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Tunable odd-frequency triplet 
pairing states and skyrmion modes 
in chiral p-wave superconductor
Yu-Feng Lou1, Lin Wen1, Guo-Qiao Zha1,2 & Shi-Ping Zhou1,2

Bogliubov-de Gennes equations are solved self-consistently to investigate the properties of bound 
states in chiral p-wave superconductive disks. It shows that either an s-wave or the mixed d- and 
s-wave state with odd-frequency and spin-triplet symmetry is induced at the vortex core, depending 
both on the chirality of the pairing states and on the vortex topology. It is also found that the odd-
frequency triplet even parity (OTE) bound state can be manipulated with a local non-magnetic 
potential. Interestingly, with an appropriate potential amplitude, the zero-energy OTE bound state 
can be stabilized at a distance from the vortex core and from the local potential. Possible existences 
of the Majorana fermion modes are expected if the particle-hole symmetry property is applied to the 
zero-energy OTE bound state. Moreover, skyrmion modes with an integer topological charge have been 
found to exist.

The layered ruthenate superconductor Sr2RuO4 is the first perovskite compound showing superconductivity with-
out cupper-oxide planes1. Experimental and theoretical investigations suggest that its superconducting pairing 
state is most-likely a spin-triplet chiral p-wave state with the px ± ipy symmetry2–5. In particular, Nelson et al.6 
performed the measurements to confirm an odd-parity and spin-triplet Cooper pairing symmetry in Sr2RuO4 
superconductor. The px ± ipy state that has an intrinsic orbital angular momentum L = ±1 and breaks down the 
time-reversal symmetry has shown promising new physical properties under a applied magnetic field, e.g, the 
half-quantum vortices7, Majorana zero-energy modes8, Skyrmionic states9, 10 and coreless vortices11, which is 
analog to the Anderson-Thouless vortices12 and Mermin-Ho vortices13 in the A phase of liquid 3He.

In addition, possible existences of odd-frequency spin-triplet even parity (OTE) states in the chiral p-wave 
superconductor Sr2RuO4, e.g., the odd-frequency spin-triplet s-wave pairings at a vortex core has been discussed 
by several research groups14–18. It is known that superconducting pairing amplitude has to be an odd function 
with respect to the permutations of electrons spin and position for equal times, as required by Pauli’s exclusion 
principle. In an inhomogeneous system, translational invariance was broken-down, which would lead to cou-
plings between the even- and odd-parity pairing states. With the spin rotation symmetry invariant, the pair 
amplitude of opposite parity must be opposite in the Matsubara frequency that defines the frequency of the 
relative motion of two electrons forming a Cooper pair19. A spin-singlet even-parity and a spin-triplet odd parity 
pairing correlation that is even in Matsubara frequency obeys that rule, and so is the odd-frequency spin-triplet 
s-wave pairing state.

In the chiral p-wave superconductor the structure of quasiparticle around a vortex core is closely associ-
ated with the bulk topology of the pairing states and the vortex topology. Indeed, it has been showed that an 
odd-frequency triplet s-wave core state has an identical spatial distribution as that of the local density of states 
at both zero-energy and finite energy levels for a single vortex winding antiparallel to the chirality of the p+ state 
in an atomic length scale, whereas it is not the situation for the occupied states for the vortex winding parallel 
to the p+ chirality18. Hence, on one side, one believes that the results18 strongly support for the existence of an 
odd-frequency spin-triplet s-wave core state in Sr2RuO4 for an anti-winding vortex. On the other side, we should 
ask a question on what is the essence of the bound state at a parallel vortex core. Below a vortex with positive 
vorticity in relative to the chirality of p+ -state is defined as a parallel vortex, and a vortex with negative vorticity 
is known as an anti-parallel one.
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Noticing also that almost all of the odd-frequency spin-triplet s-wave state and the Majorana zero-energy 
excitations are necessarily to be bound with an external topology defect (a vortex core, for instance) where the 
p-wave pairing amplitudes vanish or possess a local minimum. A second question arisen is if one can create an 
OTE bound state without involving local external topology defects in superconductor Sr2RuO4. Alternatively, 
one may ask whether the odd-frequency spin-triplet s-wave state and the Majorana zero-energy excitation can 
exist at a distance from the vortex core. For this end, we use the Bogoliubov-de Gennes(BdG) model20 to solve 
the problem of a cylindrical chiral p-wave superconductor with a two-dimensional isotropic Fermi surface in the 
presence of a single vortex. We show that an odd-frequency spin-triplet s-wave core state exists for an anti-parallel 
vortex, in agreement with those reported in previous investigations18. However, we found out that the state at 
the core is dominated by the odd frequency triplet d-wave for a parallel vortex. We also investigate the effect of a 
local non-magnetic potential on the bound states. Remarkably, a zero-energy peak in the local density of states 
appears at a distance from the vortex core and from the local potential well. We found that the spatial distribution 
of the corresponding zero-energy local density of states(LDOS) peak fits well with that of a mixed odd-frequency 
spin-triplet s-wave and even-frequency p-wave amplitude. To our knowledge, this is the first zero-energy OTE 
pairing state coexisting with the bulk px ± ipy pairing amplitudes in the chiral p-wave superconductor Sr2RuO4.

