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Abstract: Autism spectrum disorder (ASD) is a developmental disability that can cause significant
social, communication, and behavioral challenges. Early intervention for children with ASD can help
to improve their intellectual ability and reduces autistic symptoms. Multiple clinical researches have
suggested that facial phenotypic differences exist between ASD children and typically developing
(TD) children. In this research, we propose a practical ASD screening solution using facial images
through applying VGG16 transfer learning-based deep learning to a unique ASD dataset of clinically
diagnosed children that we collected. Our model produced a 95% classification accuracy and 0.95 F1-
score. The only other reported study using facial images to detect ASD was based on the Kaggle ASD
Facial Image Dataset, which is an internet search-produced, low-quality, and low-fidelity dataset.
Our results support the clinical findings of facial feature differences between children with ASD and
TD children. The high F1-score achieved indicates that it is viable to use deep learning models to
screen children with ASD. We concluded that the racial and ethnic-related factors in deep-learning
based ASD screening with facial images are critical to solution viability and accuracy.

Keywords: autism; facial images; machine learning; deep learning; race and ethnicity; diagnosis;
screening; neural network; bias; ASD

1. Introduction

Autism spectrum disorder (ASD) is a developmental disability that can cause sig-
nificant social, communication, and behavioral challenges according to the Centers for
Disease Control and Prevention (CDC). The estimated prevalence of ASD in the US is
1 in 59 children of ages 8 years and younger, and it is increasing [1]. However, significant
and persistent racial and ethnic disparities exist in ASD prevalence as well as dispari-
ties in the accessibility to intervention and treatment services. In comparison to White
children, children from racial and ethnic minority groups are less likely to be diagnosed
with ASD and more likely to be misdiagnosed or suffer delayed diagnoses [2]. Although
the combined estimated ASD prevalence was 16.8 per 1000 (1 in 59) children in 2018, it
was significantly higher among non-Latino White children (17.2 per 1000) than among
non-Latino African American children (16.0 per 1000), Latino children (14.0 per 1000), and
Asian/Pacific Islander children (13.5 per 1000) [1].

These delayed or misdiagnoses for minority races result in a loss of opportunity in
early intervention for children with ASD. Clinical results demonstrate that significant,
longer-term gains are possible with early, comprehensive, and intensive intervention, and
that these gains are evident in not only intellectual ability, language, and social behavior,
but also in reductions in the severity of ASD symptoms [3]. In two cases, children who
received the Early Start Denver Model (ESDM) therapy no longer met criteria for an ASD
diagnosis [4]. A recent cost-comparison study of early intensive behavioral intervention
in the Netherlands suggested that lifetime cost savings could be over EUR 1 million per
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individual if early intervention is initiated before 30 months of age [4]. These findings
demonstrate how early identification and intensive ASD-specific intervention can improve
long-term outcomes for children with ASD while emphasizing the need to extend this work
further into underserved community settings to work toward improving outcomes for all
children with ASD [4].

The major factors causing the disparity in ASD prevalence and delayed diagnoses in
the U.S. are as follows [5]:

1. The subjectiveness in diagnosis: ASD is currently diagnosed by behavioral observa-
tion, and thus, only experienced clinicians can reliably diagnose ASD for children
around 2 years old, with the mean age for diagnosis being 4–5 years [6].

2. Many families do not have access to experts/specialists, and the accessibility is even
lower in underserved communities.

3. Lack of awareness and screening is also a problem, particularly in rural regions.
4. Additionally, children of racial and ethnic minority backgrounds who meet the criteria

for ASD are less likely than White children to be diagnosed overall: they are more
likely to be misdiagnosed.

Therefore, an objective, inexpensive, and easily comprehensible diagnosis or screening
solution is imperative for supporting early intervention for the children with ASD of every
family. To achieve this goal, in this research, we aimed to demonstrate that an early ASD
screening method that uses solely children’s facial images with deep-learning is both viable
and accurate.

Clinical findings [7,8] have suggested that facial morphology is distinct between
children with ASD and TD children. For example, boys with ASD may display certain
facial phenotypic distinctions from TD boys (Figure 1) [7].
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extended Aldridge et al.’s [7] conclusions. Obafemi-Ajayi et al. [8] demonstrated that gen-
eralizing facial phenotypes is a viable biomarker for identifying ASD subgroups. They [8] 
concluded that the similarity of the results obtained in [7,8] was not dependent on meas-
urement type (Euclidean vs. geodesic) or the cluster technique. This confirms that two-
dimensional facial measurements provide replicable and important biomarkers in autism. 

Figure 1. For boys with ASD compared with TD boys: the white lines are statistically significantly
increased in length; the black lines are statistically reduced in length [7].

Whereas Aldridge et al. [7] used the Euclidean distance measurement for landmark
points, Obafemi-Ajayi et al. [8] used the geodesic measurement, which also validated
and extended Aldridge et al.’s [7] conclusions. Obafemi-Ajayi et al. [8] demonstrated
that generalizing facial phenotypes is a viable biomarker for identifying ASD subgroups.
They [8] concluded that the similarity of the results obtained in [7,8] was not dependent
on measurement type (Euclidean vs. geodesic) or the cluster technique. This confirms
that two-dimensional facial measurements provide replicable and important biomarkers
in autism.
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Additionally, girls with ASD displayed gender sex scores that were significantly lower
(i.e., less feminine) compared to the control group [9].

Boutrus et al. [10] reported an increased facial asymmetry in ASD, as shown in Figure 2.
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Figure 2. Comparison of depth facial asymmetry in mean original to mean mirrored form for (A)
autistic children and TD children and (B) autistic children and sibling children. The color scale
uses orange (or blue) to indicate where individual points on the mean original face is at least 2 mm
outside (or at least 2 mm inside) corresponding points on the mean mirrored face. Figure 2A illustrate
greater right-dominant depth asymmetry compared to TD children and Figure 2B illustrates greater
right-dominant depth asymmetry in autistic children compared to siblings [10].

Ozgen et al. [11] reported that morphological features are significantly increased in
patients with autism.

