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A PK/PD Analysis of Circulating Biomarkers 
and Their Relationship to Tumor Response 
in Atezolizumab- Treated non-small Cell Lung 
Cancer Patients
Ida Netterberg1,2, Chi-Chung Li3, Luciana Molinero3, Nageshwar Budha3, Siddharth Sukumaran3,  
Mark Stroh3, E. Niclas Jonsson2 and Lena E. Friberg1,2

To assess circulating biomarkers as predictors of antitumor response to atezolizumab (anti- programmed death-
ligand 1 (PD-L1), Tecentriq) serum pharmacokinetic (PK) and 95 plasma biomarkers were analyzed in 88 patients 
with relapsed/refractory non-small cell lung cancer (NSCLC) receiving atezolizumab i.v. q3w (10–20 mg/kg) in the 
PCD4989g phase I clinical trial. Following exploratory analyses, two plasma biomarkers were chosen for further 
study and correlation with change in tumor size (the sum of the longest diameter) was assessed in a 
pharmacokinetic/pharmacodynamic (PK/PD) tumor modeling framework. When longitudinal kinetics of biomarkers 
and tumor size were modeled, tumor shrinkage was found to significantly correlate with area under the curve (AUC), 
baseline factors (metastatic sites, liver metastases, and smoking status), and relative change in interleukin (IL)- 18 
level from baseline at day 21 (RCFBIL-18,d21). Although AUC was a major predictor of tumor shrinkage, the effect was 
estimated to dissipate with an average half- life of 80 days, whereas RCFBIL-18,d21 seemed relevant to the duration of 
the response.

Cancer immunotherapy (CIT) has become a new pillar of oncol-
ogy treatment.1–3 In contrast to traditional cancer drugs, these 
agents aim to stimulate the patient’s pre- existing immune response 
against tumor cells at different stages of the cancer immunity cycle.4 
Immune checkpoint blockade with anti-cytotoxic T lymphocyte-as-
sociated antigen 4 (CTLA-4) and anti-programmed cell death 1 

(PD-1)/programmed death-ligand 1 (PD-L1) antibodies either as 
monotherapy or in combination with a variety of agents, for exam-
ple, can elicit a durable clinical antitumor response in a subset of pa-
tients. However, individual responses to CIT vary widely, reflecting 
the interpatient heterogeneity in immune and disease status, as well 
as the involvement of various immune escape mechanisms.5,6

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Several CIT checkpoint inhibitors have been approved for 
cancer treatment, but response to treatment is highly variable 
between patients. There is an unmet need for minimally invasive 
early predictive biomarkers of clinical outcome to inform clini-
cal practice and drug development decisions.
WHAT QUESTION DID THIS STUDY ADDRESS?
 How can a pharmacometric modeling framework be used to 
identify early predictive biomarkers of response to a cancer im-
munotherapy, atezolizumab?

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 The atezolizumab AUC and elevation of IL- 18 on day 21 to-
gether were early and significant predictors of tumor shrinkage. 
AUC was a primary driver of the initial response, whereas IL- 18 
best predicted the duration of the antitumor response.
HOW MIGHT THIS CHANGE CLINICAL 
PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
 IL- 18 is a potential early biomarker of atezolizumab antitu-
mor efficacy useful to inform dose and patient selection strategy 
in clinical development and practice. We propose a quantitative 
framework that can be integrated with biomarker research and 
discovery to enable personalized medicine for cancer treatment.

Study Highlights
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In the era of personalized medicine in oncology, there remains a 
high unmet need for the identification of minimally invasive, pre-
dictive biomarkers to provide an early assessment of the individual 
patient’s likelihood of benefiting from a particular treatment and 
thereby optimize treatment decisions for the patient. Biomarker 
research aimed at finding predictive and prognostic biomarkers 
to guide patient selection for immune checkpoint inhibitor ther-
apies led to the development of companion diagnostics to assess 
baseline expression of PD- L1 on tumor and immune cells.3,6–8 
Although patients with PD- L1- positive cells that exhibit an in-
flammatory phenotype9,10 are more likely to respond to anti-PD-1/
PD- L1 therapies, PD- L1 staining alone does not fully explain the 
response heterogeneity.2,6,11,12 Tumor mutational load has shown 
to be correlated with better response to CIT as a result of enhanced 
immunogenicity to neoantigens and epitope spreading;13,14 how-
ever, assessment of tumor mutational load currently requires a valid 
tumor biopsy sample, which can be challenging to patients and the 
care team.

Peripheral immune biomarkers, such as cytokine levels and 
prevalence of different immune cell subtypes, present a poten-
tial opportunity to monitor real- time changes in patients’ im-
mune response to CIT treatment. However, previous reports 
suggest that, although marked systemic elevations were observed 
in the levels of several peripheral biomarkers following anti- 
PD- L1 treatments, these biomarkers did not correlate to tumor 
response.6 For ipilimumab (anti-CTLA-4 Yervoy), several 
serum biomarkers, such as baseline lactate dehydrogenase, vas-
cular endothelial growth factor, and C- reactive protein (CRP) 
were identified as significant predictors of overall survival.15–17 
However, these biomarkers were baseline pretreatment values 
and did not reflect the proximal mechanism of action of the 
drug. Other immunologically relevant markers, such as fre-
quency of CD4+ICOShi T cells, eosinophil counts, and solu-
ble CD25 (interleukin (IL)- 2 receptor alpha chain), have also 
been previously reported to be associated with clinical response 
to ipilimumab.18–20 However, these analyses did not fully lever-
age the longitudinal information of the biomarker and tumor 
data collected and, thus, did not offer insights into the response 
dynamics at a patient level. In addition, drug exposure was not 
accounted for in most of these analyses. In addition, although 
Chatterjee et al.21 reported the development of a longitudinal 
tumor growth inhibition (TGI) model for pembrolizumab 
(anti- PD- 1, Keytruda) that accounted for drug exposure, no 
biomarkers were evaluated in that study.

