties of the real coauthorship network constructed using the DBLP computer 
science bibliography. (a) Visualization of the giant component of the network using Graphia  application28. For 
better visibility only nodes with degree larger than 50 are shown resulting in the core network of almost seventy 
thousand nodes. The network is organized as a large number of communities. Each community was assigned 
a color according to the partitions identified by the Louvain  algorithm29. (b, c, d) Logarithmically binned: 
node degree distribution P(k), community size distribution P(c), and link weight distribution P(w). The values 
γ = 2.3 and β = 3.3 shown in the graphs (b) and (d) correspond to the scaling exponents obtained by fitting 
power-law distributions to the relevant empirical data: P(k) ∝ k−γ and P(w) ∝ w−β.
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is completely different. Depending on the circumstances, a given number of joint publications (e.g., wij = 1 ) may 
have a completely different meaning.

In Fig. 2b, the dependence of asymmetric overlap on asymmetric tie strength for the considered network 
of computer scientists is shown. Contrary to what can be seen in Fig. 2a, the relationship Qij(vij) is increasing 
in the entire range of variability of its parameters. The result indicates that, from the point of view of a single 
scientist (ego-network approach), strong ties mainly constitute dense local clusters, whereas weak ties connect 
these clusters or play the role of intermediary  ties10. The observation clearly confirms the validity of Granovetter’s 
first hypothesis in scientific collaboration networks.

Now, using the concept of asymmetric tie strength, we will discuss Granovetter’s second hypothesis, which 
postulates that although weak ties do not carry as much communication as strong ties do, they often act as 
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Figure 2.  Dependence of neighbourhood overlap on tie strength in: (a) undirected, weighted DBLP scientific 
collaboration network, in which tie strength wij corresponds to the number of joint publications (i.e. the number 
of times that co-authorship has been repeated) and the symmetric neighbourhood overlap Oij is given by the 
standard formula, Eq. (1); (b) directed, weighted projection of the same network with asymmetric tie strength 
vij and asymmetric overlap Qij , obtained from Eqs. (3) and (2). In both graphs, circles indicate averages of 
overlaps (in intervals of logarithmically increasing width in the main panel and of constant width in the inset, 
respectively), while bars represent the number of samples from which the averages were calculated. Empirical 
relationships, similar to the one from the left graph (a), showing the decreasing character of Oij(wij) , have so far 
been the basic argument against validity of the Granovetter’s theory in scientific collaboration networks. The 
graph on the right (b) shows that the necessary condition to confirm the Granovetter’s theory in the studied 
networks is to reject the assumption about the symmetry of social ties.

Figure 3.  Illustration of the difference between symmetric and asymmetric neighbourhood overlap. In the 
figure, to highlight the benefits of analysing asymmetric overlaps, the corresponding values of: (a) symmetric 
Oij (1) and (b, c) asymmetric Qij  = Qji (2) overlaps have been calculated for the same network configuration, 
in which interconnected nodes differ in the size of their ego-networks. In such cases, which are typical for 
complex networks with underlying fat-tailed distributions, a common scenario is that for ki ≪ kj one has 
Qij ≫ Qji ≃ Oij . This explains why introducing tie direction is necessary for reliable verification of the 
Granowetter’s theory in scientific collaboration networks.
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bridges, providing novel, non-redundant information, which guarantees weakly connected nodes generally 
understood social success.

In scientific collaboration networks, the validity of Granovetter’s second hypothesis has never been tested. 
Nevertheless, it is widely believed  (see39 and references therein) that information and expertise at the disposal 
of tightly connected research groups are often redundant, resulting in less creative collaborations and less inno-
vative publications, while intergroup collaborations that bridge the so-called structural holes40–42 can provide 
access to information and resources beyond those available in densely connected communities, thus leading to 
novel ideas and valuable publications. To quantitatively address these issues, we check whether the bibliometric 
indexes of scientists and publications are correlated with the tie strength of the scientific collaboration network. 
Specifically, we focus on two questions: (i) How does the researcher’s h-index depend on the structure of his/
her local collaboration network? (ii) How does the strength of the ties between scientists influence the success 
of their joint publication?