The paper is organized as follows. The mixed s- and d-wave state with odd-frequency and spin-triplet sym-
metry is induced at the vortex core in chiral p-wave superconductive disks and this bound state can be manipu-
lated by introducing a local non-magnetic potential barrier are discussed in Sec. Numerical Results. Our results 
are summarized in Sec. Conclusion. Finally, in Sec. Theoretical Approach, we present in detail our theoretical 
approach and model.

Numerical Results
We discuss first the properties of bound states around an axial vortex. For an antiparallel vortex with ν = −1 we 
obtain the results (not shown) that are in good agreement with those in ref. 17. One of the interesting results is 
that an odd-frequency triplet s-wave amplitude has been induced at the vortex core. The OTE s-wave core state 
has an identical spatial profile as that of the local density of states at zero-energy and at finite energies even in an 
atomic length scale, which is believed as one of the evidences for the odd-frequency triplet s-wave pairings at the 
vortex core.

While the identical spatial profile between the odd-frequency triplet s-wave amplitude and the LDOS remains 
for the zero-energy mode, it disappears at finite energy levels for a parallel vortex with ν = 1 (Fig. 1). It is further 
noticed that the LDOS peak is dominated by the first occupied state, instead of the zero energy mode. Therefore, 
different OTE states are required to understand those phenomena. As shown in Fig. 1, among possible pairing 
states concerned, only the odd-frequency d-wave pairing amplitude has a peak at the core center. These results 
lead us to speculate that the core state should be a mixed d-wave and s-wave state with the odd-frequency and 
spin-triplet symmetry. We present plausible arguments below.

Figure 1. Spatial dependence of LDOS N(r, E) (red dot and dash lines), Ts(r, E) (blue lines), 
±

T r E( , )p  (cyan lines 
and green lines) and Td(r, E) (pink lines) for the zero-energy bound state (a), the first (b) and second (c) 
occupied states, respectively. A single vortex with vorticity ν = 1 is applied to a chiral p-wave superconductive 
disk with radius R.
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In the presence of a vortex with vorticity ν a general expression for the pair potential is given by 
θ∆ = ∆ Φ θ φF r e e( ) ( ) il iv

0
( ) ( )z  for the chiral superconductor with an intrinsic angular momentum lz. It has been 

shown that the total angular momentum tends to lz + ν at the vortex core center21. In the chiral p-wave supercon-
ductor Sr2RuO4 under investigated, the degenerate states px ± ipy with opposite chirality of lz = 1 and lz = −1 coex-
ist. Therefore, the core states with angular momentum of 2 and 0 are expected for a single vortex with ν = 1. It is 
also noticed a single vortex in a superconductor can be regarded as a hole in the bulk. State parity conversion 
between the even and the odd occurs with the aid of Andreev reflections at the hole-superconductor boundary 
(surface). Therefore, states with even parity can exist around the vortex core. Importantly, the even parity triplet 
pairing state must be an odd function in frequency to satisfy Pauli’s exclusion principle. Indeed, as shown in our 
calculations, the zero energy mode is an OTE s-wave pairing state, and the first occupied state is dominated by the 
odd-frequency triplet d-wave state.

