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P H Y S I C S

Tracking the vector acceleration with a hybrid quantum 
accelerometer triad
Simon Templier1,2, Pierrick Cheiney1, Quentin d’Armagnac de Castanet1,2, Baptiste Gouraud1, 
Henri Porte1, Fabien Napolitano1, Philippe Bouyer1,3,4,5, Baptiste Battelier2*, Brynle Barrett1,2,6

Robust and accurate acceleration tracking remains a challenge in many fields. For geophysics and economic 
geology, precise gravity mapping requires onboard sensors combined with accurate positioning and navigation 
systems. Cold atom–based quantum inertial sensors can potentially provide these high-precision instruments. 
However, current scalar instruments require precise alignment with vector quantities. Here, we present the first 
hybrid three-axis accelerometer exploiting the quantum advantage to measure the full acceleration vector by 
combining three orthogonal atom interferometer measurements with a classical navigation-grade accelerometer 
triad. Its ultralow bias permits tracking the acceleration vector over long time scales, yielding a 50-fold improve-
ment in stability (6 × 10−8 g) over our classical accelerometers. We record the acceleration vector at a high data 
rate (1 kHz), with absolute magnitude accuracy below 10 g, and pointing accuracy of 4 rad. This paves the way 
toward future strapdown applications with quantum sensors and highlights their potential as future inertial 
navigation units.

INTRODUCTION
Our ability to manipulate and control light and matter at the quan-
tum level has opened a suite of quantum technologies that promises 
to provide revolutionary new sensors that feature both high accuracy 
and high sensitivity for a large variety of applications. Their ability 
to measure minute changes in inertial quantities such as accelera-
tions and rotations with unprecedented performance in terms of 
accuracy, sensitivity, and long-term stability can lead to paradigmatic 
changes in our ability to navigate without external aid (1), monitor 
our planet (2), or test the predictions of physical theories (3–8). 
Today, matter-wave inertial sensors (9, 10) provide mature ac-
celerometers that can measure gravity (11–14) and gravity gradients 
(15–19) to remotely detect massive objects or mass movements and 
can be used to anticipate major risks such as earthquakes, volcanic 
eruptions, and sea-level rise (20). These quantum accelerometers 
are also key elements for future autonomous positioning and 
navigation devices.

Acceleration is a vector and is therefore described by both its 
absolute magnitude (or norm) and pointing direction. Most matter-
wave inertial sensors realized so far are scalar in nature; they 
measure the projection of the acceleration on a preferred orienta-
tion defined by the interrogation laser used for quantum manipula-
tion. Laboratory-based gravimeters thus rely on a precise orientation 
with respect to the vertical direction (11, 13), while mobile opera-
tion requires mounting the sensor on a gyro-stabilized platform 
(14, 21). In both cases, real-time (RT) tracking of the acceleration is 
complex and thus limits the potential application of these sensors 
until a fully transportable three-dimensional (3D) vector-type 
sensor becomes available. Several groups have made encouraging 

progress with multiaxis sensing, both theoretically (22, 23) and 
experimentally (24–28). However, none of these studies have gone 
beyond the proof-of-principle level. Our work takes a step toward a 
robust, motion-compatible instrument capable of measuring the 
full acceleration vector in real time.

Here, we report the first quantum accelerometer triad (QuAT), 
which measures accelerations along three mutually orthogonal 
directions. Our QuAT, shown in Fig. 1, consists of a hybrid 3D 
architecture combining cold atoms and classical accelerometers 
(29–31) to achieve high data rate (1 kHz), ultralow bias (∼5 g) 
measurements of the three components of acceleration (ax, ay, az), 
with excellent long-term stability, reaching 60 ng on the vector 
norm (​∣a∣= ​√ 

_
 ​a​x​ 2​ + ​a​y​ 2​ + ​a​z​ 2​ ​​) after 24 hours of integration in static 

conditions. After adapting broadly used accelerometer calibration 
methods to our hybrid triad (32), we estimate an accuracy of 7.7 g 
on the vector norm, which is limited primarily by small misalign-
ments between axes (∼4 rad). Further improvements to the 
mechanical constraints of the system are anticipated to reduce sys-
tematics and improve accuracy by an order of magnitude. At this 
level, tilts of the tidal gravitational anomaly could be measured and 
used, for instance, to correct effects on large-area optical gyroscopes 
(33) or to further improve models of Earth’s gravity (15, 34). This 
work also paves the way toward strapdown inertial navigation with 
quantum sensors and opens new possibilities for gravity mapping, 
mineral exploration, seismology, and monitoring climate change.

RESULTS
Each axis of the QuAT consists of a laser beam retroreflected by a 
mirror. These three orthogonal mirrors define the 3D reference 
frame with respect to which we measure the atom’s motion (one 
axis at a time). Classical accelerometers are attached to the rear of 
each mirror to monitor their motion, as well as the component of 
gravitational acceleration. We then correct the frequency and phase 
of each laser to account for the motion of the atom relative to the 
corresponding mirror. This allows us to (i) suppress random phase 
noise due to mirror vibrations on each axis of the QuAT (29, 30), 
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(ii) compensate for gravity-induced Doppler shifts in arbitrary 
orientations, and (iii) remove the bias of the classical accelerometers 
(31). To evaluate the accuracy of the QuAT, we developed a com-
prehensive model for systematic effects and we adapted a method 
for calibrating the triad over a large range of orientations (32). In 
the following, we detail the operation of the QuAT and present 
results characterizing its short- and long-term performance in 
different orientations (i.e., tilted with respect to gravity) while 
operating in a static environment.

Vectorial quantum accelerometer
Acceleration components are measured sequentially by switching 
between three Mach-Zehnder–type atom interferometers (10) using a 
/2--/2 sequence of optical Raman pulses to split, reflect, and re-
combine matter waves. After an initial cooling and state selection phase, 
atoms are released into a geodetic free-fall trajectory. During this time, 
atoms experience a time-varying Doppler shift of ​​​​ D​ = ​ k​ ​​ · gt​. As 
each atom interferometer forming the QuAT relies on velocity-
sensitive Raman transitions, compensating for this shift is crucial 
for maintaining the lasers on the two-photon resonance. Atomic 
gravimeters typically achieve this by chirping the frequency difference 
between vertical Raman lasers at a quasi-constant rate of  = kg, 
thereby maintaining optimum fringe visibility. In an arbitrary 
orientation, the projection of gravity on each axis is different and, a 
priori, not precisely known, necessitating a closed-loop approach to 
compensate the Doppler shift. Moreover, strong mirror vibrations 
that blur the interference fringes and further shift the resonance 
condition (35) are a major concern. To address these issues, we 
implemented an RT system [inspired by the work in (36)] based on 
a field-programmable gate array (FPGA) that compensates both the 
frequency and phase of the Raman lasers during the interferometer 
using input from the classical accelerometers (see the Supplementary 
Materials). This system allows the QuAT to operate over a broad 
range of orientations and under noisy conditions. To leading order 
in T, the interferometer phase shift along each axis  = x, y, z is

	​​ ​ ​​  =  (​k​ ​​ · a − ​​ ​​ ) ​T​​ 2​  =  (​k​ ​​ ​a​ ​​ − ​​ ​​) ​T​​ 2​​	 (1)

where ​​k​ ​​ = ​ 1 _ c ​(​​ 1​​ + ​​ 2​​ ) ​  ​​ is the effective wave vector of the counter-
propagating Raman beams with optical frequencies 1 and 2, 
respectively,  is the effective chirp rate at which the Raman 
frequency is modified between pulses, T is the interrogation time 
between optical pulses, and a is the acceleration vector of the atoms 
in the body frame (i.e., relative to the three orthogonal refer-
ence mirrors).

