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Metabolomic alterations in invasive ductal carcinoma of breast: 
A comprehensive metabolomic study using tissue and serum 
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ABSTRACT

Invasive ductal carcinoma (IDC) is the most common type of breast cancer 
and the leading cause of breast cancer related mortality. In the present study, 
metabolomic profiles of 72 tissue samples and 146 serum samples were analysed 
using targeted liquid chromatography multiple reaction monitoring mass spectrometry 
(LC-MRM/MS) and untargeted gas chromatography mass spectrometry (GC-MS) 
approaches. Combination of univariate and multivariate statistical treatment identified 
significant alterations of 42 and 32 metabolites in tissue and serum samples of IDC, 
respectively when compared to control. Some of the metabolite changes from tissue 
were also reflected in serum, indicating a bi-directional interaction of metabolites in 
IDC. Additionally, 8 tissue metabolites and 9 serum metabolites showed progressive 
change from control to benign to IDC suggesting their possible role in malignant 
transformation. We have identified a panel of three metabolites viz. tryptophan, 
tyrosine, and creatine in tissue and serum, which could be useful in screening of IDC 
subjects from both control and benign. The metabolomic alterations in IDC showed 
perturbations in purine and pyrimidine metabolism, amino sugar metabolism, amino 
acid metabolism, fatty acid biosynthesis etc. Comprehensively, this study provides 
valuable insights into metabolic adaptations of IDC, which can help to identify 
diagnostic markers as well as potential therapeutic targets.

INTRODUCTION

Breast cancer is the most common malignancy 
observed in woman throughout the world with a 
prevalence of around 23% [1]. Besides, it is also the 
leading cause of cancer-related deaths in women with 
a mortality rate of about 14% [2]. High breast cancer 
related mortalities in developing countries like India can 
be attributed to early age cancer incidences, late diagnosis, 
and inefficiency of the existing therapies [3]. Breast cancer 

is a heterogeneous disease and can be classified into 
various subtypes based on the histological and molecular 
characteristics [4, 5]. Invasive ductal carcinoma (IDC) 
also referred as infiltrating ductal carcinoma is a type of 
breast cancer which originates in the ductal epithelium of 
the breast and invades the surrounding tissues [6]. It is the 
most prevalent breast cancer type and accounts for about 
70% of the total breast cancer cases [7]. If not detected at 
an early stage, IDC can potentially metastasize to other 
parts of the body through the lymph node spread or in 
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the more advanced stage through the blood stream [6]. It 
is notable that early diagnosis significantly increases the 
success of therapies and ultimately the long-term survival 
of breast cancer individuals [8]. Current methods used for 
the diagnosis and surveillance of breast cancer such as 
mammography and histopathology have some limitations 
[9, 10]. Moreover, lack of specific diagnostic markers and 
unavailability of proper screening protocols at healthcare 
facilities significantly affects early diagnosis [11]. 
Therefore, it necessitates the discovery of more specific 
markers for the early detection and new molecular targets 
for developing therapies for IDC.

Identifying disease-specific molecular signatures 
through ‘omics’ based platforms have substantially helped 
in understanding disease pathogenesis [12]. The ‘omics’ 
based approaches, including genomics, proteomics, 
transcriptomics have been extensively used to understand 
tumour biology [13]. Metabolomics, a recent development 
in ‘omics’ platforms, is rapidly emerging field in the 
cancer research. The metabolome, which refers to the 
total set of metabolites of a living system, is the ultimate 
product of all the biological processes. Hence, identifying 
metabolomic alterations using metabolomics approach 
has enormous potential to impact cancer theranostics 
[14]. Metabolomics and cancer share close connectivity, 
cancer cell undergoes profound metabolic rearrangements 
in numerous physiological processes towards tissue 
remodelling, tumour growth, and cancer metastasis 
[15–17]. Although metabolomic alterations are the 
consequence of genomic transformation adapted by cancer 
cells, strikingly, in some cases it is the foremost cause for 
cancer [17]. Metabolomics offers unique insights into the 
regulation of small-molecule metabolites and the signaling 
pathways underlying various biological processes. Thus, 
metabolomics has been implemented by researchers in 
quest of identifying new diagnostic markers and potential 
therapeutic targets for cancer including leukemia [18], 
colorectal cancer [19], and hepatocellular carcinoma 
[20]. Recently, some of the metabolomics studies have 
also been performed in breast cancer, including study of 
various breast cancer subtypes [21, 22]. However, none 
of these studies have focused on identifying metabolomic 
alterations specific to IDC.

In the present study, we hypothesised that certain 
metabolic alterations exist in the IDC, which help in 
the progression of IDC. The metabolic demand of the 
proliferating cancer cell is fulfilled by either their synthesis 
or their uptake from the surrounding micro-environment. As 
tumour tissues are the hub of metabolic turnover and blood 
represents the pool of metabolites from various tissues, 
complementing tissue metabolomic profile with serum could 
provide a composite metabolomic snapshot for IDC [23]. In 
past, metabolomic studies were conducted either on serum, 
plasma or tissue samples, however, none of them reported 
overall metabolic changes in serum and tissue from the same 
subjects and tried to interconnect them in a single study [21, 

22, 24]. Hence, in the present study, we intended to perform 
a comprehensive metabolic profiling of both tissue and 
serum samples in an anticipation of getting a holistic view of 
IDC metabolism. Additionally, the altered serum metabolites 
identified in this study can have a potential to be used as 
a less invasive alternative as a diagnostic and prognostic 
markers for IDC. Another important topic of continuous 
debate in breast cancer is related to benign to malignant 
transformation of breast tumour. Although this phenomenon 
is very uncommon but there are some reports regarding 
the pathways involved in transformation of a benign into 
malignant tumour [25–27]. A well designed metabolomics 
study can offer unique insights into the regulation of small-
molecule metabolites in IDC and the signalling pathways 
underlying. The metabolic alterations in benign subjects 
were also examined in anticipation of identifying the 
metabolic alterations which may have a possible role in 
benign to malignant transition. Mass spectrometry (MS) 
based metabolomics approaches can be broadly classified 
into two main categories viz. targeted and untargeted 
metabolomics [28]. Targeted approach is a quantitative 
measurement of known set of metabolites related to a 
specific metabolic class or pathway, thus, a prior knowledge 
about metabolites including fragmentation pattern is 
essential. In contrast, untargeted approach refers to the 
measurement of all possible metabolites detected in a given 
sample, including the unknowns. Gas chromatography mass 
spectrometry (GC-MS) is one of the most suitable methods 
of choice for untargeted analysis and liquid chromatography 
multiple reaction monitoring mass spectrometry (LC-MRM/
MS) is widely used for targeted analysis [29]. It is evident 
that the parallel use of untargeted GC-MS and targeted 
LC-/MRM-MS analysis is the best choice in profiling of 
compounds from different classes [21].