Computer vision is a field of artificial intelligence (AI) that enables computers and
systems to derive meaningful information from digital images, videos, and other visual
data—taking actions or making recommendations based on such information. If AI enables
computers to think, computer vision enables them to see, observe, and understand [12].
According to the systematic reviews of published studies about computer vision in ASD
by de Belen et al. [13] and Rahman et al. [14], no published study has used computer
vision technology with deep learning to diagnose ASD using a facial image dataset that



Brain Sci. 2021, 11, 1446 4 of 21

met review eligibility criteria. It was emphasized that the current state of computer vision
methods applied to ASD research is not well established, amid increasing evidence that
suggests that computer vision techniques have a strong impact on autism research [13].
Almost all previous research focused on functional magnetic resonance imaging (fMRI),
facial expression or emotion, eye movement tracking, or behavior-related analysis.

We think that this lack of reported advances in facial-image-based machine learning
solutions for screening ASD is due to the unavailability of high-fidelity ASD facial image
datasets. The only publicly available dataset is the Kaggle ASD Children Facial Image
Dataset [15]. However, the author of the Kaggle dataset stated that the ASD images were
all collected via an internet search from online autism Facebook groups and other sources.
Thus, the quality of the images in the dataset is cause for concern [16]. ASD diagnosis
confirmation accuracy is imperative when applying deep learning for ASD facial image
classification. We found that the Kaggle dataset mixes images from different races with a
ratio of about 89% White children to 11% children of color. We discuss why the race factor
is critical and such mix of races in the Kaggle dataset is problematic. We use the Kaggle
dataset as an illustration only to draw proper attention to its implications.

We recognize that a gap exists in applying computer vision using facial images to
screen children for ASD.

Our method, using clinically diagnosed ASD children’s images from the Elim Autism
Rehabilitation Center, specialized in early ASD intervention and rehabilitation for children
diagnosed with ASD, obtained high accuracy in the screening of children for ASD with
deep learning and bridges the gap in this field.

2. Materials and Methods
2.1. Datasets
2.1.1. East Asia ASD Children Facial Image Dataset (East Asian Dataset)

The East Asian dataset contains 1122 images evenly split between children with ASD
and TD children from the same race. We collected about 600 facial images from the Elim
Autism Rehabilitation Center, which specializes in children with ASD and is headquartered
in Shandong, China. About 8000 children with ASD have completed their intervention
and therapy programs in this rehabilitation center since its establishment in 2000. We
obtained the support of Elim Autism Rehabilitation Center management, through which
consent and privacy agreements were obtained from the families of the children to use their
children’s images specifically to support this research. We also augmented this dataset with
561 images of TD children from several kindergartens and elementary schools in China.
All of the images are from children aged between 2 and 12 years and of the same race. This
is the dataset we used for solution proposal and accuracy conclusions.

2.1.2. Kaggle Autism Facial Dataset (Kaggle Dataset): The Only Publicly Available ASD
Facial Image Dataset

This dataset consists of 2936 facial images evenly split between children with ASD and
TD children [17]. The original dataset contained 3014 images [15], which posed obvious
problems, as indicated in [16]. As the contributor also stated that he could not obtain any
ASD images from institutions or verifiable sources, all the images in the Kaggle dataset
were the results of internet search [16]. We used the dataset in [17], which contained
2936 images after removal of obviously wrong images. This dataset contains about 89%
White children and 11% children of color. We only used this dataset to illustrate the impact
of the race factors in facial-image-based, deep-learning development.

2.2. Method

In recent years, deep convolutional neural networks (CNNs) have been used exten-
sively in computer vision, showing powerful discriminative capabilities while maintaining
high performance levels [18]. As deep learning networks have established themselves as
a promising model for facial recognition and CNNs have been used as the deep learning
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tool in almost all facial recognition systems [19], our research focused on a deep-learning-
based solution. In a recent comparative study of popular deep-learning architectures for
facial recognition, Gwyn [20] reported that VGG16/VGG19 showed the highest accuracy
levels of image recognition; as such, we further focused our study using VGG16-based
deep learning.

Transfer learning is a machine learning method where a model developed for one task
is reused as the starting point for a model on a second task, and is a popular approach in
deep learning. Visual Geometry Group (VGG) is a CNN model proposed by Simonyan
and Zisserman [21] that achieved 92.7% accuracy, placing it in the top-five in test accuracy
on ImageNet, a dataset of over 14 million images belonging to 1000 classes [22].

VGGFace is a facial image dataset that contains 2.6 million images of 2622 people
contributed by the Visual Geometry Group [22].

Tensorflow is an end-to-end open-source platform for machine learning. It has a
comprehensive, flexible ecosystem of tools, libraries, and community resources [23]. Keras
is the high-level API of Tensorflow [24]. Keras-VGGFace is an Oxford VGGFace imple-
mentation using Keras Functional Framework v2+ [24]. A VGG16 model pre-trained with
VGGFace is provided in Keras-VGGFace. Thus, VGG16 was adopted for this research as
the pre-trained model for transfer learning. Figure 3 shows the VGG16 architecture.
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Figure 3. VGG 16 architecture.

Our research was conducted in two major focus areas:

1. The feasibility and quality of applying deep learning in the detection of ASD in
children using 2D facial images

2. Understanding the significance of race factors in ASD detection or diagnosis using
deep learning and facial images

Let us revisit some of the metrics for model accuracy measurement. True positive (TP)
is a prediction where the model correctly predicts the positive class. True negative (TN) is
the prediction where the model correctly predicts the negative class in a binary classification.
False positive (FP) is the prediction where the model incorrectly predicts the negative class.
False negative (FN) is the prediction where the model incorrectly predicts the positive class.
Classification accuracy (CA) is the rate of correct classifications.

