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Abstract Excitation-inhibition (EI) balance controls excitability, dynamic range, and input gating

in many brain circuits. Subsets of synaptic input can be selected or ’gated’ by precise modulation of

finely tuned EI balance, but assessing the granularity of EI balance requires combinatorial analysis

of excitatory and inhibitory inputs. Using patterned optogenetic stimulation of mouse hippocampal

CA3 neurons, we show that hundreds of unique CA3 input combinations recruit excitation and

inhibition with a nearly identical ratio, demonstrating precise EI balance at the hippocampus.

Crucially, the delay between excitation and inhibition decreases as excitatory input increases from a

few synapses to tens of synapses. This creates a dynamic millisecond-range window for

postsynaptic excitation, controlling membrane depolarization amplitude and timing via

subthreshold divisive normalization. We suggest that this combination of precise EI balance and

dynamic EI delays forms a general mechanism for millisecond-range input gating and subthreshold

gain control in feedforward networks.

Introduction
Individual neurons in the brain can receive tens of thousands of excitatory (E) and inhibitory (I) synap-

tic inputs. Under normal conditions, the ratio of excitatory to inhibitory input remains invariant, a

robust property of the nervous system, termed EI balance (Anderson et al., 2000; Atallah and Scan-

ziani, 2009; Okun and Lampl, 2008; Okun and Lampl, 2009; Wehr and Zador, 2003). Disruption

of balance is linked with several pathologies, including epilepsy, autism spectrum disorders and

schizophrenia (Yizhar et al., 2011).

Theoretically, neurons in ‘detailed balanced’ EI networks receive balanced responses from all sub-

sets of presynaptic inputs (Vogels and Abbott, 2009), and neurons in ‘tightly balanced’ EI networks

receive inputs balanced at fast (<10 ms) timescales (Denève and Machens, 2016). Together, these

properties constitute a ‘precisely balanced’ network (Hennequin et al., 2017). This precise balance

on all synaptic subsets can be exploited by the brain for ‘input gating’. In this process, neurons can

be driven by selective shifts in EI ratios at specific inputs, while other inputs remain balanced in the

background. This constitutes a flexible and instantaneous information channel local to the shifted

synapses (Kremkow et al., 2010; Vogels and Abbott, 2009).

Our current understanding of EI balance is based on measurements made at single neurons in

response to various stimuli. Strong EI correlations have been seen in response to series of tones in

auditory cortex (Wehr and Zador, 2003; Zhang et al., 2003; Zhou et al., 2014), whisker stimulation

in somatosensory cortex (Wilent and Contreras, 2005), during cortical up states in vitro (Shu et al.,

2003) and in vivo (Haider et al., 2006), during gamma oscillations in vitro and in vivo (Atallah and

Scanziani, 2009), and during spontaneous activity (Okun and Lampl, 2008). At the synaptic scale,

the ratio of excitatory and inhibitory synapses on various dendrites of a neuron has been shown to

be conserved (Iascone et al., 2018). However, the precision and presynaptic origin of balance is not
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well understood. It remains to be established if EI balance arises transiently from complex temporal

dynamics of several presynaptic layers, if it requires summation of inputs from multiple presynaptic

populations, or if it exists even at subsets of a single presynaptic population. This granularity of EI

balance, of both presynaptic identity and number of inputs, can determine the precision with which

synaptic inputs can be selected or ‘independently gated’ to affect postsynaptic activity.

In this study, we address two key open questions in the field. First, can EI balance arise even in a

single layer feedforward network, and if so, at what granularity of network subsets do postsynaptic

cells experience balanced excitation and inhibition? Second, how do excitation and inhibition inte-

grate to encode and communicate information at the postsynaptic neuron? We addressed these

questions in vitro, to isolate the hippocampal network from background activity, and to deliver pre-

cisely controlled combinatorial stimuli. We stimulated channelrhodopsin-2 (ChR2) expressing CA3

neurons in several combinations using optical patterns, and measured responses in CA1.

We report that hundreds of randomly chosen subsets of CA3 neurons provide excitatory and

feedforward inhibitory inputs to CA1 cells with a close to identical ratio, demonstrating for the first

time, precise balance (Hennequin et al., 2017) in the brain. On examining the integration of excita-

tion and feedforward inhibition, we found that inhibition arrives with a dynamically varying onset

delay that decreases with increasing input amplitude. This leads to a characteristic initial linear por-

tion in the neuronal input-output curve where the inhibition arrives too late to affect peak depolari-

zation, and a progressively diminishing output as the EI delay decreases with increasing input. This

novel gain control operation, termed Subthreshold Divisive Normalization (SDN) encodes input infor-

mation in both amplitude and timing of the CA1 response.

Results
In our study, we first utilize and characterize an optical stimulation protocol for CA3 pyramidal neu-

rons, and measure intracellular responses at CA1 pyramidal neurons (Figure 1). We then demon-

strate precise EI balance for various combinations of CA3 inputs at CA1 using voltage clamp to

separate the E and I components (Figure 2). Next, we measure the depolarization at CA1 due to

summation of E and I using different input combinations (Figure 3), and show sublinearity of summa-

tion. Expansion of the range of inputs revealed divisive normalization and suggested that another

factor such as inhibitory kinetics should be included to account for the sublinearity (Figure 4). In Fig-

ure 5, we confirm that blocking inhibition leads to much reduced sublinearity of summation, and

that inhibition scales linearly with stimulus amplitude. We then establish that inhibitory delay is cru-

cial for explaining the sublinearity in SDN (Figure 6). In Figure 7, we show that post-synaptic poten-

tial peak amplitude and timing both carry information about the summed stimulus amplitude, and

show that this information carries over to spike timing. In Figure 8, we summarize the analysis and

suggest how SDN could contribute to input gating in the hippocampus.

Optical stimuli at CA3 elicit subthreshold responses at CA1
To provide a wide range of non-overlapping stimuli, we projected patterned optical stimuli onto

channelrhodopsin-2 (ChR2) expressing CA3 neurons in acute hippocampal slices. We used CA3-cre

mice to achieve CA3-specific localization of ChR2 upon injection of a Lox-ChR2 virus (Figure 1a,

Materials and methods). We used a Digital Micromirror Device (DMD) projector

(Materials and methods, Figure 1—figure supplement 1) to generate spatiotemporal optical pat-

terns in the form of a grid of several 16 um x 16 um squares, each square approximating the size of

a CA3 soma (Ishizuka et al., 1995) (Figure 1d). This grid was centered at the CA3 cell body layer,

and extended to the dendritic layer (Figure 1a). Each optical pattern consisted of 1 to 9 such ran-

domly chosen grid squares, presented to CA3 cells as stimulus, at an inter-stimulus interval of 3 s

(Figure 1a,d, Materials and methods). In a typical experiment, several randomly chosen stimulus pat-

terns with different number of input squares were delivered to CA3, in three successive repeats. We

first characterized how CA3 responded to the grid stimulation (Figure 1b,e,f,g). CA3 neurons fired

reliably with a < 2 ms jitter, calculated as the standard deviation of the time of first spike (Figure 1f)

(n = 8 CA3 cells, inputs = 52, median = 0.44 ms, N = 1 to 9 squares). No desensitization occurred

during the timeframe of an experiment, and the probability of spiking remained constant between

the three repeats (Figure 1g) (n = 7 CA3 cells, N = 1 to 9 squares). Thus, we could stimulate CA3

with hundreds of distinct optical stimuli in each experiment.
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Figure 1. Stimulating CA3-CA1 network with hundreds of optical patterns. (a) Top, schematic of the CA3-CA1 circuit with direct excitation and

feedforward inhibition. Bottom, image of a hippocampus slice expressing ChR2-tdTomato (red) in CA3 in a Cre-dependent manner. Optical stimulation

grid (not drawn to scale) was centered at the CA3 cell body layer and CA1 neurons were patched. (b) Spike response map of CA3 neuron responses

with one grid square active at a time. A CA3 neuron was patched and optically stimulated, in random spatio-temporal order, on the grid locations

marked with grey border. This cell spiked (marked with number inside representing spike counts over four trials) in 5 out of 24 such one square stimuli

delivered. (c) Heatmap of CA1 responses while CA3 neurons were stimulated with one square optical stimuli. Colormap represents peak Vm change

averaged over three repeats. (d) Schematic of optical stimulus patterns. Examples of combinations of N-square stimuli where N could be 1, 2, 3, 5, 7 or

9 (in rows). (e) Spikes in response to four repeats for the circled square, in b. Spike times are marked with a black tick, showing variability in evoked

peak times. Blue trace at the bottom represents photodiode measurement of the stimulus duration. Scale bar for time, same as h. (f) Distribution of

jitter in spike timing (SD) for all stimuli for all CA3 cells (n = 8 cells). (g) CA3 spiking probability (fraction of times a neuron spiked across 24 stimuli,

repeated thrice) is consistent over a single recording session. Randomization of the stimulus pattern prevented ChR2 desensitization. Circles, colored as

in d depict spiking probability on each repeat of a stimulus set with connecting lines tracking three repeats of the set (n = 7 cells). (h) PSPs in response

to three repeats of the circled square in c. Peak times are marked with an asterisk. Blue traces at the bottom represent corresponding photodiode

traces for the stimulus duration. (i) Distribution of peak PSP amplitude variability (variance/mean) for all 1-square responses (n = 28 cells, stimuli = 695).

(j) Histogram of peak amplitudes of all PSPs elicited by all 1-square stimuli, over all CA1 cells. Grey dotted line marks the mode (n = 38 cells,

trials = 8845).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Experiment design.
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We then recorded postsynaptic potentials (PSPs) evoked at patched CA1 neurons while optically

stimulating CA3 cells (Figure 1c,h,i,j). A wide range of stimulus positions in CA3 excited CA1 neu-

rons (Figure 1c). Stimulation of CA3 elicited excitation and feedforward inhibition at CA1

(Figure 1a, Figure 2). Most stimuli elicited subthreshold responses (N = 1 to 9 squares). Action

potentials occurred in only 0.98% of trials (183 out of 18,668 trials, n = 38 cells, N = 1 to 9 squares).