To answer the first question, we examined how the h-index43,44 of a scientist depends on his or her average 
asymmetric tie strength (see Fig. 4):

Equation (4) quantitatively measures the tendency of scientists to keep collaborating with the same people 
(cf. the concept of social inertia45,46). Figure 5a shows that the averaged (over all scientists who have a similar 
average tie strength) h-index decreases with 〈vi〉 . It means that successful (double-digit h-index) scientists have 
significantly weaker ties than less successful (single-digit h-index) researchers. The result is consistent with Gran-
ovetter’s general understanding of the role of weak and strong ties. However, since some doubts may arise from 
the fact that the data presented in Fig. 5a are averaged over many different scientists (having a small and large 
number of all publications, with a small and very extensive network of collaborators), in Fig. 6, we demonstrate 
that the decreasing nature of the relationship between the h-index and tie strength is independent of the choice 
of a group of scientists. That is, it still decreases, even in very homogeneous (in terms of scientific achievements) 
groups of researchers. In particular, as one can see in the small graphs accompanying the colour histogram that 
represents the available scientists’ samples, of any two researchers who have the same number of publications 
and/or co-authors, the one with weaker ties tends to have the higher h-index. In a way, this suggests that being 
a good manager and skilfully planning one’s network of scientific contacts ensures  success47. This conclusion, 
however alarming as it may seem, finds its basis in the theory of social networks—the already mentioned concept 
of Burt’s structural holes and social  capital40,41.

The role of weak ties in scientific success is even more apparent in relation to scientific publications. Figure 5b 
shows how the number of citations of a scientific paper depends on the asymmetric tie strength (averaged over 
all co-authors of each article). The decreasing nature of this relationship indicates that publications created by 
teams of scientists linked by weak ties are better cited than those that arise in teams with strong ties. In Fig. 7, by 
analysing more homogeneous samples of publications (published in the same year and/or by the same number of 
co-authors), we clearly confirm the validity of the above finding. Furthermore, although the number of citations 

(4)�vi� =
1

ki

∑

j

vij .

Figure 4.  Average asymmetric tie strength of a scientist. The figure presents ego-networks of three different 
scientists (egos) with the same number of co-authors ki = 3 and publications pi = 3 , but with different patterns 
of collaboration. On the left scheme (a), each of the three publications has only two authors; on the central 
scheme (b), two publications were written by a team of three and one by a team of two; in the scheme on the 
right (c), all publications involved the entire ego-network of a scientist. In each of the presented cases, the ego’s 
average asymmetric tie strength is different. Its value increases from the left diagram to the right, exactly in 
the same way as the intuitively understood social role of collaborators, on which depends not only the ego’s 
productivity but also integrity of his/her research group.
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does not always translate into the quality of the research presented, it is undoubtedly a measure of the commercial 
success of a publication and a specific measure of the knowledge diffusion in scientific collaboration networks.

Discussion and concluding remarks
The purpose of this work is to thoroughly verify Granovetter’s weak-tie theory of social networks. As clearly 
stated in the abstract and in the introduction: Granovetter’s theory is based on two hypotheses that assign different 
roles to interpersonal, information-carrying connections. Not all those who deal with the Granovetter’s theory 
pay attention to this distinction, which is undoubtedly crucial. The first hypothesis states that strong ties car-
rying the majority of interaction events usually correspond to intra-group connections. The second hypothesis 
maintains that weak inter-group ties, although less active, are of particular importance for the exchange of 
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regardless of the stage of their scientific career. Here we divide scientists into groups in which everyone has the 
same number of total publications and the same number of co-authors (see the colour map in the figure). The 
more homogeneous conditions thus established allow us to clearly confirm earlier findings. In particular, as one 
can see in the small graphs on the right side of the colour map, regardless of the choice of the homogeneous 
group of scientists their h-index always decreases with increasing average asymmetric tie strength.
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relevant information. A review of the literature reveals a striking disproportion between the research on the two 
hypotheses. In fact, the vast majority of empirical research to date has dealt with the first hypothesis, completely 
ignoring and sometimes not fully correctly interpreting the second one. In this respect our work is unique, 
because we confirm Granovetter’s weak tie theory in its full spectrum. And although in the absence of other stud-
ies, the analysis of the second hypothesis may seem to be the most important result of this work, our research 
on the verification of the first hypothesis also deserves attention as it highlights some important (and sometimes 
questionable or not entirely correct) threads in previous studies.