• CA = (TP + TN)/(TP + FN + FP + TN)
• PRECISION = (TP)/(TP + FP)
• RECALL = (TP)/(TP + FN)
• F1-SCORE = 2 * (PRECISION * RECALL)/PRECISION + RECALL)
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2.2.1. Feasibility and Classification Accuracy Study of Applying Deep Learning to Detect
ASD in Children Using 2D Facial Images

In this feasibility and accuracy study, we used the East Asian dataset for model
training and verification because the ASD facial images in this dataset are from clinically
diagnosed children from a single race.

We first used the Orange visual ML platform [25] for model development and architec-
ture selection in terms of performance as measured by F1-scores and classification accuracy
(CA). The Orange platform is a convenient ML result visualization tool suitable for fast
feasibility studies.

Figure 4 describes the model training and testing pipeline architecture. We used
VGG16 as the pre-trained model for image embedding. The neural network model is
composed of two hidden layers before the classifier. We used Adam (stochastic gradient-
based) as the optimizer [26] and rectified linear unit (ReLU) [27] as the activation function
in the hidden layers. We applied the standard 10-fold cross validation method. The dataset
was split into 80% and 20% for training and testing, respectively.
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2.2.2. Classification Improvement with Tensorflow/VGGFace

Based on the results of the feasibility experiment with the Orange platform, we
determined that the VGG16 transfer-learning-based neural network [28] is viable for
classification of 2D ASD images, showing quality performance. Our next experiment
involved improving the classification accuracy. We decided to use Tensorflow/VGGFace
with the East Asian dataset to fine-tune the model to achieve best performance.

We used a Keras-VGGFace implementation with the VGG16 pre-trained model [24]
and froze 70% of the base model layers. Different Keras learning rates and other parameters
were adjusted, such as trainable layers, during model training. With various experiments,
we decided to append two (FC8 and FC9) hidden dense layers with 100 neurons each
for ASD feature training and a dropout rate of 0.25 for the FC8 layer to reduce potential
overfitting. Table A1 shows the architecture and layer details.

The training dataset contained 882 images, and the validation dataset contained
230 images, evenly split between ASD and non-ASD classes.

2.2.3. Understanding the Significant Impact of Race Factors on Deep-Learning-Based ASD
Detection with Facial Images

Recent studies demonstrated that most of the commercial facial analysis software
and algorithms are biased against certain categories of race and ethnicity [29]. As we
were developing facial image-based ASD detection algorithms, understanding the racial
impact was critical to providing accurate and reliable deep learning and facial image-
based solutions. More importantly, when applying facial image-based machine learning
approaches to screening or diagnosis in medical fields, classification errors due to race
factors in the model should be eliminated.

Race factors tend to be overlooked by researchers and readers. For example, we
noticed that a recently published study [30] used the Kaggle ASD facial dataset entirely to
derive its deep-learning solution and accuracy. We would like to illustrate the importance
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of race factors and discuss this topic from the anthropometrics perspective to draw proper
attention from interested readers and authors to this matter.

The analysis was focused on the misclassifications of Black and East Asian children.
As mentioned earlier, although the Kaggle dataset is of low quality, and it is ques-

tionable whether it can be used to support any claims on the validity or accuracy of
deep-learning solutions, we could use the Kaggle dataset to illustrate how race-related fac-
tors can impact the deep-learning solution for ASD detection. The Kaggle dataset contains
facial images from different races. By visually examining the images in the dataset, we
determined that it contains roughly 89% White children, 4.29% Black children, 1.1% East-
Asian-looking children, and about 5.7% of other children of color, similar to Musser’s [17]
reported 10:1 ratio for White children vs. children of color.

We used the same Orange platform model pipeline in Figure 4 for the race factor
analysis experiments.

The first experiment (Exp-1) used the Kaggle dataset to train and test the model and
observe the misclassifications for Black children.

The second experiment (Exp-2) used the East Asian test dataset, which was also used
in Section 2.2.1 to test the model trained in Exp-1. The purpose of the experiment was to
observe the misclassifications for East Asian children.

The third experiment (Exp-3) used the same model architecture and configuration in
Figure 4, but the model was trained by combining the Kaggle and East Asian datasets. In
this experiment, we significantly increased the East Asian training data from about 1.1% to
28.44% to understand if by increasing the East Asian percentage in the Kaggle dataset, the
model could yield better classification accuracy compared with Exp-2.

The race distribution for the combined dataset is shown in Table 1.

Table 1. Race distribution in the combined dataset.

Race/Ethnicity Percentage Count

Black 3.10% 126
East Asian 28.44% 1154 1

Other children of color 4.07% 165
White 64.39% 2613

Total 100.00% 4058
The East Asian count includes 1122 from the East Asian dataset and 32 from the Kaggle dataset.

The fourth experiment (Exp-4) added additional race labels to the combined dataset.
For all the previous experiments, there were only two class labels. This was suitable

for the East Asian dataset since it is a single-race dataset. However, the new, combined
dataset contained different races, with two large groups being White and East Asian. We
decided to implement additional classification labels to understand how different races
with significant anthropometric differences mixed in the same dataset could affect the
classification accuracy.

Figure 5 depicts the modified pipeline architecture from Figure 4. We labeled the
combined Kaggle and East Asian dataset target classes from 2 classes (Autism vs. Normal) to
4 classes. Because nearly 89% of the Kaggle dataset was White children, for simplicity, we
added the letter “C” to the beginning of previous class labels of the images in the Kaggle
dataset. We added the letter “E” as the initial to the previous class labels of the images in
the East Asian dataset. The expanded target classes were CAutism, CNormal, EAutism and
ENormal, as shown in Table 2.

Figure 5 depicts the dataflow pipeline architecture with four target classes.



Brain Sci. 2021, 11, 1446 8 of 21

Brain Sci. 2021, 11, x FOR PEER REVIEW 8 of 22 
 

Figure 5 depicts the modified pipeline architecture from Figure 4. We labeled the 
combined Kaggle and East Asian dataset target classes from 2 classes (Autism vs. Normal) 
to 4 classes. Because nearly 89% of the Kaggle dataset was White children, for simplicity, 
we added the letter “C” to the beginning of previous class labels of the images in the 
Kaggle dataset. We added the letter “E” as the initial to the previous class labels of the 
images in the East Asian dataset. The expanded target classes were CAutism, CNormal, 
EAutism and ENormal, as shown in Table 2. 