Figure 2 illustrates interference fringes obtained along each 
direction by varying . Data are shown for interrogation times T = 
5, 7, and 10 ms, where the fringe spacing in terms of acceleration is 
given by 2/kT2. For each T, six fringes are measured by alter-
nating between the axis  and the momentum transfer ±ħk in an 
interleaved sequence illustrated in Fig. 2C. Here, a negative (posi-
tive) momentum transfer indicates that the atoms are kicked toward 
(away from) the reference mirror. The central fringe for which k · a = 
 provides a direct measurement of the acceleration component a. 
The cycle time of our experiment is Tcyc ≃ 1.6 s (limited by dead 
time generated by our control system); hence, a set of three measure-
ments on orthogonal directions provides the full acceleration vector 
in under 5 s. We further improve our accuracy by combining mea-
surements with opposite momentum kicks (see Materials and 
Methods), where one full measurement cycle is completed in 6Tcyc 
≃ 9.6 s.

The data shown in Fig. 2 were acquired with the QuAT tilted at 
approximately x = 54.7∘ and z = 45∘ such that the gravitational 
acceleration points along the symmetry axis of the triad. In this 
orientation, the projection due to gravity along each axis is ​​a​ ​​  = 
g / ​√ 

_
 3 ​  ≃  5.66​ m/s2, providing optimal sensitivity to the full accelera-

tion vector a. The transit time of the atoms across the Raman beams 
defines the maximum interrogation time achievable with the present 
architecture. When the cloud is released from rest at the center of the 
Raman beams, the maximum interrogation time is limited by the transit 
time of the atoms across the beams: ​​1 _ 2​ ​a​ ​​ ​(TOF + 2 ​T​ max​​)​​ 2​ = ​ √ 

_
 3 ​ ​w​ 0​​​. 

A B

Fig. 1. QuAT. (A) Design concept and geometry of the QuAT. The acceleration components are measured along the wave vectors kx, ky, and kz, which are perpendicular 
to the surface of their respective mirrors. MOT, magneto-optical trap. (B) 3D model of the sensor head mounted on a rotation stage that can be tilted about the z and x′ 
axes by angles z and x, respectively. Applied in this order, these extrinsic rotations transform the coordinates from the laboratory frame (x′y′z′) to the body frame (xyz) of 
the QuAT. A cube-shaped -metal magnetic shield (not shown) surrounds the entire sensor head. The inset shows the Cartesian (ax, ay, az) and spherical polar (norm ∣a∣, 
inclination , azimuth ) coordinate representations of the acceleration vector in the body frame.
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For a time of flight TOF = 20 ms before the interferometer and a 
beam waist of w0 = 11 mm, we obtain Tmax ≃ 31 ms. To maintain 
high signal-to-noise ratios on all axes, typically, we operate each 
axis of the QuAT at T = 10 ms, where we obtain fringe contrasts of 
C = 0.20, 0.22, and 0.32, and single-shot acceleration sensitivities of 
a = 11.9, 4.1, 5.1 g for  = x, y, z, respectively. The corresponding 
sensitivity to the vector norm is ​∣a∣= ​1 _ g ​ ​√ 

___________
 ​∑ ​​ ​(​a​ ​​  ​a​ ​​)​​ 2​​ ​  ≃  7.8​ g.

To illustrate the effect of the RT system, Fig.  3 compares the 
fringe contrast on the y and z axes as a function of the tilt angle x 
obtained with this system on and off. Here, the QuAT was oriented 
such that the yz plane was always vertical, and the tilt about the 
x axis (x) was varied randomly over ±90°. When the RT system is 
disabled (purple curve in Fig. 3B), the effective chirp rate is fixed 
such that the Doppler shift is compensated only for the vertical case, 
resulting in a maximum contrast on z when x = 0. As the z axis is 
tilted away from the vertical, there is a sharp drop in fringe contrast 
as the Raman pulses move further off resonance. When enabled, the 
RT system computes the Doppler shift from the acceleration com-
ponent normal to the corresponding mirror. It then applies a 
sequence of phase-continuous frequency steps before each Raman 
pulse that approximates a chirp with an effective rate ​​​ ​​  = ​ k​ ​​​​ 

_ a ​​ ​​​, 
where ​​​ _ a ​​ ​​ = ​  1 _ 2T​ ​∫0​ 2T ​​ ​a​ ​​(t ) dt​ is the average acceleration during the 
interferometer. In this case, y ≃ kyg sin x and z ≃ kzg cos x. 
Figure 3 (A and B) shows that the RT system maintains a near-optimal 
fringe contrast over >50°. Beyond this range, the contrast reduces 
because of other physical effects as we explain below. We emphasize 
that despite this drop in contrast, the sensitivity to accelerations re-
mains relatively flat over a broad range of angles. Figure 3 (C and D) 
shows the acceleration sensitivity per shot: a = C/(2DkT2), 
where the fringe contrast C and detection noise D are obtained 
from fits to interference fringes. At T = 10 ms, we obtain a ≲ 6 g 
on each axis even at tilts of 60°.

The overall performance of the QuAT is optimal for measuring 
quasi-static acceleration vectors when it is tilted such that a points 
along its symmetry axis. However, because of limitations of the 
present architecture, in other orientations, the sensitivity of one axis 
will improve at the expense of the others. This is exacerbated when 
one axis is nearly parallel with g. The performance of the QuAT in 

different orientations is important when considering the case of 
strapdown navigation (37), where dynamic movements cause both 
the magnitude and direction of the acceleration vector to change. In 
an arbitrary orientation, the acceleration sensitivity on any given axis 
is determined by the longitudinal and transverse motion of the atoms 
within the Raman beams. The present architecture relies on the 
Doppler shift of the atoms (generated by longitudinal motion in the 
beams) to isolate Raman transitions between ∣F = 1, p〉 and ∣F = 2, 
p ± ħk〉. At near-horizontal orientations, the projection of gravity 
along the beam approaches zero, reducing the Doppler shift such 
that ∣2, p + ħk〉 becomes degenerate with several other states 
(e.g.,∣2, p − ħk〉,∣2, p〉,∣2, p + 3ħk〉). In this regime, double-
diffraction processes (38, 39) and residual velocity-insensitive tran-
sitions cause a severe loss in transition probability between our 
target states. Furthermore, because of the Gaussian intensity profile 
of the Raman beams, motion in the plane transverse to the Raman 
wave vector causes a time-varying Rabi frequency during the inter-
ferometer. As T increases, the cloud moves toward the edge of the 
beams where the Rabi frequency approaches zero. These are the two 
primary effects that produce the contrast variation shown in Fig. 3.

We model the contrast as a function of x with the RT system on 
and off, as shown by the solid curves in Fig. 3. Our model (see 
Materials and Methods), which contains only one free parameter, 
an arbitrary amplitude factor, shows remarkable agreement with 
the data. When the RT system is disabled, the contrast loss is domi-
nated by the uncompensated Doppler shift ∣kg(cos x − 1)t∣ that 
increases markedly away from vertical (x = 0). When the RT system 
is enabled, the loss is determined by parasitic-diffraction processes, 
the Gaussian-shaped beam profile, and its finite size. On the z axis, 
we observe a strong asymmetry in the contrast about x. This is 
explained by the fact that the initial cloud position is shifted by 
approximately −0.8 mm along the y axis relative to origin where the 
beams intersect. This results in a longer transit time across the beam 
for positive tilts (x > 0) compared to negative ones.