This helped rule out any significant feedback inhibition from CA1 interneurons for all our experi-

ments. Restriction of ChR2 to CA3 pyramidal cells, coupled with the fact that ~99% of all recorded

CA1 responses were subthreshold, ensured that the recorded inhibition was largely feedforward

(disynaptic) (Figure 1a). Responses to the same 1-square stimulus were consistent, 84.74%

responses showed less than 0.5 variance by mean (695 stimuli, three repeats each, n = 28 cells,

N = 1 square) (Figure 1i). Notably, the distribution of all one square responses had a mode at 0.25

mV, which is close to previous reports of a 0.2 mV somatic response of single synapses in CA1 neu-

rons (Magee and Cook, 2000) (8845 trials, n = 38 cells, N = 1 square) (Figure 1j).

Arbitrarily chosen CA3 inputs show precise EI balance at CA1
To examine the relationship between excitation and inhibition, we voltage clamped CA1 neurons,

first at the inhibitory (�70 mV) and then at the excitatory (0 mV) reversal potential to record Excit-

atory and Inhibitory Post Synaptic Currents (EPSCs and IPSCs) respectively. We first presented five

different patterns of 5 squares each, at both of these potentials, and recorded EPSCs and IPSCs. We

found strong proportionality between excitation and inhibition for every stimulus pattern

(Figures 1d and 2a). This suggested that inputs from even random groups of CA3 neurons may be

balanced at CA1. Repeats with the same stimulus pattern gave consistent responses, but different

patterns evoked different responses (Figure 2a, Figure 2—figure supplement 1b). This indicated

that the optically driven stimuli were able to reliably activate different subsets of synaptic inputs on

the target neuron. Next, we asked, in what range of input strengths does random input yield bal-

ance? We presented five different patterns for each of 1, 2, 3, 5, 7 or 9 square combinations at both

recording potentials. Surprisingly, all stimuli to a cell elicited excitatory and inhibitory responses in

the same ratio, irrespective of response amplitude (Figure 2b,c) (n = 13 CA1 cells, area under curve,

mean R2 = 0.89 + /- 0.06 SD, Figure 2—figure supplement 2). Notably, the mode of single-square

responses was ~0.25 mV, close to single synapse PSP estimates (Magee and Cook, 2000)

(Figure 1j). However, accounting for the low (~0.2) release probabilities (Pr) at the CA3-CA1 synapse

(Murthy et al., 1997), we should be able to see a single synapse response if approximately 1/Pr syn-

apses were activated. Hence, we estimate that the granularity of the balance as resolved by our

method is of the order of 5–10 synapses (Figure 2—figure supplement 1d,e). The slope of the

regression line through all stimulus-averaged responses for a CA1 cell was used to calculate the Inhi-

bition/Excitation (I/E) ratio for the cell. IPSC/EPSC ratio was typically between 2 and 5

(Figure 2d). The variability of I/E ratios over all stimuli for a cell was lower than the variability of all

stimuli across cells (for 12 out of 13 cells, Figure 2—figure supplement 1c). The high R2 values for

all cells showed tight proportionality for all stimuli (Figure 2e). The residual distribution remained

symmetric for increasing numbers of spots, again showing that they were not affected by the num-

ber of stimulus squares presented (Figure 2—figure supplement 1a). While feedforward inhibition

is expected to increase with excitation, convergence of I/E ratios for randomly chosen inputs to a

cell to a single number was unexpected, since shared interneurons consist of only about 10% of the

total neuronal population (Woodson et al., 1989; Bezaire and Soltesz, 2013).

Detailed balance requires co-tuning of EI weights
We next tested the hypothesis that the observed correlation between excitatory and inhibitory

inputs was due to an averaged sum over many untuned (globally balanced) synapses, as opposed to

a much finer granularity of tuning between excitatory and inhibitory synaptic weights (detailed bal-

ance). To address this, we modelled excitatory and inhibitory synaptic weights to a neuron with dif-

ferent amounts of weight tuning, parameterized by rho (�), which takes values between 0 (no tuning

or global balance) and 1 (detailed balance) (Materials and methods, Figure 2—figure supplement

1h). For values between 0 and 1, � determined the degree of correlation between the basal excit-

atory and inhibitory synaptic weights. To test if weight tuning was necessary to observe balance, we

modeled the summation of synaptic inputs with the premise that excitatory and inhibitory afferents
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will be activated strictly proportionally (number balance). We then tested how mean and variance

correlations between EI amplitudes changed with different degrees of weight tuning.

We observed tight correlations between EI inputs without weight tuning, but only if the basal syn-

aptic weight distribution was narrow. Further, for a narrow weight distribution, the change from

global to detailed balance had little effect on mean EI amplitude correlations. In contrast, weight

tuning was required to see EI balance for wider synaptic weight distributions, especially for stimuli

which activated small numbers of synapses (Figure 2g). We next calculated the width of the smallest

responses (1-square GABAzine EPSP) as a proxy for the basal weight distribution (Figure 3—figure
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Figure 2. Excitation and inhibition are tightly balanced for all stimuli to a CA1 cell. (a) Monosynaptic excitatory postsynaptic currents (EPSCs, at �70

mV) and disynaptic inhibitory postsynaptic currents (IPSCs, at 0 mV) in response to five different stimulus combinations of 5 squares each. All

combinations show proportional excitatory and inhibitory currents over six repeats. Top, schematic of 5-square stimuli. (b) EPSCs and IPSCs are elicited

with the same I/E ratio in response to six repeats of a combination, and across six different stimuli from 1 square to nine squares, for the same cell as in

a. Top, schematic of the stimuli. (c) Area under the curve for EPSC and IPSC responses, obtained by averaging over six repeats, plotted against each

other for all stimuli to the cell in a, b. Error bars are s.d. (d) Summary of I/E ratios for all cells (n = 13 cells). (e) Summary for all cells of R2 values of linear

regression fits through all points. Note that 11 out of 13 cells had R2 greater than 0.9, implying strong proportionality. (f) Same as e, but with linear

regression fits for 1 and 2 square responses, showing that even small number of synapses are balanced for excitation and inhibition (n = 9 cells). (g)

Phase plot from the model showing how tuning of synapses (�) affects observation of EI balance (R2) for various values of variance/mean of the basal

weight distribution. Changing the scale of the basal synaptic weight distributions against tuning parameter � affects goodness of EI balance fits. Arrow

indicates where our observed synaptic weight distribution lay. (h) Example of EI correlations (from data) for 1 and 2 square inputs for an example cell.

Bottom, schematic of the stimuli. Excitation and inhibition are colored olive and purple, respectively. Error bars are s.d. (i) Examples of EI correlation

(from model) for small number of synapses, from the row marked with arrow in g. The left and right curves show low and high correlations in mean

amplitude when EI synapses are untuned (� = 0) and tuned respectively (� = 1) (A.U. = Arbitrary Units). Colors, same as h. Error bars are s.d.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Detailed balance in CA3-CA1 feedforward network.

Figure supplement 2. Raw data from all cells showing precise balance between excitation and inhibition.
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supplement 1a). The observed responses were broadly distributed. With this basal weight distribu-

tion, the model exhibited EI balance only when the excitatory and inhibitory synaptic weights were

co-tuned, that is, maintained at the same ratio (marked with arrow in Figure 2g,

Materials and methods, Figure 2—figure supplement 1h).

With the reasoning developed above, we checked for EI balance in the smallest inputs in our

datasets - 1 and 2 square data from voltage clamped cells (having five or more input patterns per

cell) (Figure 2—figure supplement 1d), and only one square from current clamped cells (24 inputs

per cell) (Figure 2—figure supplement 1e,f). We found that the responses corresponding to a few

synapses per input were balanced (Figures 1j and 2f,h, Figure 2—figure supplement 1d,e,f), sug-

gesting tuning of excitatory and inhibitory weights.

In addition, the model also predicted a tuning dependent change in the correlations of variability

of excitation and inhibition amplitudes for repeats of the same stimulus. For a wide synaptic weight

distribution, increase in tuning increased EI variability correlations (Figure 2—figure supplement 1i,

k). As with EI mean correlations (Figure 2h,i), weight tuning had little effect in the case of narrow

synaptic weight distributions. Again, our calculated synaptic weight distribution was in the range

where strong variability correlations would be seen only if synaptic weights were tuned. We found

strong correlations between excitatory and inhibitory standard deviation between six repeats of the

same stimulus in our voltage-clamp dataset, suggesting that there is detailed balance in the network

(Figure 2—figure supplement 1g,j).

Thus, we present three observations using small (one and two square) stimulus strengths: a wide

basal weight distribution, correlated mean EI amplitude and correlated EI amplitude variability.

Together, these are inconsistent with the hypothesis that EI balance can emerge with no other

requirement than a proportional increase in number of EI afferents in a globally balanced network.

This supports the existence of weight tuning and hence detailed balance in the CA3-CA1 network.

Overall, we found stimulus-invariant proportionality of excitation and inhibition for any randomly

selected input, over a large range of stimulus strengths from a single presynaptic network. In addi-

tion to detailed balance, we show below that there is tight balance, that is the timing of the bal-

anced feedforward inhibition was within a few milliseconds of the excitation (Figure 6g,h). Thus, we

concluded that the CA3-CA1 circuit exhibits precise (both detailed and tight) balance

(Hennequin et al., 2017).

Combinatorial CA3 inputs sum sublinearly at CA1
We next asked how CA3 inputs, that lead to balanced excitatory and feedforward inhibitory conduc-

tances, transform into membrane potential change at CA1 neurons. Based on anatomical studies,

CA3 projections are likely to arrive in a distributed manner over a wide region of the dendritic tree

of CA1 pyramidal neuron (Ishizuka et al., 1990) (Figure 3a). While pairwise summation at CA1 has

been shown to be largely linear in absence of inhibition (Cash and Yuste, 1999), the degree of het-

erogeneity of summation in response to spatially distributed excitatory and inhibitory synaptic inputs

is not well understood (except, see Lovett-Barron et al., 2012) . To avoid biases that may arise

from a single response measure during input integration (Poirazi et al., 2003), we examined PSPs

using four different measures (Figure 3c). These were peak amplitude, area under curve (AUC), aver-

age membrane potential and area under curve till peak (Figure 3c).

