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There is increasing evidence to show that motor symptom lateralization in Parkinson’s
disease (PD) is linked to non-motor features, progression, and prognosis of the disease.
However, few studies have reported the difference in cortical complexity between
patients with left-onset of PD (LPD) and right-onset of PD (RPD). This study aimed to
investigate the differences in the cortical complexity between early-stage LPD and RPD.
High-resolution T1-weighted magnetic resonance images of the brain were acquired in
24 patients with LPD, 34 patients with RPD, and 37 age- and sex-matched healthy
controls (HCs). Cortical complexity including gyrification index, fractal dimension (FD),
and sulcal depth was analyzed using surface-based morphometry via CAT12/SPM12.
Familywise error (FWE) peak-level correction at p < 0.05 was performed for significance
testing. In patients with RPD, we found decreased mean FD and mean sulcal depth in
the banks of the left superior temporal sulcus (STS) compared with LPD and HCs. The
mean FD in the left superior temporal gyrus (STG) was decreased in RPD compared with
HCs. However, in patients with LPD, we did not identify significantly abnormal cortical
complex change compared with HCs. Moreover, we observed that the mean FD in STG
was negatively correlated with the 17-item Hamilton Depression Scale (HAMD) among
the three groups. Our findings support the specific influence of asymmetrical motor
symptoms in cortical complexity in early-stage PD and reveal that the banks of left STS
and left STG might play a crucial role in RPD.

Keywords: Parkinson’s disease, surface-based morphometry, laterality, side-of-onset, cortical complexity

INTRODUCTION

The asymmetrical motor symptoms and signs found in patients with Parkinson’s disease (PD)
commonly persist over the course of the disease (Barrett et al., 2011; Lee et al., 2015; Miller-
Patterson et al., 2018), which may contribute to distinguishing PD from other atypical Parkinsonian
syndromes (Postuma et al., 2015). Various findings suggest that the side of motor onset symptoms
in PD might have important implications regarding the symptoms, progression, and prognosis.
For instance, right-onset PD (RPD) seems to be associated with language- (Amick et al., 2006)
and verbal memory- (Verreyt et al., 2011) related cognitive impairment and was a risk factor for
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developing impulsive compulsive behavior (Phillipps et al., 2020)
and apathy (Harris et al., 2013), whereas, left-onset PD (LPD)
typically performed worse in visuospatial tasks (Verreyt et al.,
2011) and was found to endorse more sleep behavior disorders
(Baumann et al., 2014) and hallucinations (Stavitsky et al., 2008).
RPD is associated with worse treatment response (Hanna-Pladdy
et al., 2015) and more severe complications (Bay et al., 2019)
with levodopa treatment, as well as worse prognosis than LPD
(Baumann et al., 2014). However, the mechanisms involved
in PD asymmetry have not yet been elucidated. The plausible
mechanisms include handedness (van der Hoorn et al., 2012)
and susceptibilities of the left substantia nigra (Blesa et al., 2011;
Prasad et al., 2018; Fiorenzato et al., 2021).

Structural MRI imaging studies have found differences in gray
matter (GM) volume and cortical thickness between LPD and
RPD. Lee et al. (2015) reported that the right middle frontal
gyrus and precuneus have lateralized GM loss in LPD, which were
related to visuospatial memory impairment. Kim et al. (2014)
reported that motor-related areas of the contralateral hemisphere
showed thinning in early-stage, non-demented, patients with
right-handed LPD compared with healthy controls (HC).

Except for cortical thickness, other surface-based
morphometry (SBM) indices such as gyrification index (GI),
fractal dimension (FD), and sulcal depth can characterize
cortical complexity. GI is defined as the ratio between the inner
surface size and the outer surface size of a convex hull. FD
is a scale-free morphometric measure, which may be more
sensitive to characterize structural differences than GI (Madan
and Kensinger, 2016; Chen et al., 2020). Recent studies have
also shown altered FD in a variety of neuropsychiatric and
neurological diseases such as Alzheimer’s disease (Nicastro et al.,
2020), amyotrophic lateral sclerosis (Hedderich et al., 2020),
and transient ischemic attack (Lv et al., 2021). Sulcal depth was
defined as the distance toward an idealized smooth brain surface
(Lohmann, 1998). However, to date, none of the previous studies
have investigated differences of cortical surface complexity
(i.e., GI, FD, and sulcal depth) between patients with respect
to the side of motor onset symptoms. Therefore, we aimed to
investigate the differences in GI, FD, and sulcal depth among
patients with early-stage LPD and RPD and matched HC using
SBM via CAT12/SPM12.