Tracking the acceleration vector
To illustrate the long-term performance of our instrument, we tracked 
the gravitational acceleration vector in the body frame (see Fig. 1) 

C

A

B

Fig. 2. Atom interferometry along three orthogonal axes. (A and B) Atomic interference fringes obtained along each axis  (left, y; middle, z; and right, x) as a function 
of the laser-induced acceleration /k. Plots (A) and (B) correspond to different momentum transfer directions (±k). Fringes are shown for interrogation times T = 5 ms 
(blue), 7 ms (red), 10 ms (black) at tilt angles of x = 54.7° and z = 45°. The central fringe common to all T is visible in each set of fringes. (C) Sequence of measurement 
axes and corresponding momentum kicks used during one cycle of the QuAT. Pairs of opposite kicks provide one acceleration component with enhanced rejection of 
systematic effects.
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over 60 hours. During this experiment, the QuAT remained in a 
quasi-fixed orientation (x = 45∘, z = 30∘), and we operated it in 
closed loop with the classical accelerometers, creating a hybrid triad 
(see the discussion of Fig. 7 in Materials and Methods). Each axis of 
the QuAT is locked to its central fringe using a ±/2 phase modula-
tion scheme (29, 40) similar to those used in atomic clocks. In this 
mode, each quantum accelerometer provides a high-accuracy mea-
surement of the corresponding classical accelerometer bias (31). 
Data from the three classical accelerometers are simultaneously 
processed at a rate of 1 kHz, while their biases are sequentially 
subtracted from each axis at the cycling rate of the experiment 
(∼0.6 Hz). In this manner, the hybrid triad retains the best features 
of both classical and quantum technologies.

Figure 4 shows an analysis of the hybrid triad output. We repre-
sent the acceleration vector in the body frame using both Cartesian 
(ax, ay, az) and spherical polar coordinates (∣a∣, , ). While both 
representations are equivalent, the latter best illustrates the physics 
that our instrument is capable of measuring. In Cartesian coordi-
nates, all three vector components exhibit variations at the level of 
∼5 × 10−4 m/s2. These changes could be produced by several different 
sources (e.g., uncompensated bias drifts in the classical accelerometers, 
changes in relative alignment between quantum accelerometer axes, 
or drifts of the triad’s orientation with respect to g). In spherical 
coordinates, it is clear that the vector norm ∣a∣ remains flat over 
60 hours within our single-shot measurement noise (∣a∣ ∼ 7.6 × 
10−5 m/s2). As any bias drifts or relative axis misalignments will 
affect ∣a∣, we can deduce that these two effects are below the noise 
level ∣a∣. This places an upper limit on residual shot-to-shot bias 
variations of ​∣a∣/ ​√ 

_
 3 ​  ≃  4.4 × 1 ​0​​ −5​​ m/s2 on each axis, as well as 

shot-to-shot misalignment variations of ​∣a∣/ ​√ 
_

 3 ​ g ≃  4.5​ rad. 
However, the inclination and azimuth angles vary by approximately 
70 and 20 rad, respectively, over 60 hours. This indicates that the 
triad’s orientation is slowly rotating relative to the gravity vector, 

which produces correlated changes in the Cartesian acceleration 
components. This demonstrates sensitivity to rotations of the accel-
eration vector at the level of 10−10 rad/s.

Figure 4 also shows the Allan deviation of the acceleration vector 
norm produced by the hybrid and classical accelerometer triads. 
For time scales of  ≤ 1 s, acceleration measurements from both 
triads are identical and dominated by correlated noise produced by 
ambient vibrations and the quantization of the analog signals, both 
of which integrate as 1/. After 1 s, the bias stability of each classical 
accelerometer begins to limit the performance of the classical triad, 
which reaches a minimum resolution of 7 × 10−7 g at 10 s. The norm 
of the classical triad shows evidence of continuous drift beyond 10 s. 
In contrast, the hybrid triad begins to stabilize this bias drift with a 
period 6 × Tcyc, where Tcyc ≃ 1.6 s is the one-axis measurement cycle 
time. This results in a small improvement in the performance of the 
norm at short term, followed by a turning point near the cycle time 
of the full triad (9.6 s). The Allan deviation then increases until 
approximately 100 s as a result of the integrator time constant of 
our feedback loop. For time scales larger than this time constant, 
the Allan deviation integrates as ​1 / ​√ 

_
  ​​, indicating white Gaussian 

noise. A fit to this section of the Allan deviation yields a sensitivity 
of 22 ​g / ​√ 

_
 Hz ​​, which is limited primarily by the low cycling rate of 

our instrument. The vector norm of the hybrid triad reaches a 
stability of a = 6 × 10−8 g after 24 hours of integration. In compar-
ison, the classical triad drifts by a ≃ 3 × 10−6 g on the same time 
scale, indicating a 50-fold improvement in vector tracking capability. 
On time scales of a few hours, the horizontal position error of inertial 
navigation units is primarily limited by the bias stability of its accel-
erometers (37). These result in Schuler oscillations in the position 
with amplitude aRE/g and a characteristic period ​2 ​√ 

_
 ​R​ E​​ / g ​ =  84​ min, 

where RE is Earth’s mean radius. Hence, a factor of 50 improvement 
in the bias stability is expected to decrease the short-term position 
error by the same amount.

A B

C D E

Fig. 3. Fringe contrast and acceleration sensitivity as a function of tilt angle. Interference fringe contrast (A and B) and acceleration sensitivity (C and D) along the 
y and z axes as a function of a random tilt angle x. (E) Geometry of the Raman beams relative to the free-falling atoms. Data were recorded for various interrogation times 
with the RT system on (green points, T = 2.5 ms; blue points, T = 5 ms; and red points, T = 10 ms) and off (purple points, T = 10 ms). Error bars correspond to 1 uncertain-
ties obtained from sinusoidal fringe fits. Solid lines in (A) and (B) represent our model of the fringe contrast (see Materials and Methods for more details).
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Systematic effects
In the previous section, we assessed the long-term stability of the 
hybrid accelerometer triad. We will now address the bias of the 
quantum accelerometers by evaluating the systematic effects of each 
atom interferometer. We also describe our calibration procedure to 
determine the overall accuracy of the instrument.

One major advantage of cold atom–based accelerometers over 
mechanical ones is their inherent accuracy. Systematic effects in 
atom interferometers have been studied extensively by several groups 
(3–8, 41, 42) and are well understood. However, most of the studies 
to date have considered atoms moving longitudinally along a verti-
cal beam (e.g., as in a gravimeter or gradiometer). For the QuAT, 
the situation is more complex, as we must account for effects due 
to the atom’s motion across three orthogonal beams in an arbitrary 
orientation. We developed a comprehensive model that allows us to 
vary key system parameters, such as the pulse timing, triad orienta-
tion, Raman beam intensities, and the magnetic bias fields. We used 
this model to characterize the systematic effects for each axis and 
aid the calibration procedure, which enabled us to evaluate the ac-
curacy of the QuAT.

Table 1 provides a budget of systematic errors when the triad is 
tilted at 54.7° along its axis of symmetry, where all acceleration com-
ponents have the same projection due to gravity. The largest sys-
tematic effect along any given axis is induced by our frequency-step 
protocol for the RT compensation of the Doppler effect. We apply a 
series of phase-continuous frequency steps to the Raman frequency 
that mimics a true frequency chirp between pulses but maintains a 
constant frequency during the pulses. This creates a slight imbalance 
between the kinematic phase due to atomic motion and the phase 
imprinted by the Raman laser, resulting in a phase shift proportional 
to the difference between the Rabi frequencies at the beamsplitter  
pulses

	​​ ​​ sys​ ≃  − ​k​ ​​​a​ ​​T( / 2 − 1 ) (​​ ,3​​ − ​​ ,1​​ ) ​(2​​ ​​ / )​​ 2​​	 (2)

Here, ,j is the effective Rabi frequency along axis  during 
Raman pulse j. In previous work (40), we evaluated this systematic 

and its coupling to parasitic laser lines on the z axis. When oriented 
vertically, the shift due to the frequency-step protocol is <1 g at 
T = 10 ms. However, this effect is exacerbated in tilted configura-
tions because the atoms experience a larger variation in the Rabi 
frequency as they transit the Raman beams. This also increases other 
systematic effects, such as the wavefront curvature (43), two-photon 
light shift (44), and the Coriolis effect. The latter cancels in the vec-
tor norm because the first-order shift due to Coriolis acceleration is 
proportional to ​∑ ​a​ ​​​a​​ Coriolis​​, which cancels if the initial launch velocity 
of the atom cloud is null. The uncertainty in this shift listed in 
Table 1 is due to the initial velocity uncertainties. Both the frequency-
step shift and the two-photon light shift are proportional to the 
intensity of the Raman beams; hence, they can be suppressed in 
future iterations by subtracting measurements taken at two different 
intensities (45). This would reduce both effects by more than a 
factor of 10 at the expense of increased measurement time. Replac-
ing the frequency-step protocol with a phase-continuous chirp 
would eliminate this systematic entirely. When coupled with minor 
improvements to the wavefront curvature, these enhancements 
would enable us to reduce the systematic uncertainty on each axis 
below 100 ng.