We looked at input integration by presenting stimulus sets of 5 input squares to a given cell, with

each stimulus set ranging from 24 to 225 combinations of inputs. We initially tested the center of

our range of 1–9 squares (5-square inputs) before expanding the dataset to the full range (Figure 4).

We also recorded the responses to all squares of the grid individually (one square input). The one

square PSP peak response amplitude with inhibition intact (control) was not distinguishable from

that with inhibition blocked (GABAzine) (Materials and methods, Figure 3—figure supplement 1a).

As analyzed below (Figure 6), we find that the apparent lack of effect of GABAzine for very small

inputs is because inhibition arrives with a delay that does not affect the peak response of the neuron

(Video 1). Since individual neurons may be targeted by more than one grid square (Figure 1b), indi-

vidual spots are not completely independent and may interact, especially given the spread in the

CA3 pyramidal neuronal arbour. Our analyses show that this interaction does not have a strong or

unidirectional effect on the responses of the combinations of squares (Figure 4—figure supplement

1, Figure 5b,d). The ‘observed’ response for a given square combination was plotted against the

‘expected’ response, obtained by linearly summing 1-square responses constituting that
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combination (Figure 3b,d). Perfectly linear summation would imply that a multi-square combination

of inputs would elicit the same response as the sum of the responses to the individual squares (dot-

ted line, Figure 3d). Figure 3e shows responses of a single cell stimulated with 126 distinct 5-square

combinations. The ‘observed’ response was sublinear as compared to the ‘expected’ summed

response, for most stimuli (Figure 3e). For all the four measures in Figure 3c, CA3 inputs summed

sublinearly at CA1 (Figure 3e,g, Figure 3—figure supplement 1c). At this point, we hypothesised

that the observed sublinearity might mostly be due to inhibition divisively scaling excitation, since

excitatory and inhibitory conductances were proportional for all stimuli (Figure 2). We later tested

this hypothesis by blocking inhibition (Figure 5). For all responses measured over all cells, 93.35%

responses were individually sublinear, with distribution having mean 0.57 ± 0.31 (SD) (Figure 3f, Fig-

ure 3—figure supplement 1d). The slope of the regression line, which indicated the extent of subli-

nearity, varied between cells, with mean 0.38 ± 0.22 (SD) (n = 33 cells) (Figure 3g).

Thus, we found that the CA3-CA1 network exhibits sublinear summation over a large number of

inputs.
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comprising of the same squares. Bottom, PSPs elicited as a response to these stimuli. 5-square PSP can be larger (supralinear, orange), equal to (linear,

black), or smaller (sublinear, grey) than the sum of the single square PSPs. (c) A PSP trace marked with the four measures used for further calculations.

PSP peak, PSP area, area to peak and mean voltage are indicated. (d) Schematic of the input integration plot. Each circle represents response to one

stimulus combination. ‘Observed’ (true response of 5 square stimulation) on Y-axis and ‘Expected’ (linear sum of 1 square responses) is on X-axis. (e)

Most responses for a given cell show sublinear summation for a 5-square stimulus. The four panels show sublinear responses for four different measures

(mentioned in c) for the same cell. The grey dotted line is the regression line and the slope of the line is the scaling factor for the responses for that

cell. For peak (mV), area (mV.ms), average (mV), and area to peak (mV.ms); slope = 0.27, 0.23, 0.23, 0.18; R2 0.57, 0.46, 0.46, 0.26, respectively. The

responses to AUC and average are similar because of the similarity in the nature of the measure. (f) Distribution of Observed/Expected ratio of peaks of

all responses for all 5-square stimuli (mean = 0.57, s.d. = 0.31), from all recorded cells pooled. 93.35% responses to 5-square stimuli were sublinear

(2513 PSPs, n = 33 cells). (g) Distribution of slopes for peak amplitude of 5-square stimuli (mean = 0.38, s.d. = 0.22). Regression lines for all cells show

that all cells display sublinear (<1 slope) summation (n = 33 cells).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Summation at CA3-CA1 network is sublinear.
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CA3-CA1 network performs Subthreshold Divisive Normalization
We then tested how summation sublinearity scaled with a larger range of inputs. We noted that non-

linear functions can be observed better with a large range of inputs (Poirazi et al., 2003), and there-

fore increased the stimulus range (Figure 4—figure supplement 2). GABAergic inhibition has been

shown to be responsible for sublinear summation when Schaffer collateral and perforant path inputs

are delivered simultaneously to CA1 (Enoki et al., 2001). We hypothesized that the sublinearity

within the CA3-CA1 network might also occur due to the effect of inhibition. In general, inhibition

may interact with excitation to perform arithmetic operations like subtraction, division, and normali-

zation (Carandini and Heeger, 2011). In order to predict the operation performed by EI integration

at the CA3-CA1 network, we created a composite phenomenological model to fit and test for the

above three possibilities: subtractive inhibition, divisive inhibition, and divisive normalization (Equa-

tion (1)). We later address the mechanism using a biophysical model (Figure 6). Equation (1)

describes how inhibition controls the ‘observed’ response (�) as a function of ‘expected’ response

("), for the above three operations. Alpha (a) can be thought to be a subtractive inhibition parame-

ter, beta (b) as a divisive inhibition parameter, and gamma (g) a normalization parameter

(Figure 4a).

u¼ "�
b"

gþ "
"�a (1)

Using the framework of Equation (1), we asked what computation was performed at the CA3-

CA1 network. We recorded from CA1 cells while stimulating CA3 with many combinations of 2, 3, 5,

7 or 9 squares (Figure 4b). We selected cells with at least 50 input combinations, and pooled

responses from all stimuli to a cell. Then, we fit Equation (1) to the PSP amplitudes (Figure 4b).

From visual inspection, the subtractive inhibition model, �¼ "�a (fixing b, g = 0) was a bad fit, since

intercepts (a) were close to 0 (Figure 4a).

By fixing g and a to 0 in Equation (1) we obtained the Divisive Inhibition (DI) model. In this form,

b can be thought of as I/E ratio. Increasing b decreases the observed response (�) (Figure 4a).

�¼ "� b" (2)

Similarly, b was fixed to 1 and a to 0 to get the Divisive Normalization (DN) model. This form of

the equation was inspired by the analogous canonical divisive normalization equation for firing rates

(Carandini and Heeger, 2011). Here, decrease in g implies increase in normalization (Figure 4a).

�¼ "�
"

gþ "
"¼

g"

gþ "
(3)

We used least-squares polynomial regression to fit DI and DN models to our data. The goodness

of fit for all cells was tested by comparing BIC (Bayesian Information Criterion) (Figure 4c) and

reduced chi-squares of the models (Figure 4—figure supplement 2o, Materials and methods). DN

(a = 0, b = 1) was better than DI (a = 0, g = 0) model in explaining the data (BIC: Two-tailed paired

t-test, p<0.00005, reduced chi-square: Two-tailed paired t-test, p<0.00005, n = 32 cells).

Subthreshold Divisive Normalization (SDN) can be clearly seen in Figure 4b, where observed

responses to stimuli with 5 mV and 15 mV expected responses are very similar. This shows that SDN

allows CA1 cells to integrate a large range of inputs before reaching spike threshold. Thus, testing

with a larger range of inputs showed that the initial finding of constant I/E ratios from Figure 2

needed to be elaborated based on the observed response saturation with increasing input strength.

Potential mechanisms for this could be nonlinear summation of excitation and inhibition at the soma

(tested in Figure 5) and inhibitory delays (examined in Figure 6). In summary, we observed SDN as

an outcome of integration of precisely balanced inputs in the CA3-CA1 network.

CA3 feedforward inhibition is necessary for SDN
We first verified our hypothesis that SDN results from feedforward inhibition in the CA3-CA1 net-

work, and not from intrinsic properties of the CA1 neuron. We thus blocked inhibition and repeated

the above experiment. We expected that SDN would be lost and linearity would be reinstated upon

blocking inhibition.
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We recorded responses of CA1 cells to our array of optical stimuli (Figures 1d and 5a), then

applied GABAzine to the bath and repeated the stimulus array (Figure 5b). We found that when

inhibition was blocked, summation approached linearity (Figure 5b,c). We compared the scaling

parameter g of the divisive normalization model fit, for the above two conditions (Equation (3)). The

values of g were larger with inhibition blocked, indicative of approach to linearity (Wilcoxon rank-

sum test, p<0.05, n = 8 cells) (Figure 5c). While inhibition accounted in large part for the observed

sublinear summation, the cells with inhibition blocked showed some residual sublinearity at high

stimulus levels, which has been previously attributed to IA conductance in CA1 neurons (Cash and

Yuste, 1999). Based on the conductance equation (Equation (5)), leak conductance also contributes

in part to the residual sublinearity (Supplementary Equations (6-8)). Thus, we confirmed that block-

ing inhibition reduced sublinearity, attenuating SDN.
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Figure 4. Over a wide input range, integration of CA3 excitatory and feed-forward inhibitory input leads to SDN at CA1. (a) Three phenomenological

models of how inhibition interacts with excitation and modulates membrane potential: (left to right) Subtractive Inhibition (SI), Divisive Inhibition (DI)

and Divisive Normalization (DN). Note how parameters a, b and g from Equation (1) affect response output. (b) Divisive normalization seen in a cell

stimulated with 2, 3, 5, 7 and 9 square combinations. DN and DI model fits are shown in purple and green, respectively. (c) Difference in Bayesian

Information Criterion (BIC) values for the two models - DI and DN. Most differences between BIC for DI and DN were less than 0, which implied that

DN model fit better, accounting for the number of variables used. Insets show raw BIC values. Raw BIC values were consistently lower for DN model,

indicating better fit (Two-tailed paired t-test, p<0.00005, n = 32 cells). (d) Distribution of the parameter g of the DN fit for all cells (median = 7.9, n = 32

cells). Compare with a, b to observe the extent of normalization. (e) Distribution of the parameter beta of the DI fit for all cells (mean = 0.5, n = 32 cells).