MATERIALS AND METHODS

Participants
Patients with PD who were diagnosed by two experienced
neurologists based on the Movement Disorder Society Clinical
Diagnostic Criteria for Parkinson’s disease (Postuma et al.,
2015) were enrolled. The inclusion criteria were as follows: (1)
modified Hoehn-Yahr (H-Y) stage ≤ 1.5; (2) no obvious cognitive
impairment assessed by the Mini-Mental State Examination
(MMSE) score; (3) right-handedness; (4) no history of other
psychiatric or neurological diseases; (5) “off” state; (6) duration
of illness ≤ 5 years; and (7) age ≤ 70 years. Subjects were
excluded if they (1) had other diseases and treatments that could
potentially affect brain function, such as atypical parkinsonism,

cerebral trauma, stroke, and other diseases of the neurological
system; (2) had contraindications to MRI or were unable to
cooperate with an MRI scan and clinical scales; or (3) had an
MMSE score less than the corresponding education degree, n = 3.
MMSE scores of >17 for illiterate subjects, >20 for 1–6 years
of education, and >23 for 7 or more years of education, which
were defined as normal MMSE scores. According to the side of
motor onset, patients with PD were divided into two groups,
namely, LPD (n = 24) and RPD (n = 34). Right-handed HCs
(n = 37) matched for age, sex, and education were enrolled from
the local community.

Magnetic Resonance Imaging
Acquisition
Magnetic resonance imaging was performed using a 3.0 T
MRI scanner (MAGNETOM Skyra; Siemens Healthineers,
Erlangen, Germany). High-resolution, T1-weighted images were
acquired (sagittal slices: 176, repetition time (TR): 1,900 ms,
echo time (TE): 2.01 ms, flip angle: 9◦, field of view:
256 × 256 mm2, voxel size = 1 × 1 × 1 mm, slice thickness:
1.0 mm (no slice gap).

Preprocessing
All images were processed and analyzed using the CAT12
toolbox1 implemented in SPM12 (Wellcome Trust Center for
Neuroimaging, London, United Kingdom2) for Matlab2013b.
For the processing and analysis steps, preset parameters in
accordance with the CAT12 user manual3 were used. All images
were smoothed using a Gaussian kernel with 20-mm full width
at half maximum, including GI, FD, and sulcal depth. All
subjects passed both the visual quality inspection and the CAT12
data quality checks. The weighted average (IQR) of all scans
ranged between 82.32 and 86.55%, which corresponded to a
quality grade B.

Statistical Analysis
Statistical analysis of clinical information was performed
using SPSS version 22.0 software (SPSS Inc., Chicago, IL,
United States). We performed statistical analyses of imaging
data via the CAT12/SPM12 statistical module applying one-
way ANOVA to each of the morphometric measures, with
age, sex, and levodopa equivalent daily dose (LEDD) as
the covariates. The “Estimate” incorporated in CAT12 was
used to estimate surface models according to the manual.
Familywise error (FWE) peak-level correction at p < 0.05
was performed for significance testing. The Desikan-Killiany
atlas (Desikan et al., 2006) was used to estimate mean
surface parameters. Post hoc comparisons were performed
using Bonferroni correction (p < 0.05/3 = 0.017). Correlations
between clinical data and abnormal morphometric change
were assessed using Spearman’s coefficient (p < 0.05/5 = 0.01,
Bonferroni corrected).

1http://www.neuro.uni-jena.de/cat12/
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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RESULTS

Descriptive Analysis
There was no difference in sex, age, education, and MMSE
among the three study groups. Furthermore, disease duration,

Unified Parkinson’s Disease Rating Scale (UPDRS), the
Unified Parkinson’s Disease Rating Scale, part III motor
examination total score (UPDRS-III), Modified H-Y
stage, LEDD, and the 17-item Hamilton Depression Scale
(HADM) were comparable between the RPD and LPD

TABLE 1 | Demographic and clinical data of study groups.

N = HC LPD RPD p (HC vs. all PD) p (LPD vs. RPD)

=37 =24 =34

Gender (male/female) 17/20 13/11 20/14 0.546 0.724

Age, years 54.72 ± 6.81 55.75 ± 8.08 55.00 ± 7.81 0.208 0.427

Age of onset, years – 54.13 ± 8.19 53.94 ± 7.91 – 0.322

Education, years 7.82 ± 2.96 6.58 ± 3.49 8.39 ± 3.56 0.213 0.608

Disease duration, years – 1.73 ± 1.15 1.25 ± 0.93 – 0.292

LEDD, mg/day – 8.33 ± 40.82 13.24 ± 43.18 – 0.403

Modified H-Y stage – 1.17 ± 0.24 1.13 ± 0.22 – 0.285

UPDRS – 17.91 ± 8.57 17.73 ± 8.49 – 0.927

UPDRS-III – 11.67 ± 6.79 10.76 ± 4.78 – 0.233

MMSE 26.70 ± 3.05 26.25 ± 2.69 27.21 ± 2.68 0.131 0.477

HAMD 2.32 ± 3.01 6.00 ± 3.68 5.74 ± 3.65 0.211 0.516

All data are presented as means ± SD. HC, healthy controls; PD, Parkinson’s disease; LPD, left-onset Parkinson’s disease; RPD, right-onset Parkinson’s disease; LEDD,
levodopa equivalent daily dose; H-Y, Hoehn and Yahr; UPDRS, Unified Parkinson’s Disease Rating Scale; UPDRS-III, the Unified Parkinson’s Disease Rating Scale, part III
motor examination total score; MMSE, Mini-Mental State Examination; HADM, the 17-item Hamilton Depression Scale; –, Data not available.