Figure 5 illustrates the complex dependence of the systematics 
on the orientation of the QuAT. As discussed above, the topology is 
governed primarily by three effects: our frequency-step protocol, 
the curvature of Raman wavefronts, and the two-photon light shift. 
All of these effects increase markedly when the beams are near hori-
zontal. The frequency-step and wavefront systematics are dominated 
by the atoms sampling different regions of the Raman beam profile, 
while the two-photon light shift is strongly affected by the separa-
tion between neighboring Raman transitions. This effect produces 
regions in Fig.  5 with sharp changes in contrast, where velocity-
insensitive or magnetically sensitive transitions are near resonant 
with the primary ∣1, p〉 → ∣2, p ± ħk〉 transition. To evaluate the 
effect on the acceleration vector norm, we sum the systematic shifts 
on each axis weighted by the corresponding projection on norm. 
The results shown in Fig. 5D indicate that the systematic shift on 
the norm is largest in regions where the projections from each axis 

Fig. 4. Stability analysis of the hybrid accelerometer triad over 60 hours. Here, the interrogation time is T = 10 ms, and the sensor head is tilted at x = 45° and 
z = 30°. (Left) Time series measurements of the hybrid acceleration on each axis in the body frame (ax, ay, az). These data are displayed at the cycling rate of the experiment. 
(Middle) Same data displayed in spherical polar coordinates with norm ​∣a∣= ​√ 

_
  ​a​x​ 2​ + ​a​y​ 2​ + ​a​z​ 2​ ​​, inclination  = cos−1(az/∣a∣), and azimuth  = atan2(ay, ax). The solid black 

curve shows a 10-hour moving average of ∣a∣. (Right) Allan deviation of acceleration vector norms as a function of integration time  for the hybrid (black) and classical 
(purple) accelerometer triads. Dashed lines represent signals that integrate as 1/ and ​1 / ​√ 

_
  ​​, respectively. Inset: Corresponding time series produced by the hybrid and 

classical accelerometer triads.
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are similar in magnitude (e.g., near x = ±54.7°, z = ±45°), which is 
consistent with our expectations.

Calibration of the QuAT
Misalignments between axes and variations in the accelerometer 
scale factors directly affect both the magnitude and direction of the 
acceleration vector. The triad axes are defined by the effective wave 

vectors k, which are normal to the surface of the corresponding 
retroreflection mirror. As these mirrors are oriented at approximately 
90° relative to each other, the error in the acceleration vector scales 
to first order with misalignment angle. These misalignments are 
challenging to measure and stabilize at levels below 10 rad be-
cause of mechanical strain and thermal expansion (15). In addition to 
misalignments, the accuracy of the QuAT is affected by the scale 

Table 1. Systematic error budget. Systematic shifts for each axis of the QuAT when tilted along its symmetry axis (x = 54.7°, z = 45°). Here, we assume the 
axes of the QuAT are mutually orthogonal (i.e., no misalignments). Systematic shifts ​​a​​ sys​​ are evaluated assuming that path-independent contributions are 
suppressed by 90% using k-reversal, with 1 uncertainties given in parentheses. The systematic shift of the vector norm is ​∣​a​​ sys​∣= ​∑ ​ ​​ ​a​ ​​ ​a​​ sys​ / ∣a∣​ (to first order), 
where ax = −ay = az ≃ −5.66 m/s2 in this orientation. Other parameters: TOF (time of flight) = 20 ms, 2 = (12,11,10) s, and T = 10 ms; Rabi frequencies for velocity-
sensitive transitions x,1 = 0.299(75) rad/s, x,3 = 0.138(20) rad/s, y,1 = 0.273(55) rad/s, y,3 = 0.165(51) rad/s, z,1 = 0.316(75) rad/s, and z,3 = 0.200(78) 
rad/s; Rabi frequencies for velocity-insensitive transitions ​​​,j​ co​  = 0.68(10 ) ​​ ,j​​​; B-field strengths Bx = 139.41(38) mG, By = 137.70(27) mG, and Bz = 147.71(73) mG; 
B-field gradients ∂xBx = −0.045(19) G/m, ∂yBy = 0.211(11) G/m, and ∂zBz = −0.204(11) G/m; cloud temperature ​𝕋  =  3.5(1.0)​ K; initial cloud position and velocity 
uncertainties  = 0.2 mm and v = 3 mm/s; and curvature of Raman wavefronts Rx = 5.01(1.7) km, Ry = 4.2(1.4) km, and Rz = 4.2(1.4) km. 

Systematic effect ​​a​x​ sys​​ ​​a​y​ sys​​ ​​a​z​ sys​​ ∣asys∣ ∣asys∣ Unit

Frequency step −57.9(3.8) 26.7(4.7) −26.7(5.2) 64.3 4.6 g

Wavefront curvature 1.69(73) 2.14(92) 2.02(87) −0.91 0.84 g

Two-photon light shift −5.53(32) 6.15(43) −4.58(19) 9.39 0.33 g

Parasitic lines 0.02(30) 0.00(30) −0.02(18) 0.00 0.26 g

Coriolis effect 0.644(60) −0.077(14) −0.721(59) 0.000 0.049 g

One-photon light shift 0.000(19) 0.000(12) 0.000(16) 0.000 0.016 g

Quadratic Zeeman −0.002(5) 0.008(3) −0.008(3) 0.010 0.004 g

RF nonlinearity −0.011 0.011 −0.011 0.020 <0.001 g

Total −61.2(3.9) 34.9(4.8) −30.1(5.4) 72.8 4.7 g

Fig. 5. Model of systematic shifts as a function of tilt angles x and z. The total shift ​​a​​ sys​​ is shown for each axis of the QuAT (A to C), as well as the vector norm ∣asys∣ 
(D). Experimental parameters are the same as for Table 1. All graphs show the mean of systematic shifts with opposite momentum transfer: ​​1 _ 2​ [ ​a​​ sys​(+ ​k​ ​​ ) + ​a​​ sys​(− ​k​ ​​ ) ]​.
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factor of each quantum accelerometer (S ≃ kT2). These quantities 
depend on the absolute frequency of our Raman lasers, the angle 
between the incident and retroreflected Raman beams, the timing 
between laser pulses, and the beam intensity sampled by the atoms. 
To account for imperfections in the alignment and scale factors of 
the QuAT, we model its output in an arbitrary static orientation 
as follows

	​​​
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where ​​​ ~ a ​​ ​​​ is a measured acceleration component,  is a relative 
scale factor,  is the misalignment factor between axes  and , 
and ​​a​​ sys​​ is a systematic bias. Here, a is the gravitational acceleration 
projected onto a mutually orthogonal Cartesian frame; hence, they 
obey ​​a​x​ 2​ + ​a​y​ 2​ + ​a​z​ 