Values are less than 1, indicating sublinear behaviour.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Interaction of squares does not affect summation unidirectionally.

Figure supplement 2. Input range expansion for observing nonlinear summation and divisive normalization.
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Precise balance is also seen at resting membrane potential
Then, we hypothesised that the membrane potential change evoked by inhibitory synaptic currents

could be increasing non-linearly with increasing CA3 input, even though the I/E ratio of conductan-

ces would be consistent across the range of input strengths. To address this, we compared

responses to identical patterns before and after GABAzine application. For a given cell, for each pat-

tern, we subtracted the initial control response with inhibition intact from the corresponding

response with inhibition blocked. This gave us the inhibitory component or ‘derived inhibition’ for

each stimulus pattern (Figure 5d, inset). We found that all stimuli to a cell evoked proportional exci-

tation and inhibition even when recorded at resting potential (Figure 5d,e). Thus, we rejected our

hypothesis of non-linear increase in inhibitory post-synaptic potential (IPSP) with excitatory post-syn-

aptic potential at resting membrane potential (EPSP). Over the population, the median slope of the

proportionality line was around 0.7, indicating that the EI balance was slightly tilted towards higher

excitation than inhibition (Figure 5f). IPSP/EPSP ratios (Figure 5f) were smaller than IPSC/EPSC

ratios (Figure 2d) due to proximity of inhibition to its reversal (~�70 mV), than excitation to its rever-

sal (~0 mV), at resting membrane potential (~�65 mV). Overall, we saw precise balance in evoked

excitatory and inhibitory synaptic potentials for >100 combinations per neuron.

Advancing inhibitory onset with increasing input explains SDN
We made a single compartment conductance model (Figure 6—figure supplement 1a, Equa-

tion (5)) to analyze the mechanism of SDN. We first show a Hodgkin-Huxley (HH) type single com-

partment model (Materials and methods), where we have used data from our voltage clamp

recordings (Figure 2), as input to the model. Simulation with both excitation and inhibition produced

curves resembling SDN, while only excitation gave a more linear response (Figure 6a, Figure 6—fig-

ure supplement 2), hence reproducing the observations depicted in Figure 5. Again, fit parameter

g was significantly higher for the cases without inhibition (Figure 6—figure supplement 2, Wilcoxon

rank sum test, p<1e-4, n = 13). In order to dissect the mechanism, we wanted to have finer control

over synaptic input parameters like kinetics and EI delay.

With this in mind, we fit a function of difference of exponentials (Materials and methods) to our

voltage clamp data to extract the peak amplitudes and kinetics of excitation and inhibition currents

(Materials and methods). We used these and other parameters from literature (Supplementary files

1 and 2), and constrained the model to have EI balance, that is have maximum excitatory (gexc) and

inhibitory conductance (ginh) proportional to each other, with a given I/E ratio. To test for SDN, we

simulated our model in the range of experimentally determined I/E ratios, ranging from 1 to 6.

We observed that EI balance with static EI delay led to a slightly sublinear response which can be

approximated with a divisive inhibition model (Figure 6). In contrast, subthreshold divisive normali-

zation (SDN) implies progressively smaller changes in peak PSP amplitude with increase in excitatory

input. We surmised that without changing EI balance, SDN should result if the inhibitory onset delays

were an inverse function of the excitation (Figure 6e, Equation (4)). Hence, we simulated the model

with dynamic delay, that is with values of inhibitory delay (dinh) varying as a decreasing function of

the excitation.

dinh ¼ dminþ me�kgexc (4)

Here, dmin is the minimum synaptic delay between excitation and inhibition, k sets the steepness

of the delay change with excitation, and m determines the maximum synaptic delay. In Figure 6c,

we show that SDN emerged when we incorporated delays changing as a function of the total excit-

atory input to the model neuron.

We then tested this model prediction. From the EPSC and IPSC curves, we extracted excitatory

and inhibitory onsets (Materials and methods), and subtracted the average inhibitory onsets from

average excitatory onsets to get inhibitory delay (dinh) for each stimulus combination. We saw that

dinh indeed varied inversely with total excitation (gexc) (Figure 6f,g). Notably, the relationship of delay

with conductance, with data from all cells pooled, seems to be a single inverse function, and might

be a network property (Figure 6g, Figure 6—figure supplement 1d). The input-dependent change

in inhibitory delay could be attributed to delayed spiking of interneurons with small excitatory

inputs, and quicker firing with larger excitatory inputs. We further illustrate that this delay function

emerges naturally by simply applying a threshold to the rising curve of an EPSP at an interneuron
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(Figure 6—figure supplement 1f). Thus, inhibition clamps down the rising EPSP at progressively

earlier times, resulting in saturation of PSP amplitude when excitation is increased (Figure 6c,d, Fig-

ure 8). In Figure 8a and b, we show using a schematic, how SDN emerges when inhibitory onset

changes as an inverse function of input strength.
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Figure 5. Blocking balanced inhibition at resting membrane potential attenuates SDN. (a) Top, schematic of

experiment condition. Bottom, a cell showing divisive normalization in control condition. (b) Top, schematic of

experiment condition with feedforward inhibition blocked (2 uM GABAzine). Bottom, responses of the same cell

with inhibition blocked. The responses are much closer to the linear summation line (dashed). The blue lines in a,

b are the fits of the DN model. The value of g of the fit increases when inhibition is blocked. (c) Parameter g was

larger with GABAzine in bath (Wilcoxon rank sum test, p<0.05, n = 8 cells), implying reduction in normalization

with inhibition blocked. (d) Excitation versus derived inhibition for all points for the cell shown in a (area under the

curve) (Slope = 0.97, r-square = 0.93, x-intercept = 3.75e-5 mV.ms). Proportionality was seen for all responses at

resting membrane potential. Top, ‘Derived inhibition’ was calculated by subtracting control PSP from the

excitatory (GABAzine) PSP for each stimulus combination. (e,f) R2 (median = 0.8) and slope values (median = 0.7)

for all cells (n = 8 cells), showing tight IPSP/EPSP proportionality, and slightly more excitation than inhibition at

resting membrane potentials.
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We observed that we were also able to capture the initial linear regime observed in Figure 4b by

using the inverse relationship of delay with excitation in this conductance model. This can be under-

stood as follows: at small excitatory input amplitudes, the EI delay is so large that inhibition arrives

too late to affect the peak EPSP. At higher stimulus amplitudes the output response is now sub-

jected to earlier, and hence increasingly effective inhibition, thus flattening the output curve (Appen-

dix 1, Video 1, Figure 3—figure supplement 1a, Figure 6c).

We then tested if SDN required both EI balance and dynamic EI delay. We obtained values for

balanced ginh for each I/E ratio, and then shuffled the order of the balanced inhibitory vector with

the excitation. This implied that the average I/E ratio was maintained over all stimuli, but not for indi-

vidual stimuli. This shuffled set of inhibitory conductance with respect to excitation was used to cal-

culate Vmax (Figure 6—figure supplement 1b). Similarly, we obtained inhibitory delay (dinh)

corresponding to each value of excitation from the dynamic delay curve in Equation (4) (Figure 6e).

We then shuffled the order of delays, keeping excitation in the same order (Figure 6—figure sup-

plement 1c). In both cases, SDN was strongly attenuated, implying that both EI balance and inverse

scaling of inhibitory delay were necessary for SDN (Figure 6—figure supplement 1b,c, Supplemen-

tary Equation (6) to (8)). Further, we transformed the membrane current equation (Equation (5))

into the form which resembles divisive normalization equation (Appendix 1), and saw that in this

form, g depends on the intrinsic properties of the neuron, and is modulated by delays and EI ratios.

Thus, our analysis of a conductance model suggests that SDN could be a general property of bal-

anced feedforward networks, due to two characteristic features: EI balance and inhibitory kinetics.

Each of these variables may be subject to plasticity and modulation to attain different amounts of

normalization (Figure 8c,d, Figure 8—figure

supplement 1).

Stimulus information is encoded
both in amplitude and time
We next asked if the temporally advancing inhibi-

tion (Figure 6e–h) affected PSP peak time with

increase in stimulus strength. We calculated the

slope of the PSP peak times against the expected

axis in the presence (Control) and absence of

inhibition (GABAzine) for a given cell. If inhibition

cut into excitation and resulted in advancing of

peak times with increasing stimulus strength, the

slope of peak times would be negative, as shown

in Figure 7a. Conversely, when inhibition is

blocked, slope of peak times is not expected to

change much. We saw that for all cells, slope of

the peak time with inhibition intact was lower

than the slope in the case with inhibition blocked

(Figure 7b) (Wilcoxon Rank sum test (p=0.006),

n = 8 cells).

What does SDN mean for information trans-

mission in balanced networks? While SDN

allowed the cell to integrate a large range of

inputs before reaching spiking threshold, it also

resulted in diminishing changes in PSP peaks at

larger inputs (Figure 4b). This implied that infor-

mation about the input was partially ‘lost’ from

the PSP amplitude. However, PSP times to peak

became shorter (Figure 7a,b), hence potentially

encoding some information about the input in

this time variable (Figure 7f, Figure 8b). In con-

trast, while the peak amplitudes seen with GABA-

zine predicted the input more reliably, peak

times of EPSPs did not change much with input

Video 1. Subthreshold divisive normalization emerges

when onset delay of balanced inhibition dynamically

decreases with excitation. (a) Schematic of the model

of a single compartment neuron, which receives

excitatory stimulus (in blue) at 20 ms, followed by an

inhibitory stimulus (in orange) with variable onset

delays. (b) Excitatory conductance (gluGbar) changes

as shown in top most slider. Inhibitory conductance (I/E

ratio*gluGbar) arrives after a dynamic or static delay.

The orange and the blue dotted lines track the

inhibition onset and the excitation peak, respectively.