Table 2. Using four classification target classes with additional race information preceding the 
label. 

Dataset Subset Label 1 

Kaggle  
Autism  CAutism 

Non-Autism CNormal 

East Asian  
Autism  EAutism 

Non-Autism ENormal 
1 Image labels preceded with C or E indicate the image belongs to the Kaggle or the East Asian 
dataset, respectively. 

Figure 5 depicts the dataflow pipeline architecture with four target classes. 

 
Figure 5. Pipeline architecture (Orange platform screen shot) with the four classification target classes described in Table 
2. 

3. Results 
3.1. Evaluation of Deep-Learning Solution Viability and Accuracy with the East Asian Dataset 
3.1.1. Results for Section 2.2.1 

Table 3 shows the results of the deep learning model performance using the Orange 
platform and the East Asian dataset described in Section 2.2.1, Figure 4. 

Table 3. Results for deep learning feasibility experiment with Orange platform and East Asian da-
taset. 

Model UAC CA F1 Precision Recall 
Neural Network 0.983 0.933 0.928 0.932 0.923 

The VGG-16 embedding followed by the neural network model with two hidden lay-
ers achieved a classification accuracy of 93.3% and F1 score of 0.928, and thus, it proved 
to be feasible to use this VGG-based deep-learning solution to detect ASD using facial 
images. The confusion matrix for the model is shown in Table 4. 

  

Figure 5. Pipeline architecture (Orange platform screen shot) with the four classification target classes described in Table 2.

Table 2. Using four classification target classes with additional race information preceding the label.

Dataset Subset Label 1

Kaggle Autism CAutism
Non-Autism CNormal

East Asian
Autism EAutism

Non-Autism ENormal
1 Image labels preceded with C or E indicate the image belongs to the Kaggle or the East Asian dataset, respectively.

3. Results
3.1. Evaluation of Deep-Learning Solution Viability and Accuracy with the East Asian Dataset
3.1.1. Results for Section 2.2.1

Table 3 shows the results of the deep learning model performance using the Orange
platform and the East Asian dataset described in Section 2.2.1, Figure 4.

Table 3. Results for deep learning feasibility experiment with Orange platform and East Asian dataset.

Model UAC CA F1 Precision Recall

Neural Network 0.983 0.933 0.928 0.932 0.923

The VGG-16 embedding followed by the neural network model with two hidden
layers achieved a classification accuracy of 93.3% and F1 score of 0.928, and thus, it proved
to be feasible to use this VGG-based deep-learning solution to detect ASD using facial
images. The confusion matrix for the model is shown in Table 4.

Table 4. Confusion matrix for neural network model trained and tested with the East Asian dataset.

Predicted

Autism Normal Σ

Actual
Autism 96 8 104
Normal 8 112 120

Σ 104 120 224

3.1.2. Improved Classification Results from the Fine-Tuned Tensorflow/VGGFace-Based
Deep-Learning Model with the East Asian Dataset

This deep-learning model architecture is described in Section 2.2.2 and Table A1.
The model achieved the best Val_accuracy in the 31st epoch at 0.957, as indicated in

Figure 6. Figure 7 is the model loss graph.
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The model achieved a 0.95 F1-score and 95% CA on the East Asian testing dataset, an
improvement of about 2% over the model implemented with the Orange visual platform.
Tables 5 and 6 provide the confusion matrix, F1-score, and CA.

The 0.95 F1-score and 95% CA achieved in our experiment with the East Asian dataset
suggest that our deep learning-based solution for screening for ASD with facial images is
not only viable but also highly accurate.

Table 5. Confusion matrix produced by the deep-learning model described in Section 2.2.2 and
Table A1.

Predicted

Autism Normal Σ

Actual
Autism 112 3 115
Normal 8 107 115

Σ 120 110 230

Table 6. Classification report for the method in Section 2.2.2 and Table A1 (reproduced from screen-
shot).

Precision Recall F1-Score Support

Autism 0.93 0.97 0.95 115
Normal 0.97 0.93 0.95 115

Accuracy 0.95 230
Macro average 0.95 0.95 0.95 230

Weighted average 0.95 0.95 0.95 230
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3.2. Evaluation of the Results from Racial Factor Related Experiments Described in Section 2.2.3
3.2.1. Evaluation of the Results of Exp-1, Exp-2, and Exp-3 in Section 2.2.3

We used the Kaggle dataset to train and test the same model architecture and config-
uration in Figure 4 in Section 2.2.1. The purpose was to gain insights into how the racial
factors impact the classification.

Table 7 is the confusion matrix from Exp-1 where the model was trained and tested
with the Kaggle dataset.

Table 7. Confusion matrix from Exp-1 (model trained and tested with the Kaggle dataset).

Predicted

Autism Normal Σ

Actual
Autism 127 26 153
Normal 26 115 141

Σ 153 141 294

By manually examining the 26 FP images and all of the 141 test images labeled
Normal in Table 7, we found that there were only eight Black children’s images among
the 141 Normal images. However, six of the eight Normal Black children’s images were
misclassified as Autism, which is an FP Rate as high as 75% (6/8 = 75%) for Black children.
Figure 8 shows the eight Normal Black children. Six (images in the top row) out of the eight
images were misclassified.
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Figure 8. Six (top row in the figure) out of the eight TD Black children’s images in the Kaggle test
dataset were misclassified as Autism.

Table 8 shows that Black children in the whole Kaggle dataset are poorly represented
(~4.25% in total).

Table 8. Black children image count in the Kaggle dataset.

Kaggle Dataset Total Count Black Children Image Count Black Children Images Percentage of Total

Images labeled as ASD 1468 58 3.95%

Images Labeled as non-ASD 1468 68 4.63%

The confusion matrix in Table 9 is from Exp-2, where the same model in Exp-1 was
used. However, the East Asian testing dataset was used for testing. We can see that 98 out of
113 Normal East Asian test images were misclassified as Autism, yielding an FP rate of 86.7%.