2​  = ​ g​​ 2​​, where g = 9.805642 m/s2 is the local gravi-
tational acceleration. To estimate these parameters, we measured 
the gravity vector at several different orientations, as shown in 
Fig. 6. We then subtract orientation-dependent systematic shifts 
and fit our triad model (Eq. 3) to the resulting data using an iterative 
minimization algorithm (32). Table 2 summarizes the parameters that 
best fit the data, indicating misalignment angles up to  ≃ 200 rad 
between axes and relative scale factors  within 50 parts per million 
of unity. These differ from unity primarily because of the finite 
pulse lengths  and the nonideal Rabi frequencies ,j, which affect 
the atom interferometer scale factors according to (40, 46)

	​​
​​S​ μ​​ = ​ k​ μ​​(T + 2​τ​ μ​​ ) ​[​​T + ​  1 ─ ​Ω​ μ,1​​ ​ tan​(​​ ​ 

​Ω​ μ,1​​​τ​ μ​​ ─ 2 ​​ )​​+​
​   

​​  1 ─ ​Ω​ μ,3​​ ​ tan​(​​ ​ 
​Ω​ μ,3​​​τ​ μ​​ ─ 2 ​​ )​​​]​​​

 ​​	  (4)

To convert our atom interferometer phase measurements to 
accelerations, we used a scale factor with ideal Rabi frequencies: 
​​S​​ ideal​ = ​ k​ ​​(T + 2​​ ​​ ) (T + 4​​ ​​ / )​. For our experimental parameters, 
we find that the ratio between these scale factors varies between 

​​S​ ​​ / ​S​​ ideal​ ≃  0.999940​ to 0.999980, which is consistent with the re-
sults shown in Table 2. The misalignment between the classical 
accelerometers and the quantum ones is absorbed into their respective 
scale factors. Effectively, the hybrid system forces these two triads to 
be aligned at the expense of slightly smaller classical accelerometer 
scale factors.

Figure 6 illustrates the effect of the triad calibration. Vector 
accelerations were recorded over tilt angles ranging from x = −55° to 
+55° and z = −30° to +45° (see Fig. 1 for reference). This large range 
of orientations causes the acceleration components to vary over 
roughly ±5 m/s2. Each orientation of the QuAT was set by carrying 
out a sequence of two extrinsic rotations: one about the vertical 
z axis with an angle z, followed by a rotation about the horizontal 
x axis by x. This sequence is described by the following transforma-
tion of the gravity vector
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The measured accelerations reflect this dependence on x and z, 
as shown in Fig. 6 (A to C). Small imperfections in the triad lead to 
substantial errors in the vector norm. Figure 6D shows that, in some 
orientations, the uncalibrated QuAT produces errors as large as 140 g. 
However, these errors are effectively corrected using the calibration 

A D

E

B

C

Fig. 6. Data used to calibrate the QuAT. The acceleration vector is sampled at 14 independent orientations (labeled by tilt angles x and z) using an integration time of 
T = 10 ms. (A to C) Measured acceleration components ​​​ ̃ a ​​ x​​​, ​​​ ̃ a ​​ y​​​, and ​​​ ̃ a ​​ z​​​ for each orientation. Solid lines correspond to expected variations with x. (D) Error in the vector norm 
before (colored) and after (gray) the subtraction of systematics. Error bars for the raw data are smaller than the points. (E) Zoom of the vector norm error after the calibration 
procedure. The gray band indicates the remaining RMS spread of ±7.7 g.

Table 2. QuAT model parameters resulting from the calibration 
procedure. The 1 uncertainties are provided in parentheses. The scale 
factors are determined to about 3 parts per million. The uncertainty on 
the misalignment angles is approximately 4 rad, providing a direct 
metric of the vector pointing accuracy. 

Scale factors Misalignments

x = 0.9999563(41) yx = +1.926(42) × 10−4 rad

y = 0.9999702(25) zx = +1.967(43) × 10−4 rad

z = 0.9999619(18) zy = −1.359(25) × 10−4 rad
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procedure. We test the calibration by inverting Eq. 3 with the 
parameters in Table 2 to determine the true acceleration vectors. Before 
calibration, the root mean squared (RMS) error in the vector norm 
is 74 g. After the calibration procedure, the RMS error decreases by 
almost an order of magnitude to 7.7 g. We anticipate that further 
improvements can be gained by compensating the measurements 
for the variation of interferometer scale factors with orientation.

DISCUSSION
We have achieved full 3D tracking of the acceleration vector with a 
compact hybrid QuAT and demonstrated a 50-fold improvement 
in the long-term bias stability over navigation-grade accelerometers. 
Our instrument combines sequential interrogation of three single-
beam atom interferometers coupled with a classical accelerometer 
triad. Fusion of all data from the QuAT provides the quantum 
advantage in short-term accuracy and low long-term bias drift 
together with the high data rate required to track the acceleration. 
Our RT compensation constitutes a significant advance in our 
capability to carry out measurements in arbitrary static orientations. 
Work is currently under way to tackle the issue of fringe contrast 
loss due to dynamic accelerations and rotations.

Accurate positioning and navigation often requires the fusion of 
data from global navigation satellite systems and autonomous iner-
tial navigation systems (INSs). The latter heavily relies on triads of 
accelerometers and gyroscopes, where the attitude and position of a 
moving body are determined by integrating the equations of mo-
tion (37). The accuracy of an INS is limited by the bias stability of 
the inertial sensors (47, 48), as well as the knowledge of the local 
gravitational field. Taking advantage of the quantum nature of our 
sensor, its high sensitivity and low bias stability can resolve all these 
challenges (1, 31). It is sensitive to acceleration resulting from 
motion (AC) as well as from gravity (DC) and exhibits a long-term 
stability of 60 ng [60 microGalileos (gal)]. The short-term (AC) 
sensitivity of the QuAT is mostly limited by the classical accelerometers 
to 100 g at an interrogation time of T = 10 ms. Our model of sys-
tematic effects combined with our calibration procedure leads to a 
DC accuracy of 7.7 g (7.7 mgal) on the vector norm and a pointing 
accuracy of ∼4 rad relative to each axis.

The results presented here demonstrate the full potential of 
matter-wave inertial sensors for future quantum-aided navigation, 
either by using the QuAT output to directly determine a vehicle’s 
position or by providing strapdown operation for gravity mapping 
(14,  21) or gravity matching–aided navigation (49,  50). They can 
also be used to reduce the bias drift on the local acceleration read-
ings and thus relieve the constraint on Schuler, Foucault, or other 
Earth-periodic oscillation errors (51). Our work is an essential step 
toward these onboard applications, yet further development is 
necessary before the instrument can be field qualified. This will 
include the compensation of rotation-induced effects to maintain 
the interferometer fringe contrast and avoid additional phase noise, 
improvements in mechanical rigidity and temperature sensitivity, 
and a characterization of the classical accelerometer frequency 
response and scale factor nonlinearity. Future work will involve the 
integration of classical gyroscopes for autonomous positioning and 
navigation applications, enabling us to reach the full potential of 
our QuAT.

The pointing accuracy of the QuAT, together with its long-term 
stability, provides a promising alternative for high-resolution tidal 

tilt measurements (52). A correlated array of such accelerometer 
triads, or their combination with precision rotation measurements, 
can render angle measurements immune to external noise and im-
prove our understanding of ground motion, representing a major 
stake for seismology. Long-term angle monitoring can provide knowl-
edge of translational and rotational motion that could significantly 
improve seismic inverse models for Earth’s structure (53), allow for 
full seismic signal reconstruction and modeling (54), or help char-
acterize earthquake sources (55) and their points of origin (56).

MATERIALS AND METHODS
Here, we describe the apparatus, including the multiaxis sensor head, 
laser source, and the rotation platform. We also present our quantum- 
classical sensor hybridization scheme and outline our model for the 
interferometer fringe contrast.