In this study, metabolomic profiling of 24 tissue 
samples each of malignant IDC, benign neoplasm and 
normal tissue samples were studied using targeted 
LC-MRM/MS and untargeted GC-MS approaches. 
Further, serum metabolomic profiles of 76 IDC, 33 
benign and 33 age and gender-matched healthy controls 
were also acquired to correlate the findings from tissue 
analysis. Here, we have shown that existence of distinct 
metabolomic profile that marked for IDC, differentiating 
them from healthy controls and benign subjects. Moreover, 
some of the metabolite changes from tissue were also 
reflected in serum, emphasizing bi-directional interaction 
of blood with tumour tissue.

RESULTS

Clinical characteristic of study population

For tissue metabolomics analysis, a study cohort 
comprising 24 IDC, 24 benign and 24 controls (normal 
tissue) were examined. To elucidate the metabolomic 
alterations in serum, a total of 142 subjects including 
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76 IDC, 33 benign and 33 healthy subjects were 
recruited (Figure 1). IDC subjects were having invasive 
ductal lesion in breast, which was further confirmed 
by histopathology examination after the breast biopsy. 
Benign subjects were having non-malignant lesions such 
as fibro adenoma, chronic inflammation, granuloma 
and any other type of lesions in breast. The subjects 
enrolled for the study were freshly diagnosed for IDC 

who did not undergo any therapeutic intervention such as 
neoadjuvant chemotherapy or radiotherapy. The tumours 
were appropriately stage and/or size matched according to 
new TNM (tumour, node and metastasis) staging criteria 
for breast cancer [30]. Control tissue used in this study 
was the normal tissue adjacent to the tumour (2-5 cm 
away), obtained from same patient whereas control sera 
were collected from healthy women with no apparent 

Figure 1: A flowchart depicting the outline of the study. Workflow and steps evolved for the metabolomic study conducted on tissue 
(24 IDC, 24 benign and 24 normal) and serum (76 IDC, 33 benign and 33 control) samples using targeted liquid chromatography multiple 
reaction monitoring mass spectrometry (LC-MRM/MS) and untargeted gas chromatography mass spectrometry (GC-MS) approaches 
are shown. [Legends: HILIC-Hydrophilic interaction chromatography (HILIC column), RPLC T3: Reverse phase chromatography (T3 
column)].
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metabolic disease such as diabetes and hypertension. Both 
tissue and serum samples were collected from the same 
patients. Diagnosis of the all the patients was confirmed 
by histopathology examination. The overall demographic 
and histological characteristics of the subjects enrolled for 
this study are mentioned in Table 1.

Tissue metabolomic profiling

Initially, we performed a metabolomic profiling of 
tissue samples (n = 72) from IDC, benign and peripheral 
normal tissues, in order to identify the IDC specific 

metabolic alterations in tissue. The results obtained from 
tissue metabolomic profiling are described as follows.
Targeted LC-MRM/MS

In LC-MRM/MS analysis, out of the 108 metabolites 
targeted, 91 metabolites were detected consistently at a 
sufficient level for quantitation with minimum 30% base 
peak intensity. The representative chromatograms obtained 
from targeted LC-MRM/MS are shown in Supplementary 
Figure 1. The peak area data matrix was pre-processed 
using sample median normalization, cube root 
transformation, and range scaling methods. Multivariate 

Table 1: Demographics and histological features of samples used for this metabolomics study

Description TISSUE SERUM

Healthy Controls

 No. of cases 24 33

 Age (average ± standard deviation) 50 ± 8 48 ± 10

Benign Samples

 No. of cases 24 33

 Age (average ± standard deviation) 47 ± 10 45 ± 13

 Subtype

 Fibro adenoma 11 16

 Chronic inflammation 5 7

 Granuloma 3 4

 Other 5 6

Breast cancer samples

 No. of cases 24 76

 Age (average ± standard deviation) 54 ± 10 53 ± 12

Type

 Invasive ductal carcinoma 24 76

Tumour grade

 Grade 1 15 26

 Grade 2 9 50

Tumour stage

 Stage II (T2N1M0, T3N0M0) 17 52

  Stage III (T0N2M0, T1N2M0, T2N2M0, 
T3N1M0, T3N2M0) 7 24

Subtype

 LUMINAL A 8 25

 LUMINAL B 9 23

 HER2 ENRICHED 4 13

 TRIPLE NEGATIVE 3 15
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analysis (MVA) was performed on the normalized dataset. 
Clear discrimination was observed within the three group’s 
viz. IDC, benign and control (normal tissue) in orthogonal 
partial least squares discriminant analysis (OPLS-DA) 
model (Figure 2a). The cumulative R2 and Q2 values of 
the model were 0.86 and 0.77 respectively indicating a 
good fitting and high predictive ability of the model. The 
obtained OPLS-DA model was further cross-validated 
using permutation analysis. The R2 and Q2 values of 
the originally obtained model were better than the 200 
randomly permutated models indicating good predictive 
capacity of the obtained OPLS-DA model (Figure 2b). 
Hierarchical clustering analysis (HCA) showed distinct 
clusters for IDC, benign and controls based on the 
differences between metabolite concentrations in these 
groups (Supplementary Figure 3a).

Untargeted GC-MS analysis

During GC-MS analysis, 218 metabolites were 
detected out of which 148 had an occurrence frequency 
of at least 80% among the samples and were considered 
for further data analysis. A representative GC-MS 
chromatogram is shown in Supplementary Figure 2. The 
peak area data matrix was sum normalized, cubic root 
transformed and then auto-scaled. OPLS-DA plot (R2 0.94 
and Q2 0.88) showed clear discrimination between IDC, 
benign and control groups (Figure 2c). Cross-validation 
analysis using 200 random permutations is shown in 
Figure 2d which confirms the good predictive ability 
of the generated OPLS-DA model. HCA plot depicts a 
distinct clusters between IDC, benign and healthy controls 
(Supplementary Figure 3b).