Their interaction point, marked by the orange dot,

traces the relationship of excitatory conductance with

dynamic or static delay. (c) EI summation plot

(Figures 3d and 4b) of PSP peak against excitation.

Model shows SDN with dynamic EI delays,

characterized by the initial linear zone followed by a

sublinear zone for higher excitation values. SDN was

lost when the EI delay was static. (d) Membrane voltage

change as a result of only excitatory (dotted line), and

integration of excitatory and inhibitory conductances

(solid line) from panel b. Note how the peak time

changes as a function of delays.

https://elifesciences.org/articles/43415#video1
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(Figure 7b,f). Thus, PSP peak time may carry additional information about stimulus strength, when

EI balance is maintained.

We quantified this using an information theoretical framework (Shannon, 1948). We took linear

sum of 1-square PSP peak amplitudes (Expected sum), as a proxy for input strength. We then calcu-

lated the mutual information between Expected sum and PSP peak amplitudes of the corresponding

N-squares, and between Expected sum and PSP peak timing (Materials and methods). Using this,

we asked, how is the information about the input divided between PSP peak amplitude and timing?

The total mutual information of both peak amplitude and peak timing with expected sum was

slightly lesser in the presence of inhibition, but this difference was statistically not

significant (Figure 7e) (Wilcoxon Rank sum test (<0.05), p=0.11, n = 7 cells). We found that peak tim-

ing had more information in presence of inhibition (control), and peak amplitude had more informa-

tion in absence of inhibition (GABAzine) (Wilcoxon Rank sum test (<0.05), n = 7 cells) (Figure 7f).

Further, we asked, how better can we predict the input, with the knowledge of peak timing, when

the peak amplitude is already known? We found that in the presence of inhibition, peak amplitude
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Figure 6. Conductance model predicts Excitatory-Inhibitory delay as an important parameter for divisive normalization. (a) Subthreshold responses

from HH model, simulated with traces recorded from one voltage clamped cell (Figure 2). Non-linearly saturating curve, similar to SDN, obtained by

simulating with both excitation and inhibition synaptic conductances (black), while the response profile is much more linear with only excitation (red).

Each black point is the median response of an excitation trace paired with six different repeats of inhibition for that combination. (b) PSP peak

amplitude with both excitatory and balanced inhibitory inputs is plotted against the EPSP peak amplitude with only excitatory input. Model showed

sublinear behaviour approximating divisive inhibition for I/E proportionality ranging from 1 to 6 when the inhibitory delay was static. Different colours

show I/E ratios. (c) Same as in b, except the inhibitory delay was varied inversely with excitatory conductance (as shown in e). Initial linear zone and

diminishing changes in PSP amplitude, indicative of SDN were observed, and the normalization gain was sensitive to the I/E ratio. dmin= 2 ms, k = 0.5

nS�1, and m = 8.15 ms. Note, the increased overlap in the initial zone (grey box) and the saturation of the PSP peaks in c, as compared to b. (d) Effect

of changing EI delay, keeping I/E ratio constant (I/E ratio = 5). Divisive inhibition (green) seen while changing EI delay values from 2 to 10 ms. Divisive

normalization (purple) emerges if delays are changed as shown in e. dmin= 2 ms, k = 0.5 nS�1, and m = 8.15 ms. (e) Inverse relationship of EI delays with

excitation. Inhibitory delay was varied with excitatory conductance in Equation (4) with dmin = 2 ms, k = 2 nS�1, and m = 13 ms. (f) Data from an

example cell showing the relationship of EI delays with excitation. The relationship is similar to the prediction in e. Points are binned averages. Error

bars are s.d. (g) Data from all cells showing delay as a function of excitation. Different colors indicate different cells (n = 13 cells). Grey lines are linear

regression lines through individual cells. (h) Traces (from a voltage clamped neuron) showing the decreasing EI delay with increasing amplitude of PSCs.

Each trace is an average of 6 repeats.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Sensitivity of SDN to EI balance and EI delay, and synaptic time courses used for model.

Figure supplement 2. HH model simulations with voltage clamped data show SDN.
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carried only a part of the total information about the input, and further knowledge of peak time sub-

stantially increased the total information. In contrast, in the absence of inhibition, peak amplitude

carried most of the information about input, and there was very little gain in information with the

knowledge of peak times (Figure 7f) (Wilcoxon Rank sum test (=0.05), n = 6 cells).

We then asked if the PSP peak time changes are also reflected in spike times. Since most of our

stimuli elicited subthreshold responses, studying spiking required an artificial depolarization stimu-

lus. From simulations we found that several parameters of the model (including resting membrane

potential, membrane capacitance, synaptic conductances, EI ratio and delay, and spike threshold)

could affect the mapping of subthreshold responses to spike timing, suggesting that this is a rich

substrate for modulation. Keeping this caveat in mind, we tested the temporal profile of spikes with

our model. We let the model cell spike in response to EI (similar to the Control condition) and only E

(Gabazine condition). We observed that SDN translated to the spiking domain by encoding stronger

stimulus amplitudes as shorter spike latencies, similar to the subthreshold responses. The presence

of inhibition decreased the steepness of spike time with conductance (Figure 7d,g, Figure 7—fig-

ure supplement 1). The separation between the two conditions was sensitive to the exact value of

threshold. At threshold close to resting potential, the separation was low, because the cell spiked
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Figure 7. Advancing inhibitory onset changes PSP peak time and spike time with increase in stimulus strength. (a,b) The PSP peak arrived earlier

following larger input in the control case (black), but not with GABAzine in bath (red). Traces for an example cell, binned (20 bins for Expected sum axis)

and averaged, for control (black) and with GABAzine in bath (red). (c) Slope of the peak time was more negative in presence of inhibition (control) than

when inhibition was blocked (GABAzine) (n = 8 cells). (d) Three example traces from the cell in g showing the relationship of spikes in presence (black)

and absence of inhibition (red). Spikes were produced by HH model, using synaptic conductances from voltage clamp data. The separation between

spike times of the two conditions increased with decrease in input conductance (top to bottom). (e) Total mutual information of peak amplitude and

peak timing with expected sum was not significantly different between Control and GABAzine case (Wilcoxon Rank sum test (<0.05), p=0.11, n = 7 CA1

cells). (f) Normalized mutual information between Expected Vm and peak time, Expected Vm and peak amplitude, and conditional mutual information

between Expected Vm and peak time, given the knowledge of peak amplitude. Normalized information was calculated by dividing mutual information

by total information for each cell (as shown in d). Peak times carried more information in the presence of inhibition, and peak amplitudes carried more

information in the absence of inhibition. There was higher gain in information about the input with timing if the inhibition was kept intact (Wilcoxon

Rank sum test (p<0.05), n = 7 (Pk time, Pk amp) and (p=0.05) n = 6 (Gain with time) CA1 cells). (g) Relationship of spike time with excitatory

conductance, in the presence (black) and absence of inhibition (red), for HH model simulations. All black points are medians of spikes of each excitation

trace paired with six different repeats of inhibition for that combination.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Spike time changes with increasing input are steeper in presence of inhibition.

Bhatia, Moza, et al. eLife 2019;8:e43415. DOI: https://doi.org/10.7554/eLife.43415 14 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.43415


before the effect of inhibition set in. For a given threshold, a subset of the cells showed enough sep-

aration between conditions (Figure 7d,g, Figure 7—figure supplement 1) and this value could be

tuned to obtain maximum separation for each cell.

Overall, these results suggest that with inhibition intact, input information is shared between

amplitude and time, and knowledge of peak time and amplitude together contains more information

about input than either of them alone.

Modulation of gating with SDN
We next asked how the two basic parameters - I/E ratio and EI delay - modulated the degree of nor-

malization and kinetics of the SDN curve (Figure 8c,d). Using our conductance model, we measured

the normalization parameter g (a = 0, b = 1, Equation (1)) for a range of values of I/E ratio and

delays, and found that normalization increased systematically with increase in I/E ratio as well as with

increase in the steepness of the EI delay relationship (Figure 8c). This implies that the degree of nor-

malization of not only an entire neuron, but subsets of inputs to a neuron, could be dynamically

altered by changing these parameters. In terms of gating, for a neuron with all inputs tightly bal-

anced, any subset of inputs with reduction in I/E ratio will be gated ‘on’, corresponding to a condi-

tion of higher g. Neurons can thus differentially gate and respond to specific inputs, while still

retaining the capacity to respond to other input combinations.

Discussion
This study describes two fundamental properties of the CA3-CA1 feedforward circuit: balanced exci-

tation and inhibition from arbitrary presynaptic CA3 subsets, and an inverse relationship of excit-

atory-inhibitory delays with CA3 input amplitude. We used optogenetic photostimulation of CA3

with hundreds of unique stimulus combinations and observed precise EI balance at individual CA1

neurons for every input combination. Stronger stimuli from CA3 led to proportional increase in excit-

atory and inhibitory amplitudes at CA1, and a decrease in the delay with which inhibition arrived.

Consequently, larger CA3 inputs had shorter inhibitory delays, which led to progressively smaller

changes in CA1 membrane potential. We term this gain control mechanism Subthreshold Divisive

Normalization (SDN). This reduction in inhibitory delay with stronger inputs contributes to a division

of input strength coding between PSP amplitude and PSP timing.

Precise balance in the hippocampus
Our findings demonstrate that precise EI balance is maintained by arbitrary combinations of neurons

in the presynaptic network, despite the reduced nature of the slice preparation, with no intrinsic net-

work dynamics. This reveals exceptional structure in the connectivity of the network. Theoretical

analyses suggest that networks can achieve detailed balance with inhibitory Spike Timing Dependent

Plasticity (iSTDP) rules (Hennequin et al., 2017; Luz and Shamir, 2012; Vogels et al., 2011). Such

an iSTDP rule has been observed in the auditory cortex (D’amour and Froemke, 2015). Given that

balance needs to be actively maintained (Xue et al., 2014), we suspect that similar plasticity rules

(Hennequin et al., 2017) may also exist in the hippocampus.