Sensor head and laser system
To reduce the size and complexity of our apparatus, we adopted a 
three-beam architecture where retroreflected light along each axis 
can be used for trapping, cooling, manipulating, and detecting the 
atoms. This requires independent control of the optical power and 
polarization on each axis. Our design includes three optical collima-
tors that expand the light to a 1/e2 diameter of ∼22 mm and three 
retroreflection mirrors to which we attach mechanical accelerometers 
for hybridization purposes. We use navigation-grade pendulous 
rebalance accelerometers manufactured by Thales (J192AAM on 
the x and y axes, EMA 1000-B1 on the z axis), which feature a 
high-sensitivity and high-bandwidth response. They feature an 
intrinsic bias between 50 and 180 g, a scale factor variation of 
120 parts per million/°C, a flat response from DC to approximately 
300 Hz, and a monotonically decreasing sensitivity up to ∼1 kHz. 
For the hybridization process, we acquire raw data from these 
sensors at 5 kHz. The output of the hybrid sensor is digitally filtered 
before being streamed to disc at a data rate of 1 kHz. These acceler-
ometers also feature a magnetic shield, which is crucial for reducing 
their sensitivity to the relatively strong, pulsed magnetic fields 
produced by nearby magneto-optical trap (MOT) coils.

All of the optics are fixed directly to a forged titanium vacuum 
chamber, forming the rigid triad shown in Fig. 1B. Magnetic bias 
and gradient coils required for atom trapping and interferometry 
are wound within circular grooves machined directly on the x and 
y axes of the chamber. Two pairs of square coils fixed outside the 
chamber provide both a bias field and a gradient field on the z axis. 
The entire vacuum system is mounted within a single-layer -metal 
shield to stabilize the B-field experienced by the atoms when the 
system is rotated. Excluding the magnetic shield, the volume of 
the sensor head is approximately 45 liters and weighs 40 kg. This 
includes the vacuum chamber, ion pump, fiber collimators, and 
detectors.

An all-fibered optical bench at 780 nm, mounted within the 
shield, includes polarizing cube-based fiber splitters (Thorlabs 
PBC780PM-APC), and a 1 × 4 micro-optic fiber switch (Leoni EOL 1x4) 
to alternate between cooling on all axes and interferometry on each 
axis. The light is produced by a unique dual-frequency laser source 
developed by iXblue (Modbox laser, 6U, 19-inch rack mounted) 
based on telecom components at 1560 nm and wavelength conver-
sion to 780 nm in a periodically poled lithium niobate waveguide 
(NTT WH-0780-000-F-B-C). This laser source, which uses a unique 
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optical In-phase & Quadrature (IQ) modulator to derive all required 
frequencies, is described in detail elsewhere (40,  57). An oven-
controlled liquid crystal retarder (LCR; Thorlabs LCC1111T-B) is 
placed at the output of each collimator, which allows us to switch 
between the polarizations required for cooling (circular) and co-
herent Raman transitions (linear) during the measurement sequence. 
We maintain the LCRs at a temperature of ∼53°C to stabilize the 
switching time between polarization states (∼500 s from circular 
to linear). A /4-wave plate is also mounted in front of each retrore-
flection mirror to flip the polarization on the return path (see Fig. 1A). 
This ensures that counterpropagating beams for cooling and trap-
ping have opposite circular polarization, and the Raman beams 
have perpendicular linear polarization, allowing us to minimize 
parasitic velocity-insensitive transitions.

From the vapor-loaded 3D MOT, we obtain approximately 
108 87Rb atoms in 250 ms. This sample is subsequently cooled to 
approximately 3 K in a gray molasses on the D2 transition at 
780 nm (58). We prepare these atoms in the magnetically insensitive 
∣F = 1, mF = 0〉 state by (i) initially pumping them to ∣F = 1〉, 
(ii) applying a quantizing B-field of 140 mG along a given axis ( = 
x, y, z), and (iii) removing atoms in the ∣F = 1, mF = ±1〉 states through 
a coherent optical transfer to ∣F = 2〉, followed by a near-resonant 
push pulse (57). To measure different acceleration components, 
we switch between axes sequentially using the independent Raman 
beams and corresponding pairs of Helmholtz coils. At this point, 
the two Raman beams are detuned by R = −880 MHz from the 
∣F′ = 2〉 excited state in 87Rb, and we apply a /2--/2 sequence of 
Raman pulses separated by interrogation time T. This is followed by 
a fluorescence detection phase where a sequence of near-resonant 
pulses is applied along the z axis to measure the ratio of atoms in 
∣F = 2〉. Our detection system is composed of two photodiodes with 
large fields of view to measure the fluorescence from the atoms over 
a broad range of orientations. The effective detection volume of this 
system is a sphere with a diameter of approximately 26 mm. This 
enables us to observe fluorescence up to flight times of ∼52 ms. The 
detection signal is digitized and processed to determine the accelera-
tion component on a given axis.

This sequence of operations occurs once per measurement cycle 
(Tcyc ≃ 1.6 s), which is limited by software dead time (59). A mini-
mum of two measurement cycles are required to obtain one accelera-
tion component (one on each side of the interference fringe at ±/2); 
hence, the full acceleration vector can be obtained in six measure-
ment cycles (∼9.6 s). However, in practice, we use 6 cycles with a 
momentum transfer direction +k interleaved with 6 cycles using −k 
to reject path-independent systematic biases on each axis. Hence, we 
construct the full acceleration vector once every 12 cycles (∼19.2 s).

Rotation platform
The QuAT is installed on a manual three-axis rotation platform that 
can be rotated continuously by 360° about three independent axes. 
This platform was initially designed for small loads and had to be 
modified to accommodate the QuAT. To compensate for the mass 
of the sensor head (40 kg) and the magnetic shield (40 kg), we con-
structed an 80-kg ballast system below the primary platform. This 
keeps the center of mass near the center of rotation, minimizing the 
torque on the bearings. However, because of mechanical constraints 
of this system, the horizontal x axis was limited to rotation angles of 
x ∈ [ −90°, +90°] and the vertical z axis to angles z ∈ [ −180°, 
+180°] in steps of 15°. This freedom allows us to project different 

amounts of gravity along each axis, which creates unique Doppler shifts 
due to the atom’s free fall and breaks the degeneracy between ±ħk 
momentum transfers. The general form of the Doppler shift is

	​​ ​​ D​(t ) = ± ​k​ ​​​∫0​ 
t
 ​​ ​a​ ​​(t′) dt′≈ ± ​k​ ​​​​ 

_ a ​​ ​​ t​	 (6)

where the explicit time dependence of a(t) accounts for the motion of 
the atoms relative to the surface of the mirror during the interferometer 
sequence and the ± corresponds to opposite momentum transfers. The 
approximate form in Eq. 6 is valid when the variations in acceleration 
during the interferometer are negligible. Here, ​​​ _ a ​​ ​​ = ​  1 _ 2T​ ​∫0​ 2T ​​ ​a​ ​​(t′) dt′​ 
is the average acceleration during the interferometer. At any time t, 
the resonance condition is determined by the two-photon detuning 
 given by

	​​ ​ ​​(t ) = ​​​ R​(t ) − ​​ HF​​ − ​​​ D​(t ) − ​​ rec​​​	 (7)

where ​ ​​​ R​(t)​ is the difference between optical Raman frequencies, 
HF ≃ 2 × 6.834 GHz is the ground-state hyperfine splitting, and 
rec ≃ 2 × 15.1 kHz is the recoil frequency for 87Rb. For clarity, we 
have ignored smaller frequency shifts (e.g., due to the AC stark 
effect) in Eq. 7. The resonance condition ( = 0) must be satisfied 
to optimize the transfer efficiency between the two target states 
(∣1, p〉 and ∣2, p ± ħk〉). Hence, to maximize the fringe contrast of 
the atom interferometer at interrogation times ​T > ​ ​ ​​ / ∣​k​ ​​​​ 

_ a ​​ ​​∣​, 
one must compensate the time-varying Dopplershift experienced 
by the free-falling atoms. This is typically achieved by applying a 
phase-continuous chirp to the Raman frequency: ​​​​ R​(t ) ≃ ​ ​ HF​​ + ​
​ rec​​ + ​​ ​​t​, where ​​​ ​​  =  ± ​k​ ​​​​ 

_ a ​​ ​​​. This maintains the resonance condi-
tion as the atoms accelerate toward or away from the mirror. In a 
fixed orientation, the chirp rate is constant for each axis and can be 
determined experimentally by locating the central fringe for which 
the total interferometer phase is zero (see Eq. 1). However, if the 
orientation of the triad is not precisely known, then determining  
with this method can be very time consuming. Furthermore, if the 
system is rotating or undergoing translational acceleration (i.e., if 
the triad is mobile), then  needs to be updated on a shot-to-shot 
basis. In the most extreme case, when mirror accelerations ex-
ceed a(t) > /kT, the Doppler shift cannot be approximated 
as linear (30, 35) and must be compensated during the interferom-
eter sequence. All of these scenarios can be addressed with an RT 
solution. We describe in detail our RT system in the Supplementary 
Materials.