We now discuss effects of a non-magnetic potential on the spectrum and bound state properties of the system. 
We focus to the case of a parallel vortex with ν = 1. To manipulate the odd-frequency triplet core states, we 
increase steadily the potential magnitude until to the gap closing occurs(The parameters are γ = R

2
, β = 1

2
 and 

Pmax = 1.469 eV). Here, the term “gap closing” refers to all of the pairing amplitudes we concerned vanish at the 
core center. We choose a non-magnetic potential with Gaussian distribution to study how a local potential affect 
the topology of the bound state. The non-magnetic potential changes the translation invariance properties of the 
system. As a result, pairing states with even- and odd-parity would coexist. This is one of the mechanisms for the 
existence of a triplet bound state with even-parity. We find a relative wide range of parameters (the location and 
amplitude of the potential) can work, provided that the radius of the non-magnetic potential of ring-shaped is 
neither too small nor too large, e.g. in the range of γ< <( )R R

4
3
5

. Within this range, there is an approximately 
linear relationship between the magnitude and the radius of the potential for gap closing occurrence. 
Furthermore, one way to make a ring-shaped potential is to use a standard STM tip scanning with the desired 
radius over the Sr2Ru4 disk, which gives a ring-shaped potential with height/amplitude of about electron-volts. 
Another way is to irradiate the sample with a non-paraxial x-ray with a desirable spot-size.

Figure 2 shows the corresponding quasi-particle spectrum. The inset is the spectrum in the absence of 
the local potential. Clearly, an oscillating sub-gap “edge state” appears. This is reflected as a resonance in the 
LDOS spectrum (see below). Besides, two more pairs of zero energy modes have been induced because of the 
non-magnetic potential. Since we cannot distinguish an empty state from an occupied state with zero energy, the 
topological index (or the Chern number) that is associated with the geometric phase obtained by wave function 
of the occupied state along a closed loop in the phase space may become ill-defined. It infers that the bulk topo-
logical number may change discontinuously, depending on the topology of the Fermi surface. When it happens 
there always exists the zero-energy “edge state” with distinctive properties22.

As aforementioned, a formal expression for the pairing potential of the px ± ipy state is ∆ = ∆ φ
+ + r e( ) i  and 

∆ φ
− r e( ) i3  when an axial vortex with ν = 1 is applied to the superconductor sample. Here, Δ+(r) and Δ−(r) are 

both real functions, which are evaluated from the simulations. The calculated Δ+(r) and Δ−(r) are shown in 
Fig. 3(a). Denoting Δ± as Δx ± iΔy. It is straightforward for us to show that Δx has, besides the one at the origin 
(0, φ) of the polar coordinate, four zeros at ((r1, 0), (r1, π)) and at ((r2, π/2)), ((r2, 3π/2)) while Δy has zeroes at ((r2, 0)),  

Figure 2. The quasiparticle excitation spectrum En as a function of the angular momentum under a non-
magnetic potential well at r = R/2 and a vortex with vorticity ν = 1 at r = 0. The inset is the spectrum in the 
absence of the barrier.
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((r2, π)) and at ((r1, π/2)), ((r1, 3π/2)). Where r1 is a radial length at which ∆ = −∆+ −r r( ) ( ), whereas 
∆ = ∆+ −r r( ) ( ) at r2. Contour plots for |Δx| and |Δy| are shown in Fig. 3(c) and (d). Since both Δ− and Δ+ are 
differentiable there must exists a closed loop L1 (L2) (white dashed lines) where the amplitude of Δ−(Δ+) 
approaches to zero-value asymptotically. The intersections in L1 and L2 are the so-called “singularities” where the 
relative phase θx − θy in the phase of Δx and Δy changes abruptly and discontinuously.

Spatially separated zeroes in Δx and Δy lead us to think of topological defects, which opens possibilities for the 
induced vortex with distinctive topological index. As well-known, the relative phase θx − θy must be an integer 
multiple of 2π radians at an Abrikosov vortex core. For instance, as shown in Fig. 3(f) and (g), θx and θy change 2π 
radians at the core of a single vortex with ν = 1. Meanwhile, |Δx| and |Δy| vanish simultaneously at the vortex core. 
We checked our data carefully and confirmed that θx(θy) could be a π winding at the half-vortex core. For instance, 
as shown in Fig. 3(f) and (g), θy is a 2π winding while θx is a π wingding at (r2, 0) and at (r2, π). Also θx is a 2π 
winding while θy is a π wingding at (r1, π/2) and at (r1, 3π/2). Therefore, the resulting θx − θy is a π winding there. 
In contrast to it, θx − θy changes only π radians [Fig. 3(h)] and only one of the Δx and Δy amplitudes decays to zero 
[Fig. 3(c) and (d)] at the new topological vortex core, which imply that the induced vortex can be classified as to a 
half-quantum (1