Precisely balanced networks, with all input subsets balanced, are well suited for input gating

(Barron et al., 2017; Hennequin et al., 2017). The finding that most silent CA1 cells can be con-

verted to place cells for arbitrary locations predicts the existence of an input gating mechanism

(Lee et al., 2012), but the nature of this mechanism remains unknown. One prediction of precise bal-

ance is that inputs for multiple potential place fields may be balanced, and hence place field activity

is gated ‘off’. Evoked depolarizations (Lee et al., 2012) or dendritic plateau potentials

(Bittner et al., 2015; Bittner et al., 2017), which potentiate the subset of active synapses, that is,

change the I/E ratio (Grienberger et al., 2017), can flip the gate ‘on’, thereby converting a silent

cell to a place cell for that specific place field. This reasoning corroborates the observation of

homogenous inhibition suppressing out-of-field heterogeneously tuned excitation

(Grienberger et al., 2017), while providing a finer, synaptic scale view of the gating mechanism.

EI delays and temporal coding
In several EI networks in the brain, inhibition is known to suppress excitation after a short time delay,

leaving a ‘window of opportunity’ for spiking to occur (Higley and Contreras, 2006; Pouille and
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Scanziani, 2001; Wehr and Zador, 2003). We have shown that balanced inhibitory input arrives
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Figure 8. Emergence of SDN from balanced excitation and inhibition, coupled with dynamic EI delays. (a) Schematic showing precisely balanced EPSPs

(blue) and corresponding IPSPs (red) summing to produce PSPs (purple). The EPSPs and IPSPs increase in equal input steps. (b) Zooming into the

portion in the rectangle in a. Excitation onset is constant, but inhibition onset changes as an inverse function of input or conductance (gexc), as shown in

Figure 6. With increasing input, inhibition arrives earlier and cuts into excitation earlier for each input step. This results in smaller differences in

excitatory peaks with each input step, resulting in SDN. The timing of PSP peaks (purple) becomes progressively advanced, whereas the timing of EPSP

peaks (blue) does not, consistent with our results in Figure 7. (c,d) Normalization as a function of the two building blocks – EI balance (I/E ratio) and EI

delays (interneuron recruitment kinetics, k, as predicted by the model. Larger values of both imply greater normalization and increased gating. Colors

of the SDN curves depict the value of gamma (g), as shown in the phase plot in d. White squares are values of g larger than 40, where almost no

normalization occurs.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. PSP traces showing the effect of I/E ratio and inhibitory recruitment kinetics (k) on SDN.
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with a delay modulated by the excitatory input in a feedforward circuit. This inverse relationship of

EI delay with excitation has not been explicitly shown, although Heiss et al. (2008) report a

decrease in EI delays with increase in whisker stimulation speed in layer 4 cells. We show that modu-

lation of EI delay by excitation helps encode the input information in both amplitude and timing of

the PSP (Figure 7). Thus, large inputs could be represented with fewer spikes, while conserving input

strength information in spike timing. In CA1, a classic example of such dual coding is theta phase

precession (Jensen and Lisman, 2000). In addition, spike times during sharp wave ripples, gamma

oscillations and time cell representations are also precise up to ~10 ms, which is the range of the

dynamic ‘window of opportunity’ we observe. This dynamic window also implies that the neuron can

transition from temporal integration mode at small input amplitudes to coincidence detection at

large input amplitudes (Gabernet et al., 2005; Higley and Contreras, 2006; Wehr and Zador,

2003). Consistent with this range of spike-coding transformations, our simulations suggest that the

precise mapping of subthreshold summation to spike timing can be effectively modulated by several

cellular parameters as well as by details of input activity (Figure 7d,g).

Subthreshold Divisive Normalization (SDN): a novel gain control
mechanism
We have introduced Subthreshold Divisive normalization (SDN) as a novel gain control mechanism

arising from EI balance and dynamic EI delays. Our study was uniquely able to observe SDN because

of the large range of inputs possible (Poirazi et al., 2003) using patterned optical stimulation. While

we observed no unidirectional correlation of the distance between input spots and their responses

for most inputs (Figure 4—figure supplement 1), a limitation of this stimulation design is that some

of the inputs may not be fully independent due physical proximity of stimulus spots. SDN expands

the dynamic range of inputs that a neuron can accommodate before reaching spike threshold (Fig-

ure 8—figure supplement 1b). This is particularly useful for temporally coding, sparsely spiking neu-

rons like CA1 (Ahmed and Mehta, 2009). So far, analogous gain control by divisive normalization

has only been observed for firing rates of neurons (Carandini and Heeger, 2011). This implies that

the timescales of gain change in DN are averaged over periods of tens of milliseconds, over which

rates change. As opposed to this, in SDN, gain of every input is normalized at synaptic (millisecond)

timescales. Our results add a layer of subthreshold gain control in single neurons, to the known

suprathreshold gain control at the population level in CA1 (Pouille et al., 2009). This two-step gain

control implies that the dynamic range of the population may be wider than previously estimated.

While most experimental observations of firing rate gain change have been explained by the phe-

nomenological divisive normalization equation, the mechanistic basis for normalization has been

unclear. SDN provides a biophysical explanation for phenomenological divisive normalization by con-

necting EI ratios and delays with gain control.

I/E ratio can be changed by neuromodulation (Froemke, 2015; Froemke et al., 2007), by short

term plasticity mechanisms (Bartley and Dobrunz, 2015; Klyachko and Stevens, 2006;

Tsodyks and Markram, 1997) and by disinhibition (Basu et al., 2016). Although we show that EI

delays are input amplitude dependent, they may also be modulated by external signals, or behaviou-

ral states such as attention (Kim et al., 2016) (Figure 8c,d). Such interneuron recruitment based

changes have been shown to exist in thalamocortical neurons (Gabernet et al., 2005). Dynamic reg-

ulation of EI delay has been theoretically explored in balanced networks (Bruno, 2011;

Kremkow et al., 2010) for temporal gating of transient inputs independently by amplitude and

time. Thus, temporal gating by EI delays (Kremkow et al., 2010), combined with the amplitude gat-

ing by detailed balance (Vogels and Abbott, 2009) could be a powerful mechanism for gating sig-

nals (Kremkow et al., 2010) in the hippocampal feedforward microcircuit.

Several studies point toward the existence of precise EI balance in the cortex (Atallah and Scan-

ziani, 2009; Okun and Lampl, 2008; Wehr and Zador, 2003; Wilent and Contreras, 2005;

Zhang et al., 2003; Zhou et al., 2014), and here we have shown it in the hippocampus. We propose

that input strength dependent inhibitory delay change may be a general property of feedforward

network motifs. Together, these suggest that precisely balanced feedforward networks are elegantly

suited for controlling gain, timing and gating at individual neurons in neural circuits.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent
(M. musculus)

C57BL/6-Tg
(Grik4-cre)
G32-4Stl/J

Jackson
Laboratory

Stock #:
006474

Dr. Susumu
Tonegawa’s
laboratory, MIT

Strain, strain
background
(Adeno-
associated virus)

AAV5.CAGGS.Flex.
ChR2-tdTomato.
WPRE.SV40

Penn Vector
Core

Software,
algorithm

MOOSE simulator Ray and Bhalla, 2008 RRID:SCR_
008031

Dr. Upinder
Bhalla’s laboratory,
NCBS

Animals
All experimental procedures were approved by the National Centre for Biological Sciences Institu-

tional Animal Ethics Committee (Protocol number USB–19–1/2011), in accordance with the guide-

lines of the Government of India (animal facility CPCSEA registration number 109/1999/CPCSEA)

and equivalent guidelines of the Society for Neuroscience. CA3-cre (C57BL/6-Tg (Grik4-cre) G32-

4Stl/J mice, Stock number 006474) were obtained from Jackson Laboratories. The animals were

housed in a temperature controlled environment with a 14 hr light: 10 hr dark cycle, with ad libitum

food and water.

Virus injections
21–30 days old male transgenic mice were injected with Lox-ChR2 (AAV5.CAGGS.Flex.ChR2-tdTo-

mato.WPRE.SV40) virus obtained from University of Pennsylvania Vector Core. Injection coordinates

used were �2.0 mm RC, ±1.9 mm ML, �1.5 mm DV. ~300–400 nl solution was injected into the CA3

region of left or right hemisphere with brief pressure pulses using Picospritzer-III (Parker-Hannifin,

Cleveland, OH). Animals were allowed to recover for at least 4 weeks following surgery.

Slice preparation
8–12 week (4–8 weeks post virus injection) old mice were anesthetized with halothane and decapi-

tated post cervical dislocation. Hippocampus was dissected out and 350 um thick transverse slices

were prepared. Slices (350 microns) were cut in ice-cold high sucrose artificial cerebro-spinal fluid

(hsaCSF) containing (in mM): 87 NaCl, 2.5 KCl, 1.25 NaH2 PO4 , 25 NaHCO3 , 75 sucrose, 0.5 CaCl2 ,

7 MgCl2. Slices were stored in a holding chamber, in artificialcerebro-spinal fluid (aCSF) containing

(in mM) - 124 NaCl, 2.7 KCl, 2 CaCl2 , 1.3MgCl2 , 1.25 NaH2PO4 , 26 NaHCO3 , and 10 glucose, satu-

rated with 95% O 2 /5% CO2 . After at least an hour of incubation, the slices were transferred to a

recording chamber and perfused with aCSF at room temperature.

Electrophysiology
Whole cell recording pipettes of 2-5MO were pulled from thick-walled borosilicate glass on a P-97

Flaming/Brown micropipette puller (Sutter Instrument, Novato, CA). Pipettes were filled with internal

solution containing (in mM): 130 K-gluconate, 5NaCl, 10 HEPES, 1 Na4-EGTA, 2 MgCl2 , 2 Mg-ATP,

0.5 Na-GTP and 10Phosphocreatinine, pH adjusted to 7.3, osmolarity ~285 mOsm. The membrane

potential of CA1 cells was maintained near �65 mV, with current injection, if necessary. GABA-A cur-

rents were blocked with GABAzine (SR-95531, Sigma) at 2 uM concentration for some experiments.