Hybridization of the quantum and classical accelerometers
We hybridize the quantum and classical triads by establishing a 
feedback loop between the quantum phase measurements and the 
classical accelerometer signals. The hybridization can be understood 
as follows: The surfaces of the three retroreflection mirrors define 
the 3D reference frame for the atoms, and the relative motion of the 
triad compared to the free-falling atoms is recorded by the classical 
accelerometers. Because of ambient vibrations, the reference frame 
shakes and, by itself, produces phase noise on our interference 
fringes. To solve this issue, our RT system effectively stabilizes the 
Raman beams to the atoms’ free-falling frame by correcting their 
relative frequency and phase. This allows us to suppress vibration 
noise on each axis of the QuAT, as well as to periodically measure 
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the bias of each classical accelerometer. These biases are then sub-
tracted from the continuous output of the classical accelerometers 
once per measurement cycle and fed back to the QuAT one axis at a 
time, closing the feedback loop. In this way, we generate an ultrastable, 
high-bandwidth hybrid accelerometer triad.

Figure 7 illustrates the two hybridization schemes correspond-
ing to the open-loop and closed-loop modes of the RT system. 
Open-loop mode provides direct measurements of the static accel-
erations (e.g., due to gravity) by suppressing the vibration noise in 
the quantum accelerometer (36). However, this mode is not opti-
mized for operating under dynamic conditions where the QuAT is 
moving because the Doppler shift is not actively compensated. In 
closed-loop mode, the quantum accelerometer provides a measure 
of the classical accelerometer bias, which is then subtracted from its 
raw output. In this mode, the hybrid accelerometer triad can be 
operated in almost any orientation, as well as during dynamic motion.

To demonstrate the capability of the closed-loop hybridization 
scheme, Fig. 8 shows acceleration measurements as the tilt angle 
x varies in discrete steps over 50∘. Here, the acceleration varies 
as ay = g sin ax and az = − g cos x because z = 0. As a result of the 
finite bandwidth of the central-fringe lock, the vector norm shows 
sharp features whenever the tilt changes abruptly. After each 5° jump 
in x, the vector norm settles back to its nominal value of 9.805 m/s2 
regardless of the triad’s orientation. Figure 8B shows the classical 
accelerometer biases measured by the hybrid system. Small mis-
alignments with the axes of the quantum triad produce coupling 
with the scale factors of the classical sensors, resulting in artificial 
bias variations with x.

Model of the fringe contrast
The fringe pattern for each atom interferometer has the simple 
sinusoidal form

	​​ P​ ​​ = ​ A​ ​​ − ​B​ ​​(​​ ​​)​	 (8)

where P is the probability of measuring the atom in ∣F = 2〉, A is 
the fringe offset (typically ≃1/2), and B() is an interference term 
given by ​​B​ ​​ = ​ 1 _ 2​ ​C​ ​​ cos  ​​ ​​​ with fringe contrast C. We showed in 
Fig. 3 that C varies strongly with the tilt of the triad because of the 
changing transfer efficiency of Raman transitions between the two 
target states. Here, we derive our model for the fringe contrast and 
show how it is affected by several experimental parameters. In what 
follows, we have dropped the subscript  to simplify the notation.

Following the work of several other groups (60–62), for an ideal 
two-level atom, we can derive an analytical expression for the fringe 

pattern. Under the rotating-wave approximation and ignoring spon-
taneous emission, the Hamiltonian describing a two-level atom 
interacting with a laser field is given by

	​​​    H ​(t) = ​ ħ ─ 2 ​​[​​​  (t)​  ​   ​(t) ​e​​ −i(t)​​  
​   ​(t )​e​​ i(t)​

​ 
− (t)

 ​​ ]​​​​	 (9)

In our case, (t) represents the two-photon Raman detuning, ​​
˜ ​(t) = ​√ 

_
 ​​​ 2​ + ​​​ 2​ ​​ is the generalized Rabi frequency with two-photon 

Rabi frequency (t), and (t) is the phase of the laser field at time t. 
The time evolution of a wave function on the basis of bare-atom 
states ∣(t)〉 = 0(t)∣1, p〉 + 1(t)∣2, p + ħk〉 can be obtained from 
the following unitary transformation

	​​ ​   U ​(t, t′) = ​  T​exp ​[​​ − ​ i ─ ħ ​ ​∫t​ 
t′
 ​​​   H ​(u) du​]​​​​	 (10)

A

B

C

D

Fig. 8. Output of the hybrid accelerometer triad operating in closed-loop mode. 
The tilt angle x is varied in 5° steps over 50°. Here, the interrogation time is T = 5 ms 
and z = 0. (A) Tilt of the triad as a function of time. (B) Classical accelerator biases 
measured by quantum accelerometers. These vary with the tilt angle due to a small 
contribution from the scale factors of the classical accelerometers. (C) Magnitude 
of the acceleration components. (D) Acceleration vector norm output by the 
hybrid triad.

Fig. 7. Hybridization schemes between the quantum and classical accelerometers. The open-loop scheme on the left depicts how the filtered classical accelerometer 
is used to correct vibrations of the reference mirror avib for the quantum accelerometer. When static, the quantum accelerometer provides discrete measurements of the 
projection due to gravity gproj. The closed-loop scheme on the right shows how the classical accelerometer is periodically bias-corrected by comparing its output to that 
of the quantum accelerometer. Here, the output of the hybrid accelerometer is continuous and functions in both static and dynamic cases, providing the sum of the 
projections due to gravity and motion-induced acceleration aproj.
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where ​​  T​​ is the time-ordering operator and 0 and 1 are complex 
state amplitudes that obey ∣0(t)∣2 + ∣1(t)∣2 = 1. Henceforth, 
quantities labeled with the subscript j represent the value of that 
quantity during the jth Raman pulse with duration j. For short 
optical pulses, we can approximate the optical phase, detuning, and 
Rabi frequency in Hamiltonian Eq. 9 to be time independent. The 
matrix exponential in Eq. 10 then has a closed-form expression

	​​​    U ​(​t​ j​​, ​t​ j​​ + ​​ j​​ ) ≡ ​​   U ​​ j​​  =  exp ​[​​ − ​ i ─ ħ ​​   H ​(​t​ j​​ ) ​​ j​​​]​​  = ​ [​​​ 
​c​j​ *​​ 