Figure 2: Tissue metabolomics multivariate analysis. LC-MRM/MS: (a) OPLS-DA score plot of tissue LC-MRM/MS data from 
IDC subjects (n = 24, red), benign breast patients (n = 24, green) and healthy controls (n = 24, blue), (b) plot obtained after performing a 
random permutation test with 200 permutations on OPLS-DA model (R2Y = 0.86, Q2 = 0.77), R2 is the explained variance, and Q2 is the 
predictive ability of the model. Low value of R2Y and Q2-intercepts at 0.36 and -0.45 depicts the high predictability of the model, GC-MS: 
(c) OPLS-DA score plot of tissue GC-MS data for IDC subjects (n = 24, red), benign breast patients (n = 24, green) and healthy controls 
(n = 24, blue), (d) plot obtained after performing a random permutation test with 200 permutations on OPLS-DA model (R2Y = 0.94, Q2 
= 0.88).
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Table 2: Tissue metabolites differentiating IDC from control subjects a) Differential metabolites identified using LC-
MRM/MS, b) Differential metabolites identified using GC-MS

S. No Metabolite HMDB ID VIP p-value FDR FC AUC

a) LC-MS

1 Guanine HMDB00132 1.72 5.16E-11 1.57E-09 6.37 0.97

2 N-Acetylgalactosamine HMDB00212 1.69 7.65E-12 6.96E-10 4.87 0.97

3 Guanosine HMDB00133 1.68 2.16E-11 9.81E-10 7.14 0.96

4 UDP HMDB00295 1.59 9.13E-07 5.93E-06 0.59 0.88

5 Uracil HMDB00300 1.57 3.45E-08 4.48E-07 2.71 0.91

6 Uridine HMDB00296 1.57 4.52E-08 5.14E-07 2.63 0.92

7 Cytosine HMDB00630 1.55 2.51E-08 4.48E-07 3.97 0.91

8 Tyrosine HMDB00158 1.54 1.25E-09 2.84E-08 8.73 0.96

9 Taurine HMDB00251 1.52 5.23E-07 3.66E-06 5.62 0.88

10 Phenylalanine HMDB00159 1.49 5.48E-08 5.54E-07 3.98 0.92

11 Creatine HMDB00064 1.48 1.26E-05 6.36E-05 4.32 0.85

12 N-Acetylglucosamine HMDB00215 1.48 4.00E-07 3.03E-06 4.82 0.88

13 Glutamine HMDB00641 1.48 7.01E-06 3.75E-05 4.60 0.87

14 7-Methylguanosine HMDB01107 1.48 2.97E-08 4.48E-07 4.54 0.92

15 Lactic acid HMDB00190 1.46 4.58E-06 2.61E-05 4.35 0.85

16 Glutamic acid HMDB00148 1.46 1.89E-07 1.72E-06 2.39 0.91

17 Cytidine HMDB00089 1.44 3.74E-07 3.03E-06 5.16 0.89

18 Riboflavin HMDB00244 1.33 3.94E-06 2.39E-05 3.79 0.90

19 Adonitol HMDB00508 1.32 6.12E-04 2.23E-03 2.22 0.78

20 Inosine HMDB00195 1.32 3.04E-05 1.46E-04 4.95 0.84

21 Maltitol HMDB02928 1.31 1.71E-03 4.85E-03 2.12 0.78

22 Histidine HMDB00177 1.30 1.59E-04 6.89E-04 3.28 0.79

23 N-Acetylglycine HMDB00532 1.28 4.76E-04 1.80E-03 3.09 0.77

24 Ascorbic acid HMDB00044 1.25 2.13E-03 5.69E-03 3.07 0.76

b) GC-MS

25 Phosphoric acid HMDB02142 1.71 7.17E-08 7.89E-06 10.72 0.83

26 Cis-11,14-Eicosadienoic 
acid HMDB05060 1.69 9.46E-07 3.47E-05 30.41 0.70

27 11-Eicosenoic acid HMDB34296 1.67 2.18E-06 5.98E-05 51.94 0.75

28 9-Octadecenoic acid HMDB00207 1.53 5.53E-05 6.90E-04 7.14 0.74

29 8,11,14-Eicosatrienoic 
acid HMDB02925 1.53 1.35E-05 2.48E-04 6.87 0.70

30 trans-9-Octadecenoic acid HMDB00573 1.51 4.11E-06 9.04E-05 0.28 0.89

31 Pentanoic acid HMDB00892 1.42 2.64E-05 4.15E-04 11.99 0.78

32 Nonadecanoic acid HMDB00772 1.41 1.07E-04 1.07E-03 4.83 0.75

33 11-Octadecenoic acid HMDB03231 1.40 4.03E-04 2.63E-03 7.07 0.82

(Continued )
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S. No Metabolite HMDB ID VIP p-value FDR FC AUC

34 3,7-Cholest-5-ene HMDB00941 1.34 3.49E-04 2.63E-03 0.48 0.81

35 Hexanoic acid HMDB00535 1.32 2.78E-04 2.35E-03 11.87 0.69

36 Octadecanoic acid HMDB00827 1.30 5.65E-05 6.90E-04 0.39 0.68

37 5,8,11,14-Eicosatetraenoic 
acid HMDB01043 1.29 1.12E-03 5.34E-03 8.63 0.65

38 Inositol HMDB00211 1.26 4.30E-04 2.63E-03 0.22 0.84

39 Tetradecanoic acid HMDB00806 1.24 1.71E-04 1.57E-03 0.34 0.81

40 Carbonic acid HMDB03538 1.23 8.48E-04 4.44E-03 7.98 0.76

41 Palmitic acid HMDB00220 1.23 1.83E-03 6.71E-03 3.78 0.67

42 Eicosapentaenoic acid HMDB01999 1.20 5.92E-03 1.59E-02 4.55 0.70

HMDB ID: Metabolite ID obtained from HMDB database, VIP score: variable of importance score obtained from OPLS-
DA plot (VIP>1.2), p value: p values obtained after performing t-test (p-value<0.05), FDR: value obtained after performing 
false discovery test, FC: fold change (FC>1.4), AUC: area under the curve value.