2
) vortex. We would further point out that the 1

2
-vortices can be distinguished according to theirs 

Figure 3. Profiles of p-wave potential and the microscopic current density. (a) Radial length dependence of the 
pair potential amplitude Δ+(r) and Δ−(r) under a single vortex with vorticity ν = 1 and a non-magnetic barrier 
at R/2. (b) Current distributions as a function of the radial length. (c,d,e) Contour plots for the amplitude of Δx, 
Δy, and Δ, respectively. (f,g) Spatial distributions of the phases in Δx and Δy. (h) Profile of the phase difference 
in Δx and Δy.
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winding direction with respective to the chirality of the pairing states. While the half-quantum vortex winding 
parallel to the chirality of bulk p+ pairing states is knownn as a 1

2
 -vortex, the one winding antiparallel to the chi-

rality is an 1
2

-antivortex. Importantly, the 1
2

-vortex and 1
2

-antivortex always appear in pairs [see, Fig. 3(f) and (g)], 
thereby guaranteeing winding number conservation. More surprisingly, the half vortex distributes uniformly on a 
circle with a radius of r1, while the half antivortex is on a circle with a radius of r2, forming the so-called skyrmion 
modes (see Fig. 4 below). By using the expression for the topological charge of skyrmions23, we find an integer 
topological charge Q = 2 for the skyrmions associated with the 1

2
-vortex, whereas Q = −2 for the 1

2
-antivortex 

skyrmions. To further show the skyrmion structure, we present the spatial distribution of the current calculated 
self-consistently in Fig. 3(b) and the so-called spin-field profile of the skyrmion (Fig. 4(a,b)). Clearly, the current 
changes sign and the spin-field reversing occurs as the electron local coordinate goes across the domain-wall at r*. 
Interestingly, the skyrmion modes are analog to the dynamical skyrmions discussed by Giordano et al.24. The 
dynamical skyrmions treated as non-linear gyrotropic rotations of the magnetic vortex core that give rise to 
spin-waves with spiral spatial profile. The spin-field aligning or the θ spirals two complete cycles around the 
domain wall C(r*) in our static skyrmion mode, which would have a resonance spectrum in the local density of 
states (see, Fig. 5).

Let us examine φ-dependence of the relative phase difference around the cycle C(r*) where the amplitude of 
Δ+ tends to zero. It indicates that θx − θy is a constant of π

2
 on C(r*) [Fig. 3(h)]. θx − θy varies from 180 degrees to 

0 degrees when electron local coordinates increase crossing through the cycle C(r*) in the second and fourth 
quadrants. Instead, it varies from 0 degrees to 180 degrees in the first and third quadrants. It increases that phases 
of Δx and Δy precede π

2
 radians alternately in adjacent quadrants of the polar coordinates. Therefore, an incident 

chiral p− state will be reflected on the circle to its mirror state with an opposite chirality. Superposition of the 
incident with its mirror particles leads to transverse resonances in the LDOS spectra, as shown in the left panel of 
Fig. 5. Red and green lines highlight the first resonant peak. They intersect at zero-energy, resulting in a new 

Figure 4. Spin-field profile of the skyrmion mode in the range (0, 0.4 R). The pseudo-spin vector 
σ∆ ∆ ∆ ∆=
→† †m r( ) /  calculated using Δ± with σ

→
 the pauli matrices. The colors show the amplitude of the 

z-component of m(r). (a) 3D image. (b) Top view of the 3D image. White dots indicate the position of skyrmion 
modes.
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zero-energy DOS peak at a distance away from the external vortex center and away from the potential-well 
location.