− ​is​j​ *​​ 
− ​is​ j​​

​ 
​c​ j​​

 ​​ ]​​​​	 (11)

where the matrix elements contain

	​​​ c​ j​​  =  cos ​(​​ ​ 
​​ j​​ ─ 2 ​​)​​ + i ​ 

​​ j​​ ─ 
​​   ​​ j​​

 ​ sin ​(​​ ​ 
​​ j​​ ─ 2 ​​)​​,      ​s​ j​​  = ​ 

​​ j​​ ​e​​ i​​ j​​​
 ─ 

​​   ​​ j​​
 ​  sin ​(​​ ​ 

​​ j​​ ─ 2 ​​)​​​​	(12)

with pulse area ​​​ j​​  ≡ ​​   ​​ j​​ ​​ j​​​.
To obtain the fringe pattern Eq. 8 for a Mach-Zehnder atom 

interferometer, which consists of a /2--/2 sequence of Raman pulses, 
we compute the probability for the transition ∣1, p〉 → ∣2, p + ħk〉 
resulting from the corresponding product of unitary transformations

                          ​P  =​∣〈2∣​​   U ​​ 3​​ ​​   U ​​ 2​​ ​​   U ​​ 1​​∣1〉∣​​ 
2
​ ≡ A − B​	 (13A)

  ​A  =​∣​s​ 1​​∣​​ 2​ ​∣​s​ 2​​∣​​ 2​ ​∣​s​ 3​​∣​​ 2​ + ​∣​c​ 1​​∣​​ 2​ ​∣​s​ 2​​∣​​ 2​ ​∣​c​ 3​​∣​​ 2​  
                              + ​∣​s​ 1​​∣​​ 2​ ​∣​c​ 2​​∣​​ 2​ ​∣​c​ 3​​∣​​ 2​ + ​∣​c​ 1​​∣​​ 2​ ​∣​c​ 2​​∣​​ 2​ ​∣​s​ 3​​∣​​ 2​​        	(13B)

                          ​B = ​ c​ 1​​ ​s​ 1​​ ​(​s​2​ * ​)​​ 
2
​ ​c​3​ * ​ ​s​ 3​​ + c . c.​	 (13C)

When the pulse areas 1 = 3 = /2 and 2 = , the offset A 
reduces to

	​
A = ​ 

​​1​ 2​ ​​2​ 2​ ​​3​ 2​ + ​​   ​​1​ 2​ ​​2​ 2​ ​​3​ 2​ + ​​1​ 2​ ​​2​ 2​ ​​   ​​3​ 2​ + ​​1​ 2​ ​​2​ 2​ ​​   ​​3​ 2​ + ​​1​ 2​ ​​2​ 2​ ​​3​ 2​
    ─────────────────────   

2 ​​   ​​1​ 2​ ​​   ​​2​ 2​ ​​3​ 2​
 ​  ≃ ​  1 ─ 2 ​​	 (14)

The approximation in Eq. 14 corresponds to the near-resonant case 
when ∣j∣ ≪ j. Similarly, the interference term can be written as

	​ B =  2∣​c​ 1​​∣∣​s​ 1​​∣​∣​s​ 2​​∣​​ 2​∣​c​ 3​​∣∣​s​ 3​​∣cos  ≡ ​  1 ─ 2 ​ C cos ​	 (15)

where ​ =  arg [ ​c​ 1​​ ​s​ 1​​ ​(​s​2​ * ​)​​ 
2
​ ​c​3​ * ​ ​s​ 3​​ ] ≃ ​ ​ 1​​ − 2 ​​ 2​​ + ​​ 3​​​ is the phase shift 

introduced by the laser field. Here, we have omitted phase contribu-
tions from the atom’s external motion relative to the laser field, as 
well as small terms due to ​arg(​c​ 1​​ ​c​3​ * ​)​ that are linked to the asymmetry 
of the Mach-Zehnder interferometer (63). Combining Eqs. 12 and 
15 and keeping only leading-order terms, the contrast is given by

	​​ 
C  =  4 ​ 

​Ω​ 1​​ ​Ω​2​ 2​ ​Ω​ 3​​
 ─ 

​​   Ω​​1​ 2​ ​​   Ω​​2​ 2​ ​​   Ω​​3​ 2​
 ​ sin ​ ​Θ​ 1​​ ─ 2 ​ ​ sin​​ 2​ ​ ​Θ​ 2​​ ─ 2 ​  sin ​ ​Θ​ 3​​ ─ 2 ​

​   
​               ×​(​​ ​δ​ 1​​ ​δ​ 3​​ sin ​ ​Θ​ 1​​ ─ 2 ​  sin ​ ​Θ​ 3​​ ─ 2 ​  − ​​   Ω​​ 1​​ ​​   Ω​​ 3​​ cos ​ ​Θ​ 1​​ ─ 2 ​  cos ​ ​Θ​ 3​​ ─ 2 ​​ )​​​

​​	 (16)

This expression is equivalent to equation 3  in (63) with an explicit 
dependence on the two-photon detuning during each pulse. This 
allows us to model the behavior of the contrast for uncompensated 
Doppler shifts (i.e., when the RT system is disabled), as well as the 
effect of the velocity distribution by replacing j = kv(tj) and evalu-
ating the velocity-averaged contrast

	​​ C​​ − ​  =  ∫ N(v)C(v) dv​	 (17)

Here, ​N(v ) = exp [− ​(v / ​​ v​​)​​ 2​ ] / ​√ 
_

  ​ ​​ v​​​ is the velocity probability den-
sity with 1/e velocity spread ​​​ v​​  = ​ √ 

_
 2 ​k​ B​​𝕋 / M ​​.

Equation 16 is valid for a two-level atom and is generally accu-
rate when the Doppler shift D ≫ , rec, where losses due to 
parasitic Raman transitions can be neglected. However, this condition 
is not satisfied when the Raman beam approaches horizontal, and 
the effects due to higher-order diffraction and velocity-insensitive 
transitions must be included. Using an approach similar to that in 
(39), we model these effects by numerically solving the full system 
of coupled differential equations given by

	​​
​​α ˙ ​​ n​​  =  iχ ​e​​ +i[δ+2​ω​ D​​+2n​ω​ rec​​]t​ ​β​ n−1​​ + iχ ​e​​ +i[δ−2n​ω​ rec​​]t​ ​β​ n+1​​

​   
+ i ​χ​ co​​ ​e​​ +i(δ+​ω​ D​​+​ω​ rec​​)t​ ​β​ n​​

 ​​	  (18A)

                ​​​ ˙ ​​ n​​ =  i ​​ co​​​e​​ −i(+​​ D​​+​​ rec​​)t​ ​​ n​​​		 (18B)

             ​​​ ˙ ​​ n+1​​ =  i ​​ co​​​e​​ +i(+​​ D​​+​​ rec​​)t​ ​​ n+1​​​	 (18C)

           ​​
​​β ˙ ​​ n+1​​  =  iχ ​e​​ −i[δ−2n​ω​ rec​​]t​ ​α​ n​​ + iχ ​e​​ −i[δ+2​ω​ D​​+2(n+2)​ω​ rec​​]t​ ​α​ n+2​​

​   
+ i ​χ​ co​​ ​e​​ −i(δ+​ω​ D​​+​ω​ rec​​)t​ ​α​ n+1​​

 ​​	  (18D)

Here, n(t) and n(t) are the probability amplitudes corresponding to 
the ground and excited states ∣1, p + nħk〉 and ∣2, p + nħk〉, re-
spectively;  ≡ /2 is the half-Rabi frequency for velocity-sensitive 
Raman transitions, co ≡ co/2 is the half-Rabi frequency for velocity-
insensitive copropagating transitions, and  is given by Eq. 7. We 
solve Eqs. 18A to 18D over the time interval of each pulse (tj → tj + j) 
to obtain the state amplitudes n = 0,j and n = 1,j. Respectively, these 
amplitudes are generalizations of the cj and sj when including 
higher-order momentum transfer. Hence, following Eq. 15, we 
compute the fringe contrast using

	​ C =  4∣​​ 0,1​​∣∣​​ 1,1​​∣​∣​​ 1,2​​∣​​ 2​∣​​ 0,3​​∣∣​​ 1,3​​∣​	 (19)

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.add3854
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