There were only 32 East-Asian-looking images in the Kaggle dataset. Once again, this
race was poorly represented in the Kaggle dataset.

The results from both Exp-1 and Exp-2 indicate high FP rates for the minorities, with
75% and 86.7% FP rates for Black children and East Asian children, respectively.
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Table 9. Confusion matrix from Exp-2 (model trained with the Kaggle dataset but tested against the
East Asian test dataset).

Predicted

Autism Normal Σ

Actual
Autism 106 7 113
Normal 98 15 113

Σ 204 22 226

The confusion matrix from Table 10 is the result of Exp-3. In Exp-3, we used the
same model architecture as in Exp-1 and Exp-2, but we enhanced the training dataset
by combining both Kaggle and East Asian datasets. We effectively increased East Asian
training images from about 1.1% to 28.44% of the total training dataset. We still used the
same East Asian testing dataset as in Exp-2 to test the model, resulting in 27 FP cases
compared to 98 in Table 9.

Table 10. Confusion matrix from Exp-3 (model was trained with the combined Kaggle and East
Asian datasets but tested against the East Asian test dataset).

Predicted

Autism Normal Σ

Actual
Autism 84 29 113
Normal 27 86 113

Σ 111 115 226

By increasing the East Asian images in the Kaggle dataset, we observed signifi-
cant improvement in the East Asian FP rate, from 86.44% (98/113 = 86.7%) to 23.9%
(27/113 = 23.9%). However, compared with the FP rate of 6.67% (8/120 = 6.67%) in Table 4,
we still observed a significant difference. Tables 11 and 12 provide the comparisons.

Table 11. FP rates for each of the experiments with the same deep-learning architecture in Figure 4.

Experiment Section Training Dataset Test Dataset
% of East
Asians in

Training Dataset

Normal Images
in the Test Dataset

FP
Cases

FP
Rate

Section 2.2.1 East Asian East Asian 100% 120 8 6.67%
Section 2.2.3. Exp-2 Kaggle East Asian 1.1% 113 98 86.73%
Section 2.2.3. Exp-3 Combined 1 East Asian 28.44% 113 27 23.89%

1 The combined training dataset is composed of both Kaggle and East Asian training datasets.

Table 12. Model performance for each of the experiments.

Experiment Section Training Dataset Test Dataset CA F1 Precision Recall

Section 2.2.1 East Asian East Asian 0.933 0.928 0.932 0.923
Section 2.2.3. Exp-2 Kaggle East Asian 0.513 0.667 0.507 0.973
Section 2.2.3. Exp-3 Combined 1 East Asian 0.752 0.750 0.757 0.743

1 The combined training dataset is composed of both Kaggle and East Asian training datasets.

3.2.2. Evaluation of the Results from Exp-4 with Race Group Labeling

Referring to Table 2 and Figure 5, we changed the target classes from two to four,
i.e., instead of Autism and Normal, we had CAutism, CNormal, EAutism, and Enormal as
class labels.

The confusion matrix in Table 13 is from Exp-4.
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Table 13. Confusion matrix from Exp-4 (model trained and tested with the combined dataset with
additional race group labels).

Predicted

Actual

CNormal ENormal EAutism CAutism Σ
CNormal 231 3 0 55 289
ENormal 3 80 9 11 103
EAutism 1 6 105 8 120
CAutism 63 11 6 219 299

Σ 298 100 120 293 811

We next focused on the FP cases for ENormal labeled images that were the East
Asian non-autism images. There was a total of 103 East Asian non-autism test images
(labeled as ENormal). Among the 103 ENormal-labeled images, 80 were classified correctly
as ENormal; 11 images were misclassified as CAutism, implying that these 11 images
were more compatible with the Kaggle autism class criteria for the model trained. There
were also three ENormal-labeled images that were misclassified as CNormal. Summing all
the misclassified cases for ENormal test images, we observed a similar FP rate of 22.3%
(23/103 = 22.3%) compared with the FP rate of 23.89% from Exp-3 in Table 11.

Table 14 includes all of the 11 cases where ENormal-labeled images were misclassified
as CAutism.

Table 14. Probability distribution for the 4 targeted classes for the 11 cases where ENormal was misclassified as CAutism.

Test ID Image Name Label Misclassified as
Prediction Probabilities for Each Target

CNormal ENormal EAutism CAutism

82 N691 ENormal CAutism 0.000 0.180 0.010 0.810
276 N600 ENormal CAutism 0.000 0.050 0.000 0.950
310 M-4 ENormal CAutism 0.000 0.060 0.020 0.920
541 N583 ENormal CAutism 0.000 0.360 0.000 0.640
462 N728 ENormal CAutism 0.010 0.400 0.140 0.450
476 N730 ENormal CAutism 0.000 0.130 0.000 0.860
413 N168 ENormal CAutism 0.000 0.470 0.010 0.510
648 N716 ENormal CAutism 0.050 0.140 0.010 0.800
38 N335 ENormal CAutism 0.000 0.330 0.060 0.600

541 N583 ENormal CAutism 0.000 0.360 0.000 0.640
618 N497 ENormal CAutism 0.380 0.050 0.000 0.570

The first 10 images of the misclassification cases would otherwise be classified as
ENormal correctly if we provided the race information at the time of prediction because
the probability of being ENormal was the second highest. Knowing that the facial image
was an East Asian subject eliminated the possibility of being CAutism. The only outlier
was the image N497, with a 5% probability of being ENormal following a 57% probability
of being CAutism and 38% probability of being CNormal. Because N497 was labeled as
Enormal, it could be neither CAutism nor CNormal. Therefore, if we applied the known
race information indicating that the image was an East Asian subject, the ENormal (5%)
probability for this image should still have prevailed because EAutism was not likely (a
less than 0.1% probability), and CNormal or CAutism should have been ruled out.

In conclusion, all of the 11 misclassifications could be corrected because the high-
est probability would be ENormal (East Asian normal) when CAutism or CNormal were
excluded from the prediction pool based on knowing the test image’s race information.