In particular, using massive datasets, clear empirical evidence for the first hypothesis, supported by the 
positive correlation between the symmetric overlap and tie strength, Oij(wij) , were reported in: mobile com-
munication  networks7,30, multiplayer online  games31,32, and dialogues-based online  SN33. On the other hand, 
the above mentioned methodology, exploiting symmetric network measures, failed in the analysis of scientific 
collaboration  networks9,11,27, incorrectly classifying them as contradicting Granovetter’s theory. In this paper, 
we identify the reason why scientific collaboration networks behave differently than other SN. We argue that the 
U-shaped relation between wij and Oij observed in coauthorship networks (see Fig. 2a) is related to the definitions 
of tie strength wij and neighbourhood overlap Oij that are not properly suited to networks with scale-free node 
degree distributions. In any of the networks that were considered in Refs.7,30–33 this problem did not exist, because 
these networks were not truly scale-free (e.g. in mobile communication networks P(k) ∼ k−γ , with γ = 8.4).

In this paper, to overcome the aforementioned issue, we have paid attention to the role of asymmetry in 
social ties. We have introduced new measures: asymmetric overlap Qij and asymmetric tie strength vij , which 
not only allowed the successful verification of the first Granovetter’s hypothesis in scientific collaboration net-
works (see Fig. 2b), but have also opened the possibility to verify the second hypothesis. Moreover, as for the 
second hypothesis, which involves concepts related to the nature and importance of information, coauthorship 
networks have proved to be an extremely accurate choice, because: (i) connections (ties) between network nodes 
(scientists) are well defined, and their weight (strength of ties) is easy to measure (e.g., through joint publications); 
(ii) scientific publications themselves are also a specific proxy of information flow in the studied network (diffusion 
of innovations); and (iii) the number of citations is an obvious measure of their significance.

To be concrete, with regard to the second Granovetter’s hypothesis our results quantify what most scientists 
know very well: Scientific success is strongly correlated with the structure of a scientist’s collaboration network. 
We have explicitly shown that publications created by teams of scientists with weak ties are better cited than 
those that arise in teams with strong ties. And although this result was to be expected, it may be surprising that 
the differences in the number of citations of works created by weakly tied research groups compared to strongly 
tied groups amount not to a few or a dozen, but several hundred percent (see Fig. 7). Of course, when looking 
at these results quantitatively, one should bear in mind the limitations of the DBLP database used for the study. 
The database covers publications from computer science and includes publications from hybrid fields, where 
they are considered pertinent to computer science research. Papers from other disciplines are present there only 
occasionally. It means that super weak inter-domain ties are not covered by our analysis and the differences 
presented in Figs. 6 and 7 may be underestimated. On the other hand, computer science is quite heterogeneous 
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Figure 7.  Citations of publications versus tie strength. In this figure, we present a more detailed analysis of 
the relationship from Fig. 5b. To this aim, all publications available in the analysed database are divided into 
groups according to the year of publication and the number of authors (see the colour map in the figure). Given 
homogeneous sample of publications thus established, we found that the number of their citations always 
decreases with increasing average asymmetric tie strength between their authors. To clarify, the average tie 
strength was determined at the time of paper’s publication, and the number of citations refers to the time of the 
last update of the analysed database.
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due to the presence of many subfields, with very different norms in terms of team size and citation standards. 
Therefore, the results presented in Figs. 6 and 7 are aggregated over different subfields. Keeping above in mind, 
using more comprehensive database (e.g. Scopus or Web of Science), for the analysis reported in this study, can 
act as a double-edged sword. It would solve the first problem, but aggravate the second one. In this sense, our 
choice of the source of data seems to be a golden middle way.