We discuss the major physical processes that lead to resonances in the spectra briefly by examining electrons 
scattered on C(r*). Sandwiched between two superconductive domains, the cycle C(r*) where bulk p+ pairing 
amplitude vanishes may be regarded as an electronic subsystem of ”normal state” domain wall. Electrons scattered 
on the wall have suffered to two processes. One is the normal reflection. Another is the Andreev retroflection. At 
the temperature much lower than the superconducting transition temperature the Andreev reflection dominates. 
In fact, it is the Andreev reflection that assists the bound state carrying the local microscopic current screening 
the magnetic field of the spontaneous half-quantum vortices. Consider an incident electron with an angle α meas-
ured from the polar axis. In general, the total current carried by the bound state can be expressed as 

α θΣ αI n( )sin( )n n,  with n being an integer. Since each bound state with (α, θ) has a mirror state of α θ π− ±( , ), 
the odd harmonics of the normal direction current ⊥j( ) will cancel each other. To the leading order, it is propor-
tional to α θ∼I ( )sin (2 )2 . It is therefore seen that the state |∆ ± ∆ ⟩ix y

1
2

 is a stable bound state with =⊥j 0 at 
θ π= ± /2, leaving a transverse current α α θ∼ϕj I ( )sin( )sin (2 )2  that oscillates two complete circles/periods 
when electron local coordinates spiral one turn around the C(r*). Spatially inhomogeneous current distribution 
implies a time-dependent local electron density, according to the current continuality relationship. A resonant 
LDOS spectrum is obtained once the Fourier transformation has been performed with respect to the time 
variable.

To identify the bound state that is responsible for the new DOS peak, spatial distributions for the local electron 
density and pairing amplitudes concerned are examined in an atomic length scale. As shown in the right panel of 
Fig. 5, both the zero-energy odd-frequency triplet s- and d-wave amplitudes have been significantly enhanced, in 
comparison with those in the absence of the local potential barrier. A more close examining reveals that among 
various pairing amplitudes concerned only the sign of the triplet s-wave amplitude and the chiral p+-wave ampli-
tude remains unchanged over the whole length scale. Hence, an identical r-dependence of the local electron 
density with that of a mixed s- and p-wave triplet amplitude ( = . + .

+ +
T T T0 36 0 64s p s p, ) is expected in an atomic 

length scale when the mixed pairing amplitude is normalized by the maximum electron density at different quan-
tized energy levels of the bound states. Therefore, we propose that the mixed state of odd frequency triplet s-wave 
and the even-frequency chiral p-wave is responsible for the local DOS peak at both zero-energy and finite energy 
levels.

It is important to further note that the particle-hole symmetry of the system Hamiltonian remains hold even 
in the presence of an non-magnetic potential. By using this property, it is readily for us to prove that the Majorana 
condition = ∗u r v r( ) ( )n n  is satisfied at zero-energy provided that there exists no pairing states breaking down the 
time-reversal in-variance locally. We compared un(r) with ∗v r( )n  in the zero-energy state. Indeed, there exists some 
derivations between them in the atomic length scale. It means, strictly speaking, Majorana condition is not satis-
fied if a mixed triplet s- and p-wave state is responsible for the zero-energy mode. However, possible existence of 
the Majorana mode remains expected if the p-wave component could be suppressed by embedding a 

Figure 5. Spatial distributions for the local electron density and pairing amplitudes concerned are examined in 
an atomic length scale. (a,b) LDOS spectra for the odd-frequency triplet s- and d-wave pairings induced in a 
chiral p-wave superconductive disk under a single vortex with vorticity ν = 1 at r = 0 and a non-magnetic 
potential barrier at R/2. (c,d) Spatial dependence of LDOS N(r, E) (red lines), triplet s-wave amplitude Ts(r, E) 
(black lines), p-wave 

±
T r E( , )p (green lines and blue lines), triplet d-wave amplitude Td(r, E) (pink lines) and 

amplitude of mixed s-wave and p+-wave(blue dot and dash lines) for the zero-energy bound state (c) and the 
second lowest-energy bound state (d), respectively.
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non-magnetic quantum dot on the cycle where the zero-energy peak locates. We would point out that the 
Majorana condition is likely to be recovered after taking the points below into consideration. Firstly, the 1

2
-vortex 

and 1
2

-antivortex always exist in pair in present case. Therefore, existences of the 1
2

-vortex and 1
2

-antivortex pairs 
don’t break down the winding number conservation. Secondly, we can embed some non-magnetic impurities 
(quantum dots) uniformly on the C(r*) to suppress the time-reversal violation state of the chiral p-wave ampli-
tude. Very importantly, while the p-wave amplitude would be greatly suppressed with an increase of the scattering 
intensity of the non-magnetic impurities, the zero-energy odd-frequency triplet s-wave pairing amplitude that is 
insensitive to the scattering intensity remains unchanged. Then, using a TEM probe of s-wave superconductor the 
zero-energy odd-frequency triplet s-wave state can be tested as a zero-bias LDOS peak. When this happens the 
zero-energy LDOS signaled is a good indication of the Majorana excitation without an external magnetic topol-
ogy defect.