In Table 15, there are three ENormal-labeled images misclassified as CNormal. Table 15
shows the probability distribution of the three cases.
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Table 15. Probability distribution for the four targeted classes for the three cases where ENormal was misclassified as CNormal.

Test ID Image Name Label Misclassified as
Prediction Probabilities for Each Target

CNormal ENormal EAutism CAutism

82 N691 ENormal CNormal 0.830 0.150 0.010 0.010
276 N600 ENormal CNormal 0.700 0.160 0.010 0.130
310 M-4 ENormal CNormal 0.700 0.160 0.010 0.130

With similar analyses of these three cases, we inferred that these three cases should also
be classified as ENormal correctly once we applied the known East Asian race information
in the prediction.

Let us compare the confusion matrices in Tables 4 and 13.
For the model trained with the East-Asian-only dataset (Table 4), there were eight

normal cases misclassified as autism, for a ratio of 8/120 (=6.67%).
For the model trained with the combined datasets (Table 15), for the East Asian normal

cases (labeled as ENormal), there were a total of 23 cases misclassified as CAutism (11),
CNormal (3), and EAutism (9), or as not ENormal. The ratio was 23/103 (=22.3%). However,
if we eliminated the impact of CNormal (3) and CAutism (11) as we discussed, a total of
14 impossible cases resulted when the race information was known, yielding a ratio of
9/103 (=8.74%).

These results, considering known race information in the prediction, were significantly
better and closer to the model trained with a single race in Section 3.1.1 (FP rates of
6.67% vs. 8.74% for the East Asian testing images). FN cases for the East Asian test images
could be analyzed similarly. Note that we only used the Kaggle dataset to qualitatively
illustrate the race factors, as we labeled the Kaggle dataset as a “single” race for simplicity
while 11% of its images were actually from other races.

We performed additional experiments (Exp-5 and Exp-6) by removing all other races
except White children from the Kaggle dataset to form a single-race dataset. We cleaned
up the dataset further by removing obvious poor-quality images. The Kaggle dataset size
was reduced from 2936 to 1910 images. We repeated Exp-3 in Exp-5 and Exp-4 in Exp-6
using the new combined dataset. Similar results to Exp-3 and Exp-4 were obtained for
the ENormal class FP rate, as indicated in Tables A2–A4 in Appendix A. We noticed a
~6% difference due to the Kaggle dataset cleanup, but compared to the 6.67% FP rate in
Exp-1, 23.9% in Exp-3, and 17.6% in Exp-5, the improvement had no material impact on
the conclusion (see Tables A2–A5 for details).

4. Discussion
4.1. Regarding Race Factors in Facial Image Based Diagnostic Solutions including ASD Detection
4.1.1. Understanding the Anthropometrics within the Context of Diagnosis Based on Facial
Phenotype Distinctions

Facial features are generally different among different races. For instance, “African-
Americans have statistically shorter, wider, and shallower noses than Caucasians” [31].

Anthropometrics show the racial morphometric differences in the craniofacial com-
plex [32]. Based on carefully defined facial landmark points, 25 measurements on head and
face were captured to examine three racial groups (i.e., North American White, African
American (Black), and Chinese). Farkas identified several differences in these three groups.
For example, the Chinese group had the widest faces; the main characteristics of the orbits
of the Chinese group were the largest inter-canthal width. Furthermore, the soft nose was
less protruding and wider in the Chinese group, and they had the (relatively) highest upper
lip in relation to mouth width, etc. [33].

Virdi et al. [34] described comparative anthropometry in relation to African Americans
and North American Whites (NAWs). Virdi et al. [34] detected significant differences
between Kenyans and North American Whites (NAWs). Some of the significant differences
were, for example, in forehead height (~5 mm greater for men, ~4.5 mm for women), nasal
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height (reduced by ~4 mm in men, ~3 mm in women), nasal width (8–9 mm greater),
upper lip height (>3 mm), and eye width (greater by ~3 mm). All vertical measurements
obtained were significantly different compared with NAWs. The study [34] concluded
that facial anthropometric measurements of NAWs show clear differences compared with
the Kenyan population. Race variability should always be considered during diagnosis
and treatment planning of orthognathic or craniofacial reconstructive treatment. Treating
subjects from different race groups using normative anthropometric data from another
group for comparison may be misleading and inaccurate [8,35–37].

Virdi et al. [34] did verify that anthropometric measurements of Caucasian populations
are invalid when applied to the Kenyan population. They recommended that accurate and
applicable data be used in diagnosis and treatment planning for each race group.

In Figure 9, the image on the left identifies the significant facial landmark feature
changes in boys with ASD [7]. All the white lines are statistically significantly increased,
while all the black lines are statistically significantly reduced in boys with ASD relative
to TD boys. The image on the right in Figure 9 identifies the landmark features used
in the study by Virdi et al. [34] to identify the anthropometric differences in relation to
Kenyan-Africans, African Americans, and North American Whites.
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Figure 9. Image on the left [7] indicates significant facial landmark changes in boys with ASD.
Image on the right [34] indicates the facial feature landmarks used in a comparative anthropometry
difference study in relation to Kenyan-Africans, African Americans, and North American Whites.

Statistically, normal Kenyan African women’s eye width (ex-en) in Table 16 is 33.7 mm,
whereas that of NAWs is 30.7 mm, with a p-value < 0.001 (A small p-value, for example,
less than 0.05 (typically ≤ 0.05), indicates a statistically significant difference. In this case,
the clinically significant difference was set at ±3 mm). For African Americans (AAs), the
inter-canthal distance en-en compared to NAWs was significantly longer, at 34.4 mm vs.
31.8 mm, with a p-value < 0.001 (Table 16) [34].

Fang et al. [38] concluded that the greatest interethnic variability in facial proportions
exists in the height of the forehead. More pronounced differences among ethnic groups
are also present in measurements of the eyes, nose, and mouth. There is no significant
difference between sexes in the neoclassical facial proportions.