Identification of significantly altered metabolites 
in tissue

IDC against control

First, we screened for the metabolomic alterations 
that could discriminates IDC from controls. MVA plots 
of IDC against control obtained from LC-MRM/MS 
and GC-MS are shown in Supplementary Figure 4. The 
differentially expressed metabolites were identified 
using the combination of univariate and multivariate 
statistics. Metabolites with VIP score ≥ 1.2 from OPLS-
DA model, were considered as important features for 
class separation. Further, metabolites with p < 0.05 
were selected upon student’s t-test analysis and the 
p-values were then adjusted for multiple hypotheses 
testing using FDR calculations. The collective results 
from VIP and t-test revealed significant alterations of 42 
metabolites, including 24 metabolites from LC-MRM/
MS and 18 metabolites from GC-MS in IDC tissue as 
compared to control samples (Table 2). Amongst the 42 
significant metabolites, 36 were up-regulated and 6 were 
down-regulated (Table 2). These include amino acids, 
nucleotides, fatty acids, amino sugar derivatives, organic 
acids etc. Heat map of these 42 differentially altered 
metabolites between IDC tissue and control is shown in 
Figure 3. The metabolic pathway network map of the 
significantly altered metabolites from IDC against control 
tissue analysis is presented in Figure 4.
IDC against benign

Furthermore, the metabolomic alterations that 
discriminate IDC subjects from benign were also 
screened. MVA plots for IDC and benign are shown in 
Supplementary Figure 5. In IDC against benign analysis, 
the combined results from multivariate and univariate 

analysis revealed 37 significantly altered metabolites (18 
from LC-MRM/MS and 19 from GC-MS) (Supplementary 
Table 1). Among these 37 significant metabolites, 25 
were with increased concentration, while remaining 12 
showed decreased concentration in IDC against benign 
(Supplementary Table 1).
IDC against both control and benign

After exploring the metabolomic alterations 
specific to IDC within the two group analysis, our 
next aim was to identify the metabolomic changes 
discriminating IDC from both benign and control 
subjects. We had performed the comparison of 
metabolites obtained from two group analysis and 
scrutinized the metabolites following the pattern of 
increment and/or decrement from control and benign 
to IDC. We have observed 8 metabolites that followed 
the pattern of progressive change (increase or decrease) 
from control, benign and IDC which are mentioned 
in Table 3a. Histidine, glutamine, tyrosine, creatine, 
phenylalanine, lactic acid, and adonitol showed an 
elevated concentration and 3,7-cholest-5-ene showed 
reduced concentration from control to benign to IDC. 
Histidine, glutamine, tyrosine, and creatine came up as 
the top four metabolites showing significant alterations 
in tissue for this comparative study. Their concentration 
differences along with the ROC curve analysis is 
illustrated in Supplementary Figure 6.

Serum metabolomic profiling

It is believed that systemic metabolomic changes 
in tumour tissues may be reflected by changes in 
biofluids such as peripheral blood. With this hypothesis, 
metabolomic profiles of serum samples were obtained 
to identify IDC specific metabolomic alterations and 
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associate these findings with the tissue metabolomic 
analysis. Additionally, acquiring serum metabolomic 
profile of IDC would be helpful for the identification of 
less invasive diagnostic and prognostic markers for IDC.
Targeted LC-MRM/MS

In LC-MRM/MS analysis, 85 metabolites were 
detected at quantifiable level with minimum 30% base 
peak intensity. Data pre-processing was performed using 
median normalization, cube root transformation followed 
by data scaling using the feature range. Distinct clustering 
between the three groups IDC, benign and control was 
observed in OPLS-DA model (R2 0.83 and Q2 0.71) and 
is illustrated in Figure 5a. Cross-validating permutation 
test depicts validity of the OPLS-DA model (Figure 5b). 
HCA analysis showing group clusters is represented in 
Supplementary Figure 7a.
Untargeted GC-MS analysis

Through the GC-MS analysis of serum, 218 
metabolites were detected out of which 149 had an 

occurrence frequency of at least 80% among the samples. 
The peak area data matrix was sum normalized, cubic root 
transformed and then auto-scaled. Clear discrimination 
between the three groups IDC, benign and control was 
observed from the OPLS-DA analysis (R2 0.82 and Q2 
0.65) (Figure 5c). Permutation analysis is depicted in 
Figure 5d. HCA plot is shown in Supplementary Figure 7b.

Identification of significantly altered metabolites 
in serum IDC against control

Similar to tissue metabolomics analysis, 
metabolomic alterations were examined within three 
groups for serum samples as well. In a comparative 
analysis of IDC against control, MVA showed clear 
discrimination between IDC subjects and healthy controls 
(Supplementary Figure 8). Significant alterations of 32 
metabolites were observed, including 17 upregulated 
metabolites and 15 downregulated metabolites in IDC 
when compared with controls (Supplementary Table 2). A 

Figure 3: Heatmap of 42 differential metabolites between IDC and controls in tissue samples. The colours from green to 
red indicate the increased amount of metabolites (Control: Normal tissue, IDC: Invasive ductal carcinoma).
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heat map of these 32 differentially regulated metabolites 
is shown in Supplementary Figure 9.
IDC against benign

Further, the IDC against benign MVA 
(Supplementary Figure 10) identified significant 
alterations of 35 metabolites, which included 15 
upregulated and 20 downregulated metabolites in serum 
of IDC as compared to benign (Supplementary Table 3).

IDC against both control and benign

Finally, we investigated serum metabolites those 
were able to discriminate IDC samples from both control 
and benign samples. The metabolites that followed a 
pattern of increment or decrement changes in serum are 
listed in Table 3b. A total of 9 metabolites were identified 
that followed this differential regulation pattern. Ascorbic 
acid, tryptophan, tyrosine, phenylalanine, uric acid, UDP, 

Figure 4: Metabolic pathway network map of significantly altered metabolites from IDC against control analysis in 
tissue samples. Metabolites identified in this study are shown along with a box plot illustrating normalized concentration differences 
of metabolite in IDC tissue (red box) and control (green box). While, metabolites not identified in this study are represented with a dotted 
blue lines.
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creatine, and pyruvate showed reduced concentration in 
IDC against benign and control. Only one metabolite 
α-Ketoglutaric acid followed the pattern of increased 
concentration in IDC compared with benign and control. 
On the basis of VIP score, Ascorbic acid, tryptophan, 
tyrosine, and phenylalanine were identified as the top four 
metabolites showing significant alterations in serum for 
this three group comparative study. Their concentration 
differences along with the ROC curve analysis is 
illustrated in Supplementary Figure 11.