Conclusion
We have investigated the properties of bound states in chiral p-wave superconductive disks. An odd-frequency 
triplet even parity (s- and/or d-wave) bound state or the zero-energy Majorana fermion is found at a single 
Abrikosov-type vortex core. The zero-energy OTE can exist at a distance from the external topological defect 
when a non-magnetic potential with appropriate amplitude has been included in the model Hamiltonian. 
Remarkably, half-quantum antivortex-vortex pairs and skyrmion modes are found to exist with the aid of the 
Andreev reflections. The topological charges have equal magnitudes but opposite signs for the 1

2
-antivortex and 1

2
-vortex skyrmion modes, satisfying winding number conservation law, as expected.

Theoretical Approach
We begin with the BdG equations20, 25, 26 for the chiral p-wave superconductor Sr2RuO4 with pairing symmetry 
of px ± ipy:

∑−




∆ + ∆





 =

±
± ± ± ±◻ ◻H u i

k
v E u1

2
( ) ,

(1a)
e n

F
n n n

∑− −





∆ + ∆







= .∗

±
± ± ± ±

∗

◻ ◻H v i
k

u E v1
2

( )
(1b)e n

F
n n n

Where the single particle Hamiltonian is µ= − ∇ + − −H i eA A( )
m

e
c0

1
2

2
0 , m is the electron mass, e is the 

electron charge, and c is the speed of light in vacuum μ is the chemical potential. A is the vector potentials. The 
gap equation of px ± ipy-wave is written as20


∑∆ = − − × − .

ω
±

<

∗ ∗
 

◻ ◻i gS
k

v u u v f Er r r r r( )
2

[ ( ) ( ) ( ) ( )] [1 2 ( )]
(2)F E

n n n n n
n D

Δ± is the order parameter for the px ± ipy-wave, g is the coupling constant, =k mE2 /F F
2  is the Fermi wave 

length, = ±ϕ
ϕ±

± ∂
∂

∂
∂

◻ ( )e i
r

i
r

, En is the energy eigenvalue for the superconducting quasiparticle, and 

= + −f E e( ) [1 ] 1n
E k T/n B  is the Fermi distribution function. The summations in equation are over all the quasi-

particle states with energies in the Debye window. For simplicity, we assume = 1 , =k 1B  and the superconduc-
tor is two dimensional which has a cylindrical Fermi surface. The vector potentials obey the Maxwell equation:

π
∇ × ∇ × = .

c
A r J r( ) 4 ( ) (3)

Here,we use the gauge ∇ ⋅ =A 0. The supercurrent density is calculated by


 ∑=










∇ −





 + −





∇ −





 − . .






.∗ ∗e
mi

f E u ie
c

u f E v ie
c

v h cJ r r A r r r A r( )
2

( ) ( ) ( ) ( ) (1 ( )) ( ) ( )
(4)n

n n n n n n

We consider the problem of a chiral p-wave superconductor disk of radius R under an axial vortex of vorticity 
ν. In the cylindrical coordinate electron and hole quasi-particle wave functions u r( )n  and v r( )n  can be expanded in 
terms of Bessel function basis.

∑ φ= µ µ
µφu a r er( ) ( ) ,

(5a)
n

j
n j j

i

∑ φ= .µ µ
µ φ

′ ′
′

v b r er( ) ( )
(5b)

n
j

n j j
i

Here µan j and µbn j are expansion coefficients. φ µ r( )j  is given by φ =µ α µ
µ µ+

r J( )j RJ
r
R

2
( j1 )

, with µJ  is the μth Bessel 

function and α µj  is the jth zero of µJ . µ µ ∈′ Z,  are integers denoting the angular momentum quantum number of 
a constituting component of the quasi-particle function. Depending on the vorticity number, μ and μ′ have to 
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satisfy the following relations in order to ensure a real gauge of the BdG model. For instance, μ = μ′ when ν = 1, 
µ µ= +′ 2 when ν = −1, and µ µ= +′ 1 when ν = 0 etc. Quasi-particle wave functions satisfy the normaliza-
tion condition:

∫ | | + | | = .u v dr r r( ) ( ) 1 (6)n n
2 2

which put a constrain on the expansion coefficients µan j and µbn j. By using the particle-hole symmetry relation, 
electron densities of the BdG equation are as follows:

∑= | | .n u f Er r( ) 2 ( ) ( )
(7)E

n n
2

n

From the self-consistent solutions, we can calculate the LDOS as

∑ δ δ= | | − + | | + .N E u E E v E Er r r( , ) [ ( ) ( ) ( ) ( )]
(8)n

n n n n
2 2

Since an Abrikosov vortex breaks down the translation symmetry and leads to couplings between the 
even-parity and odd-parity pairing states, one expects then possibilities for an odd-frequency pairing bound state 
around the vortex even in a conventional spin-singlet s-wave superconductor. One of the manifestations of the 
bound state is the enhanced LDOS at the vortex core, as observed as a zero bias conductance peak in the scanning 
tunneling spectroscopy27, 28. With the same mechanism, the OTE bound states are allowable in a chiral p-wave 
superconductor. The odd-frequency spin-triplet s- and d-wave pair amplitudes are defined by 

= +↑↓ ↓↑T T T( )/2s triplet s s, , ,  and = +↑↓ ↓↑T T T( )/2d triplet d d, , ,  with

∑ δ= −↑↓
∗T E v u E Er r r( , ) ( ) ( ) ( ),

(9a)s
n

n n n,

∑ δ= + .↓↑
∗T E u v E Er r r( , ) ( ) ( ) ( )

(9b)s
n

n n n,

In analog to Eq.(2), one can formally write down the self-consistent condition for a d-wave pair potential26 
from a standard BdG model, from which the odd-frequency spin-triplet d-wave pair amplitude is given by

∑ δ= − Π + Π − ∂ ∂ − ∂ ∂ −↑↓
∗ ∗ ∗ ∗T E gS

k
v u u v v u v u E Er r r r r r r r r( , )

4
( ( ) ( ) ( ) ( )) 2( ( ) ( ) ( ) ( )) ( ),

(10a)
d

F n
n n n n x n x n y n y n n, 2

∑ δ= − Π + Π − ∂ ∂ − ∂ ∂ + .↓↑
∗ ∗ ∗ ∗T E gS

k
u v v u u v v u E Er r r r r r r r r( , )

4
( ( ) ( ) ( ) ( )) 2( ( ) ( ) ( ) ( )) ( )

(10b)
d

F n
n n n n x n x n y n y n n, 2

where ϕ∂ = − ϕ
ϕ

∂
∂

∂
∂

cos( )x r
sin

r
( )  and ϕ∂ = + ϕ

ϕ
∂
∂

∂
∂

sin( )y r
cos

r
( )  in cylindrical coordinates. The operator Π is 

given by:

ϕ
ϕ

ϕ
ϕ ϕ

Π = ∂ − ∂ =





∂
∂

−
∂
∂

−
∂

∂






+





∂
∂

−
∂

∂ ∂





.cos

r r r r
sin

r r r
(2 ) 1 1 2 (2 ) 1 1

x y
2 2

2

2 2

2

2 2

2

We note that the particle-hole symmetry relationship =− −
∗ ∗u v v u{ , } { , }E E E En n n n

 has been used in defining the 
triplet s- and d-wave pairs. Finally, a non-magnetic potential is introduced when necessary.

γ β
β π

= .
γ

β
−

−

P r e( , , ) 1
2 (11)

r( )
2

2

2

This is the expression of normal distribution. γ = R/2 is the mean of the distribution and β is the standard 
deviation of the distribution. Different parameter values are used to adjust the location and potential intensity. 
The non-magnetic potential is extrmely located.

In our calculation, we set the coupling strength = .g 0 115, the cutoff energy =E Ec f . The coherence length ξ0 
is 66 nm, from which the coefficient in Eq. (3) is = . ×

π ξ −3 53 10
m

c

4 60
4

2 2
 with GL parameter κ ≡ = .λ

ξ
2 372

0
. The 

calculation is performed for the sample of radius R = 500 nm.
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