Cells were excluded from analysis if the input resistance changed by more than 25% (measured for

15/39 cells) or if membrane voltage changed more than 2.5 mV (measured for 39/39 cells, maximum

current injected to hold the cell at the same voltage was ±15 pA) of the initial value. For voltage

clamp recordings, the K-gluconate was replaced by equal concentration Cs-gluconate. Cells were

voltage clamped at 0 mV (close to calculated excitation reversal) and �70 mV (calculated inhibition

reversal) for IPSC and EPSC recordings respectively. At 0 mV a small component of APV sensitive
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inward current was observed, and was not blocked during recordings. Cells were excluded if series

resistance went above 25MO or if it changed more than 30% of the initial value, with mean series

resistance being 15.7MO ± 4.5 MO s.d. (n = 13). For CA3 current clamp recordings, the cells were

excluded if the Vm changed by 5 mV of the initial value. For whole-cell recordings, neurons were

visualized using infrared microscopy and differential interference contrast (DIC) optics on an upright

Olympus BX61WI microscope (Olympus, Japan) fitted with a 40X (Olympus LUMPLFLN, 40XW),

0.8NA water immersion objective. Recordings were acquired on a HEKA EPC10 double plus ampli-

fier (HEKA Electronik, Germany) and filtered 2.9 kHz and digitized at 20 kHz.

Optical stimulation setup
Optical stimulation was done using DMD (Digital Micromirror Device) based Optoma W316 projec-

tor (60 Hz refresh rate) with its color wheel removed. Image from the projector was miniaturized

using a Nikon 50 mm f/1.4D lens and formed at the focal plane of the tube lens, confocal to the sam-

ple plane. The white light from the projector was filtered using a blue filter (Edmund Optics, 52532),

reflected off of a dichroic mirror (Q495LP, Chroma), integrated into the light path of the Olympus

microscope, and focused on sample through a 40X objective. This arrangement covered a circular

field of around 200 micron diameter on sample. 2.5 pixels measured one micron at sample through

the 40X objective. Light intensity, measured using a power meter, was about 15 mW/mm2 at sample

surface. Background light from black screen usually elicited no or very little synaptic response at

recorded CA1 cells. A shutter (NS15B, Uniblitz) was present in the optical path to prevent the slice

from being stimulated by background light during the inter-trial interval. The shutter was used to

deliver stimulus of 10–15 ms per trial. A photodiode was placed in the optical path after the shutter

to record timestamps of the delivered stimuli.

Patterned optical stimulation
Processing 2 was used for generating optical patterns. All stimuli were 16 micron squares sub-

sampled from a grid. 16 micron was chosen since it is close to the size of a CA3 soma. The light

intensity and square size were standardized to elicit typically one spike per cell per stimulus. The

number of spikes varied to some extent based on the expression of ChR2, which varied from cell to

cell. The switching of spots from one trial to next, at 3 s inter trial interval, prevented desensitization

of ChR2 over successive trials (Figure 1g).

For a patched CA1 cell, the number of connected CA3 neurons stimulated per spot was esti-

mated to be in the range of 0 to a maximum of 50 for responses ranging from 0 to 2 mV. These cal-

culations assume a contribution of 0.2 mV per synapse (Magee and Cook, 2000) and release

probability of ~0.2 (Murthy et al., 1997). This number includes responses from passing axons, which

could also get stimulated in our preparation.

We did not observe any significant cross stimulation of CA1 cells. CA1 cells were patched and

the objective was shifted to the CA3 region of the slice, where the optical patterns were then pro-

jected. CA1 cells showed no response to optical stimulation because (i) Use of CA3-cre line

restricted ChR2 to CA3 cells, (ii) physical shifting of the objective away from CA1 also made sure

that any leaky expression, if present, did not elicit responses. Using a cre-based targeted optoge-

netic stimulation combined with patterned optical stimulation, we designed an experiment which

was both more specific and more effective at exploring a large stimulus space. Unlike electrical stim-

ulation, optical stimulation specifically excited CA3 pyramidal neurons, and hence the recorded inhi-

bition was largely feedforward. We believe this specificity was crucial to the finding that I/E ratios for

all stimuli to a cell are conserved. Electrical stimulation does not distinguish between neuronal sub-

classes, and in particular fails to separate out the inhibitory interneurons. Since a key part of our find-

ings emerged from being able to establish a temporal sequence of activation of interneurons, it was

crucial to exclude monosynaptic stimulation of interneurons in the experimental design. Second, pat-

terned optical stimulation allowed us to explore a grid of 225 stimulus points in CA3, thereby obtain-

ing a wide array of stimulus combination with large dynamic range, without compromising on the

specificity of stimulation (Figure 1, Figure 1—figure supplement 1).

We used four different stimulus grids (Figure 1—figure supplement 1). All squares from a grid

were presented individually (in random order) and in a stimulus set - randomly chosen combinations
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of 2, 3, 5, 7, or 9, with 2, 3 or 6 repeats of each combination. The order of presentation of a given N

square combination was randomized from cell to cell.

Data analysis and code availability
All analyses were done using custom written software in Python 2.7.12 (numpy, scipy, matplotlib and

other free libraries) and MatlabR2012b. All error bars are standard deviations. All analysis codes are

available as a free library at (https://github.com/sahilm89/linearity; copy archived at https://github.

com/elifesciences-publications/linearity).

Pre-processing
PSPs and PSCs were filtered using a low-pass Bessel filter at 2 kHz, and baseline normalized using

100 ms before the optical stimulation time as the baseline period. Period of interest was marked as

100 ms from the beginning of optical stimulation, as it was the typical timescales of PSPs. Timing of

optical stimulation was determined using timestamp from a photodiode responding to the light

from the projector. Trials were flagged if the PSP in the interest period were indistinguishable from

baseline period due to high noise, using a two sample KS test (p-value<0.05). Similarly, action poten-

tials in the interest period were flagged and not analyzed, unless specifically mentioned.

Feature extraction
A total of four measures were used for analyzing PSPs and PSCs (Figure 3c). These were mean, area

under the curve, average and area to peak. This was done to be able to catch differences in integra-

tion at different timescales, as suggested by Poirazi et al. (2003). Trials from CA1 were mapped

back to the grid locations of CA3 stimulation for comparison of Expected and Observed responses.

Grid coordinate-wise features were calculated by averaging all trials for a given grid coordinate.

Subthreshold divisive normalization model
Different models of synaptic integration: Subtractive Inhibition, Divisive Inhibition, and Divisive Nor-

malization models were obtained by constraining parameters in Equation (1). The models were then

fit to the current clamp dataset using lmfit. Reduced chi-squares (Figure 4—figure supplement 2o)

and Bayesian Information Criterion (Figure 4c) were used to evaluate the goodness of fits of these

models to experimental data.

Single-compartment model
A single-compartment conductance-based model was created in Python using sympy and numpy.

The model consisted of leak, excitatory and inhibitory synaptic conductances (Equation (5), Fig-

ure 6—figure supplement 1a) to model the subthreshold responses by the CA1 neurons.

Cm

dVm

dt
¼ gleak Vm� Eleakð Þþ gexc Vm� Eexcð Þþ ginh Vm� Einhð Þ (5)

The parameters used for the model were taken directly from data, or literature

(Supplementary file 2). The synaptic conductances gexc tð Þ, and ginh tð Þ were modeled as difference of

exponentials (Equations (6) and (7)):
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(7)

For the divisive normalization case, the inhibitory delays (dinh) were modeled to be an inverse

function of gexc tð Þ (Equation (4)). In other cases, they were assumed to be constant and values were

taken from Supplementary file 2.
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HH-based single-compartment model
A single-compartment Hodgkin Huxley model with parameters mentioned in Supplementary file 3

was simulated in MOOSE (Ray and Bhalla, 2008) to analyze how measured synaptic conductances

sum to cause CA1 somatic depolarization. To enable spiking, we included sodium and potassium

delayed rectifier (KDR) channels in these neurons. Then, we drove this neuron with synaptic input as

measured from voltage clamp data.

Measurement of synaptic conductances
We calculated excitatory and inhibitory conductances using Equation (5), while holding the neuron

at inhibitory and excitatory reversal potentials respectively (Zhou et al., 2014, Atallah and Scan-

ziani, 2009). To measure excitatory conductance (gexc), we clamped the membrane to the inhibitory

reversal potential (Einh). In the absence of a stimulus, the holding current gave us the value of leak

current (Ileak). Excitatory synaptic current (Iexc) was measured as the change in membrane current

evoked by the input stimulus (Im � Ileak), from the baseline of holding current. We calculated the gexc

by dividing this stimulus evoked excitatory current by the excitatory driving force (Vm � Eexc). The

same procedure was repeated at excitatory reversal to measure inhibitory conductance (ginh) for

each stimulus.

With this method, measurement of gexc and ginh at corresponding clamped membrane voltages

was independent of the absolute value of Ileak. However, we needed to obtain an estimate of leak

conductance gleakð Þ for the purposes of the model (Equation (5)). We could not use the absolute

value of Ileak as measured in our voltage clamped neurons because of blockage of potassium chan-

nels with Cs internals. Hence, for use in our conductance model, gleak measurements were not taken

from our voltage clamp data, and instead the value was taken from literature.

Fitting data
Voltage clamp data was fit to a difference of exponential functions (Equation (8), Figure 6—figure

supplement 1e) by a non-linear least squares minimization algorithm using lmfit, a freely available

curve fitting library for Python. Using this, we obtained amplitudes (�g), time course (t rise, t decay) and

onset delay from stimulus (donsetÞ for both excitatory and inhibitory currents. We then calculated

inhibitory onset delay (dinh) by subtracting onset delay of excitatory from inhibitory traces.

g tð Þ ¼ �g
e

donset�t

t decay

� �

� e

donset�t

t rise

� �

� t rise

t decay

� �

t decay

t decay�t riseþ t rise

t decay

� �

t rise
t decay�t rise

0

B

B

@

1

C

C

A

(8)

Onset detection
Onsets were also detected using three methods. Since we propose onset delays to be a function of

the excitation peak, we avoided onset finding methods such as time to 10% of peak, which rely on

peaks of the PSCs. We used threshold based (time at which the PSC crossed a threshold), slope

based (time at which the slope of the PSC onset was the steepest) and a running window based

method. In the running window method, we ran a short window of 0.5 ms, and found the time point

at which distributions of two consecutive windows became dissimilar, using a two sample KS test.