Finally, an important research direction that was not undertaken in this paper, although it directly refers 
results reported here, is the issue of two recently discovered empirical scaling laws for social networks which 
relate link weight wij , symmetric overlap Oij , and link betweenness  centrality48 bij in a non-linear way: Oij ∝ 3

√
wij  

and Oij ∝ 1/
√

bij  . Several studies (see e.g.31–33) have confirmed universality of these “social laws”. As we have 
already shown (cf. Fig. 2a and the corresponding figures  in9,11,27), the first of these scaling laws—relating tie 
strength to the cube of the symmetric overlap—is not fulfilled in coauthorship networks. We have also checked 
that the same conclusion holds true for the second relation—expressing edge betweenness centrality as the 
inverse square of the overlap. In our case, the relationship Oij(bij) is non-monotonic (non-increasing for small 
and intermediate values of betweenness and increasing for its large values, see Fig. S1 in Supplementary Infor-
mation). Along these lines, we have also checked whether there is a clear correlation between tie strength and 
betweenness centrality and we have found no apparent dependency (see Fig. S2 in SI).

The additional analysis mentioned above provoke interesting research questions. The most controversial is 
whether the correlation between link betweenness centrality and symmetric overlap brings any relevant infor-
mation about dynamical properties of social networks. In particular, whether the negative correlation between 
these measures provides quantitative evidence for the Granovetter’s theory. A kind of argument that supports 
these objections is that if we shuffle edge weights in a social network without changing the structure of its binary 
connections, then the weak ties hypothesis will surely cease to work, although the mentioned correlations will 
remain unchanged. Perhaps this argument could be refuted by using a kind of weighted/directed edge between-
ness centrality, which, in combination with the asymmetric overlap Qij introduced in this work, would allow 
for the formulation of more general laws of social dynamics than those formulated  in31. An interesting way to 
overcome this problem has been proposed  in49, where the authors pointed out that classical betweenness cen-
trality is not useful to measure the influence of a team that is composed of more than two  people50. Instead of 
this, a weighted hypergraph representation of the coauthorship network with higher-order interactions has been 
introduced and betweenness centrality measure has been adequately adapted to this new structure. In order to 
pursue studies on the role of weak ties in this direction, a new kind of overlap measure in hypergraphs has to be 
devised which itself seems to be challenging. The above considerations can be a starting point for interesting, 
new research on social networks.

Data availability
The research presented in this paper is based on the publicly and freely available Citation Network  Dataset51. We 
used the 12th version of the dataset (DBLP-Citation-network V12) which contains detailed information (i.e., 
year of publication, journal, number of citations, references, list of authors) and approximately 5 million articles 
published mostly during the last 20 years.

It is important to note that our analysis is limited to the largest connected component (LCC) in the co-
authorship network, which can be recreated using the dataset. LCC comprises of close to three million nodes 
(authors), which means it spans 65% of the entire network. These nodes are connected by more than 13 million 
bi-directional co-authorship edges.

While the dataset provides exhaustive information about published papers, it does not directly contain any 
bibliometric information about authors. However, it is possible to calculate various bibliometric indicators either 
by recreating the network of citations or by directly using article metadata available in the dataset for each article 
(such as the number of citations). In order to calculate the h-index for all authors in the LCC, we decided to rely 
on the latter method and use article metadata to determine the number of citations. Considering that the citation 
network recreated from the dataset is only a sample of the full citation network, this method is more reliable. 
The number of citations calculated by counting links in the citation network is, in general, underestimated when 
compared with the number of citations available in the article’s metadata.

Code availability
The code that supports the findings of this study is available from the corresponding author upon request.
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