Common metabolomic alterations observed in 
tissue and serum samples

In anticipation of identifying metabolomic changes 
that might be reflected from tumour tissue to serum, we 
screened for common metabolomic alterations identified 
in tissue and serum samples. In an attempt to simplify the 
analysis only significant metabolites from IDC against 
control comparison were primarily focused. We have 
successfully identified 10 differentially altered metabolites 
which were common in tissue and serum samples. The list 

of these common metabolomic alterations along with their 
concentration levels in tissue and serum is summarized in 
Table 4. Pentanoic acid, 11-eicosenoic acid, pentaenoate 
showed increased while UDP showed decreased abundance 
in both tissue and serum samples of IDC when compared 
to control. Interestingly, higher concentrations of tyrosine, 
phenylalanine, creatine, histidine, phosphoric acid, and 
ascorbic acid were observed in IDC tissue samples in 
comparison with control (Table 4). In contrast, lower 
concentrations of these metabolites were observed in IDC 
serum when compared with control (Table 4). Additionally, 
from the three group analysis, we have observed tryptophan, 
tyrosine, and creatine as common metabolites present in both 
tissue and serum. Interestingly, the levels of tryptophan, 
tyrosine, and creatine in tissue are in negative correlation 
with that of serum (Table 4). Further, these metabolites 
were able to discriminate IDC subjects from both benign 
and control subjects in tissue and serum samples (Figure 6). 
These 3 were the only metabolites that showed a pattern of 
progressive change (either increase or decrease) from control 
to benign to malignant (IDC) individuals in both tissue and 
serum samples.

Table 3: Metabolites differentiating IDC from both benign and controls a) Tissue metabolites, b) Serum metabolites

S. No Metabolite HMDB ID FC (IDC/C) AUC (IDC/C) FC (IDC/B) AUC (IDC/B)

a) Tissue

1 Histidine HMDB00177 3.28 0.79 2.29 0.64

2 Glutamine HMDB00641 4.60 0.87 2.38 0.73

3 Tyrosine HMDB00158 8.73 0.96 3.19 0.83

4 Creatine HMDB00064 4.32 0.85 2.36 0.72

5 Phenylalanine HMDB00159 3.98 0.92 2.45 0.81

6 Lactic acid HMDB00190 4.35 0.85 2.54 0.76

7 Adonitol HMDB00508 2.22 0.78 1.64 0.70

8 3,7-Cholest-5-ene HMDB00941 0.48 0.81 0.35 0.76

b) Serum

1 Ascorbic acid HMDB00044 0.31 0.98 0.32 0.73

2 Tryptophan HMDB00929 0.49 0.93 0.62 0.78

3 Tyrosine HMDB00158 0.61 0.89 0.68 0.74

4 Phenylalanine HMDB00159 0.57 0.91 0.66 0.76

5 Uric acid HMDB00289 0.60 0.88 0.63 0.79

6 α-Ketoglutaric acid HMDB00208 15.26 0.81 5.14 0.74

7 UDP HMDB00295 0.43 0.91 0.46 0.83

8 Creatine HMDB00064 0.53 0.83 0.63 0.76

9 Pyruvate HMDB00243 0.31 0.85 0.40 0.78

HMDB ID: Metabolite ID obtained from HMDB database, FC: Fold change (FC>1.4), IDC/C: IDC against control, AUC: 
Area under the curve, IDC/B: IDC against benign.
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Pathway analysis

The statistically significant metabolites discerned 
from the comparative analysis of IDC against control 
samples were subjected to pathway analysis in order 
to elucidate the metabolic pathways perturbed in IDC. 
The results obtained from the pathway analysis of the 
significantly altered metabolites from tissue are illustrated 
in Figure 7. The top ten pathways observed in tissue 
samples are nitrogen metabolism, pyrimidine metabolism, 
aminoacyl-tRNA biosynthesis, fatty acid biosynthesis, 
D-glutamine and D-glutamate metabolism, riboflavin 
metabolism, purine metabolism, alanine, aspartate and 
glutamate metabolism, phenylalanine, tyrosine and 
tryptophan biosynthesis, and beta-Alanine metabolism. 
Detailed pathway analysis table including all the identified 
pathways is given in Supplementary Table 4.

DISCUSSION

Until now metabolomics studies in breast cancer 
has been mainly focused to understand the metabolomic 
changes in serum and plasma samples [21–23]. The 
complementary approach of screening a marker primarily 
in tissue first, followed by its validation in bofluids is 
described in few proteomics based studies [31, 32]. 
However, the same has not been implemented yet in 
metabolomics of breast cancer. Although the likelihood 
of getting all the changes from tissue in serum is limited 
as the blood gets contribution from all the tissues in 
body. However, a complex interplay between tumour 
tissue and the surrounding microenvironment may have 
substantial role in the alteration of serum metabolic 
profile, necessitating the need of simultaneous tissue 
and serum metabolomic profiling. Another important 

Figure 5: Serum metabolomics multivariate analysis. LC-MRM/MS: (a) OPLS-DA score plot of serum LC-MRM/MS data for 
IDC subjects (n = 76, red), benign breast patients (n = 33, green) and healthy controls (n = 33, blue), (b) plot obtained after performing 
a random permutation test with 200 permutations on OPLS-DA model (R2Y = 0.83, Q2 = 0.71), R2 is the explained variance, and Q2 is 
the predictive ability of the model. Low value of R2Y and Q2-intercepts at 0.27 and -0.43 depicts the high predictability of the model, 
GC-MS: (c) OPLS-DA score plot of serum GC-MS data for IDC subjects (n = 76, red), benign breast patients (n = 33, green) and healthy 
controls (n = 33, blue), (d) plot obtained after performing a random permutation test with 200 permutations on OPLS-DA model (R2Y = 
0.82, Q2 = 0.65).
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yet debatable aspect in breast cancer progression is the 
benign to malignant transformation of a tumour [26]. 
Metabolomics offers unique opportunity to delve deep 
inside the regulation of pathways underlying various 
biological processes, which, in-turn can provide valuable 
information about the benign to malignant transformation 
of breast tumour. In addition, herein two metabolomics 
approaches (targeted and untargeted) were employed 
to generate a comprehensive metabolomics profile of 
IDC. Although both approaches are complementary, 
increased compound detection and throughput compound 
identification in GC-MS gives it an edge over the targeted 
LC-MS. The increased metabolomic coverage leads to 
detection of broad range of metabolites. This may help 
to generate the holistic view of key metabolic pathway 
alterations in IDC, eventually improving the present 
clinical approach for IDC.