Some of these significant differences also fall into ASD-related facial landmark fea-
ture changes.

As facial-image-based computer vision relies on facial anthropometric data to find
the abnormalities or alterations to detect ASD, we had to confirm that our dataset was
constructed correctly, without mixing races with significantly different facial anthropometric
measurements. Ozgen et al. [11] also concluded that as ethnicity can influence the prevalence
of ASD morphological abnormalities, homogenous datasets should be utilized.
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Table 16. Facial anthropometrics comparison of Kenyan Females with African Americans and North American Whites.

Kenyan Women’s Faces

KM Mean (n = 36) NAW (SD) (n = 200) p Value AA (SD) (n = 50) p Value

Vertical measurements
Forehead height II tr-n 67.5 (2.9) 63.0 (6.0) <0.001 * 67.1 (5.9) 0.693

Nasal height n-sn 47.6 (3.1) 50.6 (3.1) <0.001 * 48.8 (3.7) 0.114
Lower face height sn-me 69.5 (4.8) 64.3 (4.0) <0.001 * 71.5 (5.2) 0.061
Upper lip height sn-sto 24.0 (2.5) 20.1 (2.0) <0.001 * 24.5 (3.0) 0.435
Lower lip height sto-sl 20.7 (1.1) 17.8 (4.7) <0.001 * 20.2 (2.4) 0.163

Horizontal measurements
Intercanthal distance en-en 32.1 (1.4) 31.8 (2.3) 0.225 34.4 (0.5) <0.001 *

Eye width ex-en 33.7 (1.5) 30.7 (1.2) <0.001 * 32.2 (2.0) 0.087
Biocular width ex-ex 94.4 (4.9) 87.8 (3.2) <0.001 * 92.9 (5.3) 0.185

Nasal width al-al 40.7 (3.7) 31.4 (2.0) <0.001 * 40.1 (3.2) 0.411
Mouth width ch-ch 52.0 (4.0) 50.2 (3.5) 0.012 53.6 (4.0) 0.073

* Clinically significant difference set at ±3 mm [34].

4.1.2. Findings from the Experiments Regarding the Race Impact on Deep-Learning- Based
ASD Screening with Facial Images

We revisit the results from the experiments in Section 3.2, and the analysis in
Section 3.2.2. We drew the following conclusions:

1. The neural network deep-learning model trained with the East Asian dataset achieved
an F1-score of 0.928 and CA of 92.8% with the Orange platform.

2. We achieved a high F1-score of 0.95 and a CA of 95% with the Tensorflow/VGGFace-
based deep learning model on the East Asian dataset (see Table A1 for architecture).
The results suggest that it is viable to use deep learning solutions for high-accuracy
ASD screening.

3. Due to the race factor impact in the Kaggle dataset, the model trained with the
Kaggle dataset generated 75% and 86.7% FP rates for Black and East Asian test
images, respectively.

4. When combining the Kaggle and East Asian datasets for training, which effectively
increased the training images for East Asian children, we observed an improved FP
rate for the East Asian test dataset, from 86.7% to 23.9%. However, compared with
the 6.67% FP rate from the model trained and tested with the East Asian dataset, the
single-race dataset indicated in Tables 4 and 11, the 23.9% FP rate was still much
worse, although each experiment had almost an equal number of training images for
East Asian children. We think that this result is due to anthropometric differences
amongst different races, for example, Whites vs. East Asians. It is possible that
one race’s normal facial anthropometric measurements can fall into another race’s
abnormal facial anthropometric measurements or vice versa, resulting in mistaken
classifications, as in the cases shown in Tables 13 and 14, where normal East Asian
images labeled as ENormal were misclassified as CAutism. The comparison in Figure 9
and the anthropometry in Table 16, e.g., ex-ex/en-en lengths [34], indicates the
possibility of one race’s facial anthropometric changes due to ASD falling into another
race’s normal ranges, or vice versa. The analysis of Tables 13 and 14 from the Exp-4
results confirms that this occurred when we added the labels to the combined dataset
with race group information.

4.2. Brief Discussion of Video-Based Deep-Learning Approach and 2D Facial Image-Based Approach

The standard approaches to diagnosing autism spectrum disorder (ASD) evaluate
between 20 and 100 behaviors and take several hours to complete [39]. To make this
approach easier and faster, several researchers reported using videos with machine learning
to accelerate and automate the process [39–42]. These proposed video-based approaches
use tablets or other devices that can capture the child’s behaviors, for example, eye gaze,
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or responses to stimuli, while the child is watching the specially designed movie clips
or engaging in activities. The machine learning model then provides the classification
results. We can categorize these ASD detection mechanisms as behavior phenotype-based
approaches [42]. The proposed ASD detection method using deep learning with 2D
facial images can be categorized as a facial-phenotype-based approach. The video-based
detection solution is reported to achieve >90% accuracy [39] and significantly reduce
the screening time. However, for many families in the world, it is more expensive than
solutions that simply use a 2D picture for at-home ASD risk assessment. It still requires
a certain amount of time for the child to focus on the video, which may be difficult for
some children with ASD. As race factors are critical to the facial-image-based solution,
further studies need to be conducted on the video-based approach to understand if cultural
differences can be factors that cause bias toward certain ethnic groups [43]. For example,
the content of the movie clips or the toys used for the activities may be culture-specific.
We also need to understand if culture/ethnic group-specific models need to be developed
similarly to the M-CHAT per each country’s cutoff scores [44]. To further increase the
reliability of both video and image-based solutions, more research can be conducted to
combine the solutions to detect both facial phenotype and behavior phenotype distinction.

4.3. Recommendations

High accuracy and high reliability are critical in medical-related diagnosis or screening.
Proper race-related consideration is imperative in proposing and developing accurate facial-
image-based deep-learning solutions.

To achieve the highest possible accuracy and eliminate interference due to differences
in facial anthropometrics from different races, we recommend that race-specific models be
developed to eliminate an impact or bias from “other race” factors on the reliability and
accuracy of the deep-learning models based on 2D facial images for medical diagnosis or
screening.