FIGURE 1 | (A) Mean fractal dimension (FD) analysis of the group effect are highlighted [p < 0.05, familywise error (FWE) correction]. (B,C) Boxplots of the
distribution of mean FD in the banks of the left superior temporal sulcus (STS) and left superior temporal gyrus (STG) among three groups (post hoc p < 0.017,
Bonferroni corrected). Post hoc analyses revealed significantly decreased mean FD in the bank of left STS in patients with right-onset of Parkinson’s disease (RPD)
compared with HC (**p = 0.009) and left-onset of PD (LPD) (*p = 0.012). Patients with RPD showed decreased mean FD in the left STG compared with HC
(*p = 0.011).
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groups. Demographic and clinical data are summarized
in Table 1.

Gyrification Analysis
No significant differences in GI were found among the RPD, LPD,
and HC groups.

Fractal Dimension Analysis
Fractal dimension analysis revealed cluster-level significance
(F = 12.9; p = 0.00001, FWE corrected) in a cluster comprising
456 vertices in the banks of the superior temporal sulcus (STS)
and superior temporal gyrus (STG) of the left hemisphere. Post
hoc analyses revealed significantly decreased mean FD in the bank
of left STS in patients with RPD compared with HC (p = 0.009,
Bonferroni corrected) and LPD (p = 0.012, Bonferroni corrected).
When compared with HC, RPD showed decreased mean FD in
the left STG (p = 0.011, Bonferroni corrected) (Figure 1). The
cluster-level significant effects are summarized in Table 2.

Sulcal Depth Analysis
Cluster-level significant effects in the banks of left STG (F = 9.8;
p = 0.00014, FWE corrected) and postcentral and precentral
gyrus (F = 13.8; p = 0.00001, FWE corrected) of the right
hemisphere (Table 2) were found. Post hoc analyses revealed
significantly decreased sulcal depth in the banks of left STS of
patients with RPD (Figure 2) compared with HC (p = 0.003,
Bonferroni corrected) and LPD (p = 0.004, Bonferroni corrected).
No decrease was found in the sulcal depth in the postcentral gyrus
of the right hemisphere in patients with LPD compared with HC
(p = 0.034 > 0.017) and RPD (p = 0.185 > 0.017).

Correlational Analysis
We found that the mean FD in the left STG was negatively
correlated with HAMD scores (r = –0.278, p = 0.006, Bonferroni
corrected) among all three groups (Figure 3). For other regions
listed in Table 2, no significant correlations were found between
the mean cortical characteristics and the psychopathological data
when we performed multiple comparison corrections.

DISCUSSION

This is the first study to investigate the differences in cortical
surface complexity between patients with early-stage LPD and

FIGURE 2 | (A,B) Sulcal depth analysis of the group effect is highlighted
(p < 0.05, FWE correction). (C,D) Boxplots of the distribution of sulcal depth
in the banks of left STS and postcentral of the right hemisphere among the
three groups (post hoc p < 0.017, Bonferroni corrected). Post hoc analyses
revealed significantly decreased sulcal depth in the banks of left superior
temporal of patients with RPD compared with HC (**p = 0.003) and LPD
(**p = 0.004).

RPD by using SBM analysis. The mean FD and mean sulcal
depth were lower in the banks of the left STS of patients with
RPD than patients with LPD and HC. The mean FD in the left
STG was decreased in RPD when compared with HC. However,
in LPD, we did not observe any significantly abnormal cortical
complex change compared with HC. In addition, the mean FD

TABLE 2 | Overview of bilateral areas of cluster-level significant effects of cortical characteristics (FWE-corrected).

Hemisphere/cortical morphology Overlap of atlas region Cluster size p-value F Peak MNI coordinates(x y z)

Fractal dimension

LH 64% bankssts 999 0.00001 12.9 –57 –37 10

36% superiortemporal

Sulcal depth

LH 100% bankssts 1111 0.00014 9.8 –57 –40 12

RH 96% postcentral 378 0.00001 13.8 22 –46 58

4% precentral

Atlas labeling was performed according to the Desikan-Killiany atlas. LH, left hemisphere; RH, right hemisphere.
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FIGURE 3 | Scatter plots of the mean FD in the left STG negatively correlated with HAMD scores among the three groups (r = –0.278, p = 0.006, Bonferroni
corrected).

in left STG was negatively correlated with HAMD scores among
the three groups.