The present study, for the first time, outlines the 
tissue and serum metabolomic profiles of IDC using both 
LC-MRM/MS and GC-MS; differentiating them from 
benign and control samples. The key findings of this study 
include the identification of 42 significant metabolites 
consisting of 36 upregulated and 6 downregulated 
metabolites in IDC tissue against control. Additionally, 
32 significant metabolites, including 17 upregulated and 
15 downregulated metabolites were identified in IDC 
serum compared to control. These metabolites includes 
amino acids, nucleotides and nucleosides, fatty acids, 
amino sugars, organic acids, vitamins and other organic 
compounds. Moreover, reciprocal metabolomic alterations 
were observed between tissue and serum, indicating a bi-
directional interaction of metabolites in IDC. Interestingly, 
8 tissue metabolites and 9 serum metabolites showed 
progressive change from control to benign to IDC 
suggesting their possible role in malignant transformation. 
Finally, we have identified a panel of 3 metabolites viz. 
tryptophan, tyrosine, and creatine in both the tissue and 

serum, which could be useful in screening of IDC subjects 
from control as well as benign patients. Since, this study 
included multiple groups, to avoid the ambiguity in 
discussion, only metabolomic alterations observed in IDC 
against control with primary focus on tissue and some of 
the concomitant alterations observed in serum are further 
discussed.

The 42 significantly altered metabolites in 
IDC tissue as compared to controls were mapped 
to several important pathways. The most important 
pathways observed to be altered in tissue were nitrogen 
metabolism, pyrimidine metabolism, aminoacyl-tRNA 
biosynthesis, fatty acid biosynthesis, D-glutamine and 
D-glutamate metabolism, riboflavin metabolism, purine 
metabolism, alanine, aspartate and glutamate metabolism, 
phenylalanine, tyrosine and tryptophan biosynthesis, beta-
alanine metabolism, arginine and proline metabolism, and 
glutathione metabolism (Figure 7). The metabolic network 
map reflects the important interactions between the altered 
metabolic pathways (Figure 4). Notably, an increase in 
amino acid metabolism comprising increase in tyrosine, 
phenylalanine, glutamic acid, glutamine, and histidine was 
observed (Table 2). These findings are in accordance with 
previous reports where an increase in amino acid turnover 
in breast cancer is reported [33]. In contrast, lower 
concentrations of various amino acids were observed 
in IDC serum, which is in agreement with previous 
report (Supplementary Table 2) [34]. The diminished 
concentrations of the amino acids in IDC serum may be 
attributed to their higher uptake by the tumour tissue to 
fulfil the proliferative demand [34].

Two other important metabolic pathways 
found to be altered in IDC were purine metabolism 
and pyrimidine metabolism (Figure 4). Proliferating 
tumour cells often demand for nucleotides for the 
rapid synthesis of cellular materials, which is fulfilled 
by de novo synthesis and/or nucleotide salvage of 

Table 4: Common metabolites from tissue and serum differentiating IDC from controls

S. No Metabolite HMDB ID FC TISSUE FC SERUM

1 11-Eicosenoic acid HMDB34296 51.94 2.53

2 Pentanoic acid HMDB00892 11.99 2.78

3 Phosphoric acid HMDB02142 10.72 0.46

4 Tyrosine HMDB00158 8.73 0.61

5 Pentaenoate HMDB00290 4.55 1.63

6 Creatine HMDB00064 4.32 0.53

7 Phenylalanine HMDB00159 3.98 0.57

8 Histidine HMDB00177 3.28 0.50

9 Ascorbic acid HMDB00044 3.07 0.31

10 UDP HMDB00295 0.59 0.43

HMDB ID: Metabolite ID obtained from HMDB database, FC: fold change (FC>1.4).
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purines and pyrimidines [35]. Nucleotide salvage 
pathway uses degraded nuclear material (DNA/RNA) 
in the form of purines and pyrimidines to reproduce 
the dNTPs for DNA/RNA synthesis [35]. Besides, 
increased concentration of a modified nucleotide 
7-methylguanosine in IDC tissues was also observed 
which is suggestive of its demand for the increased 
‘cap’ formation for rapid protein synthesis in IDC [36]. 
Similarly, IDC serum showed elevated concentration 
of nucleotides including CTP and UTP, which may 
be attributed to their release from damaged cells. The 
extracellular nucleotides are also known to stimulate 
the cell survival, proliferation and migration through 
purinergic signaling [37]. Interestingly, lower levels of 
cyclic AMP, a negative regulator of epidermal growth 
factor receptor (EGFR) is observed in IDC serum, 
thereby possibly providing survival advantage for 
tumours and promote further growth [38].

Additionally, fatty acid metabolism is indicated to 
be alerted in IDC tissue. Specifically, increased levels of 
numerous unsaturated fatty acids and decreased level of 
saturated fatty acids in IDC tissues were observed (Figure 
4). The elevated unsaturated fatty acid levels helps in 
increasing the membrane fluidity and modulation of 
adhesion [39]. These findings are also in accordance with 
our previous report in breast cancer, where an increase in 
phospholipids with unsaturated fatty acid composition is 
reported [40]. An increase in the concentration of omega-
6-polyunsaturated fatty acids (PUFAs) has been observed, 
which are important in modulating various physiological 
functions including initiation and sustainment of 
inflammation (Figure 4) [41]. Moreover, the increased 
fatty acid metabolism has also been reported to be 
associated with invasive breast cancer [42].