Pertaining specifically to ASD screening for children with our facial-image-based deep
learning solution, we recommend that homogenous race facial image datasets be utilized
for algorithm development, solution viability, and accuracy claims.

5. Conclusions

The high classification accuracy of 95% and F1-score of 0.95 obtained by our deep learning
model trained with the East Asian dataset indicates that it is viable to use children’s facial
images as a low-cost solution to screen for ASD to achieve early intervention objectives.

This study bridges the gap of applying computer vision in ASD screening ASD in
children using their facial images.

The results of this study support the clinical findings of facial feature differences
between children with ASD and TD children.

We think that this computer vision solution will help to address major causes of
racial disparity in ASD diagnosis or screening, such as the subjectiveness in screening or
diagnosis [45], the difficulty in access to professional medical services, and the financial
obstacles families face in many regions and especially impoverished countries. Future
studies can focus on transforming the solution into a user-friendly mobile application
to allow families to simply use a cellphone to take a picture and receive an immediate
screening result with high accuracy. Lightweight deep learning models, as described
in [46,47], could further accelerate the productization of the solution in this study.

Our findings support authors’ conclusions that racial differences must be considered
in related medical treatment or diagnosis [34–36,48].

We also concluded that for facial-image-based deep-learning solutions, race-specific
datasets should be built for model development to eliminate errors in classification due to
anthropometric differences among races. Furthermore, the race information of the subject
to be diagnosed or classified should be known as a prerequisite to use the applicable model
in ASD diagnosis or screening.
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Further research should also be conducted to combine both image- and video-based
approaches into one solution to enable the detection of both behavior phenotype and facial
phenotype distinctions in ASD to further eliminate misclassifications.
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Appendix A

Table A1. CNN based Deep Learning model architecture described in Section 2.2.1 and result
reported in Section 3.1.2.

Layers (Type) Output Shape

input 224, 224, 1

ConV_1 × 2 224, 224, 64

Pool1 112, 112, 64

ConV_2 × 2 112, 112, 128

Pool2 56, 56, 128

ConV_3 × 3 56, 56, 256

Pool3 28, 28, 256

ConV_4 × 3 28, 28, 512

Pool4 14, 14, 512

ConV_5 × 3 14, 14, 512

Pool5 7, 7, 512

flatten 25088

Fc6 (Dense)/fc6 reLU 4096

Fc7(Dense) 4096

dense (Dense) 100

Dropout 100

dense_1 (Dense) 100

classifier (Dense) 2
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Table A2. Confusion matrix from Exp-5. Exp-5 repeated Exp-3 with the Kaggle dataset replaced with
the cleaned Kaggle dataset described in Section 3.2.2.

Confusion Matrix (Trained with the Combined (Cleaned) Kaggle and East Asia Datasets and
Tested with East Asian Test Dataset

Predicted

Autism Normal Σ

Actual
Autism 101 19 120

Normal 22 103 125

Σ 121 122 245

Table A3. Confusion matrix from Exp-6. Exp-6 repeated Exp-4 with the Kaggle dataset replaced with
the cleaned Kaggle dataset as described in Section 3.2.2.

Confusion Matrix: Model trained with Kaggle and East Asia Datasets Combined with
4 Target Classes as in Table 13. The Cleaned Kaggle Dataset Only Contains White Children.

Predicted

CNormal Enormal EAutism CAutism Σ

Actual

CNormal 168 5 1 48 222
ENormal 2 102 9 9 122
EAutism 0 7 105 6 118
CAutism 44 10 5 115 174

Σ 214 124 120 293 636
Note: After eliminating the CAutism and CNormal misclassification cases for ENormal in Table A4, the FP rate
improved from 16.4% to 7.38% (very close to the 6.67% FP Rate in Exp-1), indicating the significance of eliminating
the race factor.

Table A4. Probability distribution for the 4 targeted classes for the 11 cases in Table A3 where ENormal was misclassified as
CAutism (9) and CNormal (2).

Image Name Label Mis-Classified as
Prediction Probabilities for Each Target

CNormal ENormal EAutism CAutism

N756 ENormal CAutism 0.48 0.01 0.01 0.51
N510 ENormal CAutism 0.00 0.03 0.01 0.96
N187 ENormal CAutism 0.00 0.45 0.00 0.54
N476 ENormal CAutism 0.00 0.00 0.00 1.00
N279 ENormal CAutism 0.10 0.38 0.00 0.52
N686 ENormal CAutism 0.07 0.00 0.00 0.93
N495 ENormal CAutism 0.27 0.00 0.00 0.73
N316 ENormal CAutism 0.00 0.02 0.00 0.98
N689 ENormal CNormal 0.47 0.23 0.00 0.30
N317 ENormal CNormal 0.00 0.36 0.00 0.64
N170 ENormal CAutism 0.00 0.01 0.00 0.99
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Table A5. Results comparison regarding the effect of Kaggle dataset cleanup.

Experiment Model Trained with Version of Kaggle Dataset Used
in the Combined Dataset Test Dataset FP Rate Difference

Exp-1 East Asian N/A East Asian 6.7%

Exp-3
Combined Dataset of

Kaggle and East
Asian datasets

Original version with mixed races
and invalid images; Dataset size

is 2936
East Asian 23.9%

6.3%

Exp-5
(repeat
Exp-3)

Combined Dataset of
Kaggle and East
Asian datasets

Cleanup version with only White
with removal of other identifiable

invalid images;
Dataset size is 1910

East Asian 17.6%

Experiment Model Trained with Version of Kaggle Dataset Used
in the Combined Dataset Test Dataset FP Rate (East

Asian) Difference

Exp-4
Combined Dataset of

Kaggle and East
Asian datasets

Original version with mixed races
and invalid images; Dataset size

is 2936
Combined 22.3%

5.9%

Exp-6
(repeat
Exp-4)

Combined Dataset of
Kaggle and East
Asian datasets

Cleanup version with only White
with removal of other identifiable

invalid images;
Dataset size is 1910

Combined 16.4%
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