Previous studies have shown that the banks of the STS were
the core region, which accounted for verbal memory functions
independent of the input modality (Ojemann et al., 2002)
and engaged in supramodal language perception (Lindenberg
and Scheef, 2007). The volume of this region, combined with
the caudal portion of the anterior cingulate can also help
differentiate between cognitively normal patients and those with
mild cognitive impairment (Convit et al., 2000; DeVivo et al.,
2019). In a cohort study, the denervation of the left hemisphere
affected cognitive dysfunctions at onset and progression in right-
handed PD (Fiorenzato et al., 2021). Recently, Guo et al. (2020)
found that a high amyloid burden in the banks of the STS
was predictive of memory decline over 4 years in Alzheimer’s
disease (Park and Abner, 2020). Our study identified that RPD
would develop abnormal structural changes in this area, which
likely explains why RPD would perform worse in the language
(Amick et al., 2006) and verbal memory tasks (Verreyt et al.,
2011) than LPD.

The structure of the left STG is an important region for
speech, language, and communication and plays a crucial role
in the development of language abilities (Chen et al., 2004;
Yagishita et al., 2008; Leff et al., 2009; Aeby et al., 2013;

Vander Ghinst et al., 2016; Maruyama et al., 2018). Our results
are in line with previous structural and functional studies that
already pointed to the abnormalities of the left STG in PD
(Wiesman et al., 2016; Suo et al., 2017; Gargouri et al., 2019;
Yang et al., 2021). Similarly, a previous meta-analysis showed that
PD with mild cognitive impairment (PD-MCI) had a robust GM
decrease in the left STG (Qin et al., 2020). The GM volume of
posterior STG was negatively linked to diadochokinetic (DDK)
irregularity in PD with hypokinetic dysarthria (Klobusiakova
et al., 2021). Moreover, when using low-frequency stimulation of
STG, articulation in PD would be well-improved (Brabenec et al.,
2019). Therefore, abnormal cortical complexity of the banks of
left STS, along with the left STG in patients with RPD, suggests
that those two regions might play a crucial role in RPD with
cognitive impairment, which may serve as specific regions of
interest for further investigations.

As a part of Wernicke’s region (Binder, 2017), the left STG and
bank of the STS participate in the composition of the left fronto-
temporo-parietal network (Kroczek et al., 2019), which is mainly
related to language processing (Geranmayeh et al., 2016; Griffis
et al., 2017; Kroczek et al., 2019) and working memory (Miró
et al., 2020). PD-MCI is known to manifest language deficits
(León-Cabrera et al., 2021; Letanneux et al., 2021) and decreased
working memory (Caminiti et al., 2015), and in this part of
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patients were found that the network (Bayram et al., 2019; Jin
Yoon et al., 2021) was damaged.

In contrast, previous studies (H-Y stage ≤ 2) did not show GM
volume loss or cortical thinning in the left STG (Kim et al., 2014;
Lee et al., 2015). The reasons for the inconsistency in results may
be complicated by the different staging or disease durations of PD
among these studies.

Furthermore, we also observed that mean FD in the left STG is
negatively correlated with HAMD scores among the three groups,
which was in line with previous studies. In fact, previous studies
have shown a thinning left STG (Lebedeva et al., 2018; Wang
et al., 2021) and altered functional connections between the left
STG and anterior cingulate gyrus (Harada et al., 2018), as well
as the left STG and the prefrontal cortex (Zhang et al., 2019)
in depressive patients. Furthermore, the left STG was shown to
likely be engaged in depression onset in patients with PD.

Finally, compared with HC, early-stage LPD showed no
abnormal cortical complex, which has been explained by the
greater vulnerability of the dominant hemisphere to PD-related
dysfunction (Claassen et al., 2016). In line with previous
publications, Pelizzari et al. (2020) showed that compared with
HC, white matter integrity was found to be significantly altered
in RPD but not in LPD in the early stage.

Our study has some limitations. First, the sample size was
relatively small; therefore, the reliability of our findings should
be conformed to a larger population. Second, although we found
structural abnormalities in the left STG and the banks of left
STS in patients with RPD, further correlation analysis could not
be performed due to the lack of clinical evaluation data related
to speech disorders. Third, some patients were not drug-naïve;
although we assessed and controlled for current medication
use (e.g., in an “off” state), the possible effects of medications
cannot be entirely ruled out and may have been biased the
results to some extent.

CONCLUSION

Our results support the specific influence of asymmetrical
motor symptoms in cortical complexity in early-stage PD.

Further studies are required to assess the long-term evolution
of asymmetry of motor onset symptoms and determine whether
FD and sulcal depth represent a potential imaging marker for
diagnostic and treatment strategies.
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