Amino sugar metabolism (hexosamine pathway) 
is also observed to be altered in the IDC tissue (Figure 

Figure 6: Common metabolites identified in tissue and serum discriminating IDC samples from both benign samples 
and healthy controls. Box-and-whisker plots illustrating normalized concentration differences between control (C-green box), Benign 
(B-yellow box) and Invasive ductal carcinoma (IDC-red box) along with ROC curve analysis plot of sensitivity versus specificity for the 
three metabolites predicting IDC samples against control (IC-blue line) and IDC samples against benign samples (IB-green line). The plot 
depicts higher discriminative ability of these metabolites for IDC samples than benign samples.
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4). These observations are in good agreement with a 
recent breast cancer metabolomics study by Hadi et al. 
using GC-MS [42]. N-acetylgalactosamine (GalNAc) is 
an important component of glycoprotein as it is the first 
glycan added in the O-glycosylation process, initiation 
of which aids invasiveness [43]. Another amino sugar 
N-acetylglucosamine (GlcNAc) is reported to mediate 
cell signaling directly and indirectly, promoting tumour 
cell invasion [44]. Riboflavin metabolism generates 
flavin moieties, which are important players in cellular 
metabolism. The increase in riboflavin uptake and its 
metabolism in tumour tissue, including breast cancer, has 
already been reported [45]. The increased levels of lactic 
acid along with carbonic acid confirms the activity of 
glycolytic switch leading to decrease in the pH of tumour, 

ultimately helping tumour cell in immune disruptions [46, 
47]. The carbonic acid increase corroborates with previous 
report where higher expression of carbonic anhydrase, 
an enzyme involved in conversion of carbon dioxide to 
carbonic acid is reported [48].

In addition, we have observed 10 altered 
metabolites, which are common in both tissue and serum. 
Among them, 4 showed similar concentration change in 
both tissue and serum, while the concentration change in 
other 6 metabolites were opposite (Table 4). Increase in 
fatty acids in both serum and tissue is indicative of their 
de-novo synthesis in serum and uptake in tissue to support 
proliferation [49]. As discussed above, the lower levels 
of the amino acids in IDC serum could be due to their 
increased uptake by the tumour tissue leading to their 

Figure 7: Altered metabolomic pathways observed in tissue of IDC. Topology map of differentially expressed metabolites 
generated using metaboanalyst describing the impact of metabolites identified through comparative analysis of IDC against control. 
Top pathways identified in tissue are 1. Nitrogen metabolism, 2. Pyrimidine metabolism, 3. Aminoacyl-tRNA biosynthesis, 4. Fatty acid 
biosynthesis, 5. D-Glutamine and D-glutamate metabolism, 6. Riboflavin metabolism, 7. Purine metabolism, 8. Alanine, aspartate and 
glutamate metabolism, 9. Phenylalanine, tyrosine and tryptophan biosynthesis, 10. Beta-Alanine metabolism.
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accumulation in tissue and deprival in serum [34]. Other 
important metabolic changes shared by both tissue and 
serum were involved in antioxidant machinery, energy 
metabolism etc. [50–52]. Special attention was necessary 
for the metabolites that showed a pattern of progressive 
change from control to benign to malignant IDC as 
they may possibly be involved in benign to malignant 
tumour transformation. These metabolites include 
histidine, glutamine, tyrosine, creatine, phenylalanine, 
lactic acid, adonitol, and 3,7-cholest-5-ene. As discussed 
earlier, these metabolites are important players in energy 
metabolism, cell signaling processes, cancer progression 
and development processes which are under the direct or 
indirect control of oncogenes. These metabolic alterations 
needs to be explored further in context to identify their 
possible roles in benign to malignant transformation.

A panel of three metabolites including tryptophan, 
tyrosine, and creatine may prove to be helpful in 
discrimination of IDC subjects from both control and 
benign. Only these 3 metabolites showed a pattern of 
progressive change (either increase or decrease) from 
control to benign to malignant (IDC) individuals in both 
tissue and serum sample. Interestingly, a reverse trend of 
progressive metabolic change, an increase in tissue while 
decrease in serum, was observed for these metabolites. As 
discussed above, amino acids (tryptophan and tyrosine) 
increase in IDC patients, is suggestive of their preferred 
demand in tissue [34]. This demand is fulfilled by their 
preferred uptake and utilisation in tissue, leading to their 
decreased levels in serum [34]. Further, the lower levels 
of creatine in serum indicates its possible conversion 
to phosphocreatine by creatine kinases that serve as an 
energy reserve [52]. This phosphocreatine might have been 
taken up by tumour tissues then dephosphorylated back 
to creatine to fulfil the energy demand [51]. Interestingly, 
the higher activity of creatine kinases in serum is already 
reported indicating its role in invasive breast cancer 
[51]. Overall, this study provides valuable insights into 
the metabolic adaptations of IDC tumours. However, 
certain limitations associated with this study needs to be 
considered. First, an extensive validation study using a large 
cohort of subjects needs to be performed in order to confirm 
the findings of our study. Second, there is a possibility that 
different molecular subtypes of IDC may have an effect 
on the metabolomic profile. Hence, it will be interesting to 
look for the metabolomic alterations in the molecular and 
histological subtypes of IDC in the future.

In summary, this study is the first attempt to 
understand comprehensive metabolomic alterations 
specific for IDC of the breast. We have demonstrated 
that the metabolomic alterations exist in tissue and serum 
samples of the subjects with IDC, differentiating them 
from healthy controls and benign subjects. Some of the 
metabolic changes from tissue were also reflected in serum, 
emphasizing the bi-directional interaction between blood 
and tumour tissue. The results suggest possible role of 
several metabolic pathways in IDC including amino acid 

metabolism, purine and pyrimidine metabolism, fatty acid 
metabolism, amino sugar metabolism. In our ongoing work, 
we are focusing on to decipher the mechanistic role of these 
pathways in IDC progression. In addition, it was noteworthy 
to identify the progressive metabolomic alterations in 
control to benign to malignant IDC breast conditions. In 
future, with this lead, it will be interesting to understand 
their possible role in benign to malignant transformation. 
Nevertheless, the results presented in this study can serve 
as useful resource for identification of potential targets from 
which new therapeutic agents might be developed.

MATERIALS AND METHODS

Subject selection and sample collection

Subjects were voluntarily recruited with written 
informed consent at Ruby Hall Clinic Cancer Centre, 
Pune during the period of May 2013 to June 2016. Ethical 
approval was obtained from the Ethics Committees of 
Poona medical research foundation and National Centre 
for Cell Science (NCCS). Subjects with cancerous 
breast tumour were considered as malignant while non-
cancerous breast tumour subjects were considered as 
benign. IDC status of malignant tumours was confirmed 
by histopathological analysis. Clinical specimens, tissue 
and serum for IDC and benign groups were collected from 
the same subjects at the time of the surgery. The tumours 
selected were appropriately stage and size matched 
according to new TNM staging system. Normal tissue as 
a control was obtained from IDC tumour adjacent tissue 
(2-5 cm away). Control serum samples were obtained 
from the subjects undergoing breast health check-up at 
the camp organized by the hospital. Detailed description 
of sample collection including inclusion and exclusion 
criteria of subjects is given in supplementary materials 
and methods. The overall histological characteristics of 
the patients included in this study are given in Table 1.