Ideally, with no input, the noise distribution across two consecutive windows should remain identical.

All three methods gave qualitatively similar results.

Modeling detailed balanced synapses
Synaptic inputs were modeled as sums of probabilistically activated basal synapses with synaptic

strengths taken from a lognormal distribution with shape and scale parameters as given by our one

square current clamp data (shape = �0.39, scale = 0.80). The width of the weight distribution was

altered by changing the scale parameter. Probabilistic synaptic activation was modeled as a binomial

process, with synaptic ‘release probability’ for excitatory and inhibitory inputs set at 0.2 and 0.8,

respectively.

Inhibitory inputs were generated with various degrees of correlation to the excitation, by shuffling

the excitatory weights in differently sized bins, from one to the length of the excitatory weight vec-

tor, controlled by a parameter �. In this manner, as � changed from 1 to 0, excitatory and inhibitory
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weight vectors changed from paired (detailed balance) to completely unpaired but with identical

mean and variance of the weight distributions (global balance).

These synapses could be engaged by delivering stimuli, with the number of synapses per stimulus

sampled from a Poisson distribution with mean of 5 synapses per stimulus. The total number of

excitatory and inhibitory synaptic inputs engaged by a stimulus were always identical. Each stimulus

was repeated six times. The resultant means and standard deviations for excitatory and inhibitory

inputs were plotted against each other to compare different degrees of correlation. The whole pro-

cess was repeated 100 times, and correlations and r-squared values were averaged to generate the

heatmaps.

Mutual information calculation
Mutual information was calculated by non-parametric entropy estimation and histogram methods.

NPEET (https://github.com/gregversteeg/NPEET) was used for non-parametric estimation of Mutual

Information. The relationship between variables was shuffled 500 times to find the significance of

the Mutual Information estimate. If the true value of MI was not larger than 90% of the distribution

obtained by shuffling, mutual information was assumed to be 0. If the total information about the lin-

ear sum of one square responses using both peak amplitude and time could not be established with

90% confidence as described above, the cell was excluded from further analysis. We also used the

histogram method to find the mutual information (data not shown), and saw a similar trend. Cells

with fewer than 80 trials and less than 2 mV inter-quartile range in the linear sum from one square

PSP were excluded from the analysis. The calculated linear sum from one square PSP peak amplitude

responses, measured N-square peak amplitudes and time were binned with an equal number of

bins. The number of bins were calculated using Sturges’ Rule, which selects the number of bins as

1 + 3.3 log n, where n is the total number of observations for a given neuron. Bin frequencies were

divided by the total number of responses to get the probability of occurrence p(x) of each bin.

Mutual Information was then calculated for all pairs of combinations between linear sum, peak

amplitude and time using Equation (9) and (10).

MI X;Yð Þ ¼ H Xð Þþ H Yð Þ� H X;Yð Þ (9)

where Shannon’s entropy H Xð Þ for a variable X, is given as:

H Xð Þ ¼
x �X

X

�pðxÞlog2pðxÞ (10)

Further, conditional mutual Information was calculated to measure gain in information about input

(linear sum) by knowledge of peak timing when peak amplitude is already known. It was calculated

using Equation 11.

I X ;YjZð Þ ¼ H X;Zð Þþ H Y ;Zð Þ� H X;Y ;Zð Þ� H Zð Þ (11)

Normalized mutual information was calculated by dividing mutual information between pairs of

variables by the total information between all three variables (Equation 12).

I X;Y;Zð Þ ¼ H Zð Þþ H X;Yð Þ� H X;Y ;Zð Þ (12)

Cross-pulse adaptation
We individually presented five unique photostimulation spots in all possible pairwise combinations,

with an inter-stimulus interval of 50 ms (Dittman et al., 2000), to test for the interaction using a

Cross Pulse Adaptation protocol. We then compared the averages of ten repeats of the response

for a given spot when it arrived second in the stimulus-pair, to when it came first. Hence, if there is

facilitation caused due to the presence of the first spot, then we should observe that the response

to the spot when it comes second is larger than when it comes first in the stimulus pair. To quantify

this change, we calculated the ratio between the average response of the spot, when it arrives at

the second place, to the response when it arrives at the first place. This gave us the Cross Pulse

Ratio (Figure 4—figure supplement 1b). A necessary internal control was that the self-self spot

pairs should get facilitated. However, we observed lack of facilitation for self-self pairs, for all the

cells we tested (Figure 4—figure supplement 1, n = 6 cells). To ensure that this effect was not due
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to a limitation of the preparation, we tested paired pulse facilitation with electrical stimulation on

the same neuron which depressed with optical stimulation. We show that the neuron shows PPF with

electrical, but not with optical stimulation (Figure 4—figure supplement 1a). Unlike electrical stimu-

lation, which strongly and briefly stimulates many axonal fibres, optical stimulation targets neurons

with varying degrees of strengths, and incomplete recovery of ChR2 from desensitization at such

short timescales may be the reason for the second pulse not being as effective as the first one. This

interfered with our ability to measure paired pulse facilitation and introduced uncertainty in inter-

preting cross-pulse effects. This precluded further investigation using this approach.

Distributedness and physical distance between square patterns
We calculated the effect of the interaction due to physical proximity of photostimulation squares on

the responses. We defined a quantity distributedness, as the sum of the distance between all simul-

taneously stimulated spots from the combined centre of mass of these spots (Figure 4—figure sup-

plement 1d). We compared this to degree of sublinearity, that is the ratio between the Observed

response (O) and the Expected sum (E) of individual squares. Thus, if the interaction between neigh-

bouring squares caused sublinearity, we would see a positive correlation between the distributed-

ness and O/E ratio (for the stimuli within an N-square set). Conversely, a negative correlation would

imply supralinearity.

We also checked for any interaction that may be taking place between two different optical stim-

ulation patterns. To quantify this, we measured distances on the grid map between all spots in all

pairs of patterns, and compared it against the Vm change they caused at CA1 (Figure 4—figure

supplement 1e).
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Appendix 1
Here we compare the analytic form of the PSP peak with and without inhibition. This set of equations

furthers our understanding of how the subthreshold divisive normalization takes effect, with changes

in EI ratios and inhibitory delays. Here, ! represents the EI ratio at the time of postsynaptic depolari-

zation peak, and h represents the ratio of the excitatory conductances at peak depolarization time in

the presence and absence of delayed inhibition.

Finding roots for Equation 5,

Cm

dVm

dt
¼ gleak : Eleak � Vmð Þþ gexc tð Þ : Eexc� Vmð Þ þ ginh tð Þ : Einh� Vmð Þ ¼ 0

gleakEleak þ gexc t�ð ÞEexc þ ginh t�ð Þ Einh � Vm gleak þ gexc t�ð Þ þ ginh t�ð Þð Þ ¼ 0 (A1)

Here t* is the time of PSP peak.

Vm t�ð Þ ¼
gleakEleak þ gexc t�ð ÞEexc þ ginh t�ð Þ Einh

gleak þ gexc t�ð Þ þ ginh t�ð Þ
(A2)

Subtracting Eleak from both sides,

�¼ Vm t�ð Þ� Eleak ¼
gleakEleak þ gexc t�ð ÞEexc þ ginh t�ð Þ Einh

gleak þ gexc t�ð Þ þ ginh t�ð Þ
� Eleak (A3)

�¼
gexc t�ð Þ Eexc�Eleakð Þþ ginh t�ð Þ Einh� Eleakð Þ

gleak þ gexc t�ð Þ þ ginh t�ð Þ
(A4)

Similarly, with ginh
�

¼ 0 (no inhibition case), let t** be the time of peak.

"¼
gexc t��ð Þ Eexc �Eleakð Þ

gleakþ gexc t��ð Þ
(A5)

Let h ¼ gexc t�ð Þ
gexc t��ð Þ, ! ¼ ginh t�ð Þ

gexc t�ð Þ, DEexc ¼ Eexc � Eleakð Þ, and DEinh ¼ Einh � Eleakð Þ

Dividing 4 by 5, and replacing using terms above:

�

"
¼

gexc t�ð ÞDEexc

gexc t��ð ÞDEexc
þ ginh t�ð ÞDEinh

gexc t��ð ÞDEexc

gleakþ gexc t�ð Þ þ ginh t�ð Þ
gleakþ gexc t��ð Þ

�

"
¼

hþ !hDEinh

DEexc

gleak
gleakþ gexc t��ð Þþ 1þ !ð Þ gexc t�ð Þ

gleakþ gexc t��ð Þ :
gexc t��ð ÞDEexc

gexc t��ð ÞDEexc

�

"
¼

h 1þ !DEinh

DEexc

� �

gleak
gleakþ gexc t��ð Þþ

1þ !ð Þ
DEexc

h"

Multiplying the numerator and denominator by DEexc

h 1þ !ð Þ
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�

"
¼

DEexc 1þ !
DEinh
DEexc

ð Þ
1þ !ð Þ

gleak:DEexc

gleakþ gexc t��ð Þð Þ 1þ !ð Þhþ "

�

"
¼

DEexc

1þ !ð Þ þ
!

1þ !

� �

DEinh

DEexc

1þ
gexc t��ð Þ
gleak

� �

1þ !ð Þh

þ "

�¼
l"

gþ "
(A6)

l¼
DEexc

1þ !ð Þ
1þ !

DEinh

DEexc

� �

(A7)

g¼
DEexc

1þ!ð Þ 1þFð Þh
; where F

gexcðt
��Þ

gleak
(A8)

When the delay between excitation and inhibition is large, h approaches 1, and ! approaches 0,

leading to � approaching ". This corresponds to the region where the input-output relationship is

almost linear at low values of ", and becomes increasingly sublinear as " increases. As the values of

h and ! increase, the value of g decreases, leading to increasing normalization.
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