Targeted LC-MRM/MS metabolomic profiling

Serum metabolite extraction was performed by 
adding 400 μl of ice-cold methanol to 50 μl of serum. 
In case of tissue, samples (50 mg) were homogenized in 
400 μl of ice-cold methanol using Precellys homogeniser 
(Bertin Corp, USA) and metabolites were extracted. 
(Details in supplementary material and methods). Prior 
to extraction 2 μl of internal standard d2 L-phenylalanine 
(100 ng/μl) was added. For targeted metabolomic 
profiling, 108 metabolite standards were selected based on 
the literature survey of cancer metabolomics studies. The 
analysis was performed using multiple reaction monitoring 
(MRM) mode on a 4000 QTRAP triple quadrupole mass 
spectrometer (AB SCIEX, Foster City, CA) equipped with 
Shimadzu Prominence binary pump HPLC (Shimadzu 
Corporation, Japan). During positive ionization mode, 
the dried metabolite extract was dissolved with 50 μl 
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solvent (6.5:2.5:1 acetonitrile: methanol: water) and 
injected on XBridge HILIC column (Waters, Milford, 
MA). In the negative ionization mode, metabolites extract 
was dissolved in 50 μl ultrapure water and injected on 
ATLANTIS T3 column (Waters, Milford, MA). For both 
modes, 10 μl of the sample was injected using the HPLC 
autosampler. Data analysis was performed in the Analyst 
1.5 software (Sciex, Foster City, CA). The sample orders 
were randomized at the time of analysis. Internal standard 
peak areas were used to evaluate the metabolite extraction 
efficiency as well as to check the instrument performance 
over the time. Metabolites with a minimum of 30% of 
base peak intensity and consistently detected in 80% of 
the samples were considered for quantitation. Further, the 
peak areas obtained after integration were exported to a 
spreadsheet file in a matrix format. The resulted data sets 
were subjected to statistical analysis.

Untargeted GC-MS metabolomic profiling

For GC-MS analysis, 50 mg tissue and 50 μl 
serum with internal standard 2- isopropyl-malic acid 
(15 μl from 1.0 mg/mL) was taken and metabolites were 
extracted similar to LC-MS. Two step derivatization 
was performed using methoxyamine hydrochloride in 
pyridine followed by BSTFA with 1% TMCS. After 
derivatization 1 μl of the sample was injected into an 
Agilent 5975C GC system (Agilent Technologies Inc., 
USA). HP-5 MS ultra-inert fused silica capillary column 
(30 m × 0.25 μm × 0.25 mm, Agilent, USA) was used 
for the chromatographic separation of metabolites. The 
column effluent was introduced into the ion source 
of an Agilent 5977 mass selective detector (Agilent 
Technologies Inc., USA). GC-MS metabolite profiles 
were processed using Agilent ChemstationTM data 
analysis software. The sample runs were randomised 
at the time of analysis. The metabolite extraction 
efficiency and instrument performance over the time 
was evaluated by using peak area of internal standard. 
Metabolite identification was performed by comparing 
the mass fragmentation pattern with NIST 11 Standard 
mass spectral databases in NIST MS search 2.0 (NIST, 
Gaithersburg, MD) software. Consistent metabolites 
with minimum 30% base peak intensity were 
considered for quantitation. The peak areas obtained 
after integration were exported to a spreadsheet file in 
a matrix format. Further the dataset was subjected to 
statistical analysis.

Multivariate statistical analysis

LC-MRM/MS and GC-MS metabolomics data 
from tissue and serum samples were pre-processed using 
Metaboanalyst 3.0 [53]. For LC-MS, peak area data matrix 
was pre-processed using sample median normalization, 
cube root transformation, and range scaling methods. While 

in case of GC-MS the data matrix was sum normalized, 
cubic root transformed and then auto-scaled. The pre-
processed data files were subjected to multivariate analysis 
using SIMCA 14 software (Umetrics, Sweden). Orthogonal 
partial least squares discriminant analysis (OPLS-DA) was 
employed to identify the group separation [54]. Goodness 
of the fit and predictive ability of the OLPS-DA models are 
assessed by R2 and Q2 values [55]. Further, cross-validation 
using 200 permutations were performed to avoid overfitting 
of the model. Additionally, hierarchical cluster analysis 
(HCA) was performed to identify group clusters.

Significant metabolites selection

Significant variables for group separation in OPLS-
DA model were identified using variable importance in the 
projection (VIP) score. Variables having VIP score value 
above 1.2 were considered important for discrimination. 
Student’s t-test statistics were performed and significant 
metabolites (p < 0.05) were adjusted for multiple 
hypothesis testing using FDR correction. Metabolites 
having fold change threshold of 1.4 and above were 
considered significant. Metabolites collectively qualifying 
the criteria of VIP, p-value, FDR, and fold change were 
considered significant. All the univariate analyses were 
performed using Metaboanalyst 3.0. Box-and-whisker plots 
and ROC curve analysis plots were plotted using SPSS 
20.0. Heat maps of differentially expressed metabolites 
were created using Multi-Experiment Viewer software [56].

Pathway analysis

The differentially expressed metabolites from the 
comparative analysis of IDC against control were further 
subjected to pathway analysis using a pathway analysis 
tool (MetPA) in Metaboanalyst 3.0 [53, 57]. The Pathway 
Analysis module in Metaboanalyst puts together the 
results obtained from pathway enrichment analysis and 
pathway topology analysis to unravel the most relevant 
pathways involved in the study condition. In addition, it 
uses information from database sources, including the 
Kyoto encyclopedia of genes and genomes (KEGG) [58] 
and human metabolome database (HMDB) [59] for the 
identification of affected metabolic pathways. Although 
pathway analysis generates valuable information, the 
inferences drawn from it should be dealt with the caution, 
as some of pathway inferences from metabolomics study 
can be based on one or two metabolites only.
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