Integrated pharmacokinetic/pharmacodynamic (PK/PD) 
modeling frameworks have previously been proposed in oncol-
ogy,22 both for non-small cell lung cancer (NSCLC)23 and other 
tumor types,24–29 to aid in clinical response characterization and 
drug development decisions. As anticancer immunity is a complex 
and dynamic process, the characterization of drivers of treatment 
response requires a multifactorial approach. Here, we report the 
successful development of a PK/PD tumor- modeling framework 
for atezolizumab and its application to evaluating circulating pre-
dictive biomarkers in the context of pharmacokinetic (PK) and 
potential baseline predictive and prognostic factors. Longitudinal 
biomarker and tumor size information were incorporated into the 

model to take advantage of the full timecourse of data collected in 
the PCD4989g phase I clinical trial.6

RESULTS
Patients and data
Serum atezolizumab PK and 95 plasma biomarkers (Table S1) 
were analyzed in 88 patients with relapsed/refractory NSCLC who 
received i.v. q3w doses of atezolizumab from 10, 15, and 20 mg/kg 
or 1,200 mg in the phase Ia PCD4989g trial (NCT01375842).6 
Eight of the 95 biomarkers assessed met one or both of the follow-
ing criteria: statistically significant changes from baseline levels 
or biological relevance as a proximal marker to the mechanism of 
action of atezolizumab. These eight biomarkers were CRP, CD40, 
intercellular adhesion molecule 1 (ICAM- 1), interferon- inducible 
T- cell alpha chemoattractant (ITAC), IL- 18, IL- 8, vascular cell 
adhesion molecule 1 (VCAM- 1), and proliferating and activated 
CD8+ T cells expressing HLA-DR and ki67 (TCD8,prolif/activ). The 
total number of observations for each biomarker ranged from 
413–458, except for TCD8,prolif/activ, where 185 measurements were 
collected (Table S2). The median duration of tumor assessment 
for the patients with NSCLC was 18 weeks, with a range from 0 (4 
patients with baseline assessment only) to 153 weeks. All patients 
were included in the analysis.

The median tumor size (sum of the longest diameters (SLDs)) 
was 5 cm at baseline, increased modestly following the first two 
tumor scans (at 6 and 12 weeks), reflecting dropout of nonre-
sponders, and decreased and remained lower than baseline for 
a sustained period of time (Figure 1a). Following atezolizumab 
administration, the levels of the selected biomarkers typically in-
creased during the first treatment cycle with an observed peak at 
approximately day 21, followed by a reduction in concentration in 
later cycles (Figure 2).

Initial biomarker assessment and selection for PK/PD- 
tumor modeling
Of the eight prioritized biomarkers, ITAC and IL- 18 showed 
apparent dose- exposure relationships (Figure 2), allowing ex-
ploration of dose/exposure- response relationships. Furthermore, 
baseline concentrations of these markers were not correlated to 
baseline tumor size, suggesting changes in these markers were 
not simply downstream effects of alterations in tumor burden. 
Both ITAC and IL- 18 were previously reported as pharmaco-
dynamic (PD) biomarkers following atezolizumab treatment.6 
Interestingly, the timecourse for ITAC was distinct from the 
other biomarkers and remained elevated after six cycles of treat-
ment, whereas other biomarkers tended to return to baseline by 
cycle six. Plotting the biomarker change from baseline (CFB) 
values against tumor size change revealed a potential correlation 
for four biomarkers (ITAC, IL- 18, IL- 8, and VCAM- 1), although 
this was difficult to accurately assess given the variability of the 
data and patient dropouts during the trial (Figure S1). Although 
TCD8,prolif/activ was a biologically interesting biomarker with a 
pronounced response post- treatment, the data were too sparse to 
include in PK/PD tumor modeling. Taken together, IL- 18 and 
ITAC were identified as proximal, independent PD biomarkers 
and selected for further evaluation.
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PK model for atezolizumab
A two- compartment PK model was developed based on data from 
the PCD4989g trial and used for post hoc estimates of individual 
PK values. The model adequately described the data as assessed by 
prediction- corrected visual predictive checks (pcVPCs) stratified 
by dose level (Figure S2). The model parameters are summarized 
in Table S3 and are generally consistent with the values recently 
reported by Stroh et al.30

Biomarker models
An indirect- response (IDR) model best described both the IL- 18 
and ITAC data. Model fit was improved (P < 0.001) by inclu-
sion of a pool compartment with a linear relationship describing  
stimulation of the first- order transfer rate from the precursor pool 
to the circulating compartment (krel) by atezolizumab concen-
tration. The inclusion of an effect compartment accounting for 
the delay of onset of IL- 18 significantly improved the model fit 
(P < 0.001) and the VPC for IL- 18 but not for ITAC (P > 0.05). 
The pcVPCs for the final IL- 18 and ITAC models showed no 
major model misspecification (Figure 1b,c), and parameters were 
estimated with reasonable precision (Table 1).

Tumor growth inhibition model
The tumor size dynamics were best described by the TGI model pro-
posed by Claret et al.31 but with a constant growth rate (Rgrowth) in-
stead of an exponential rate (objective function value Δ(OFV) = 6.4). 
The tumor shrinkage was best described by a linear function of indi-
vidual cycle- specific areas under the PK curve (AUCcycle n), yielding 
a lower OFV compared to a function of dose (ΔOFV of 5.1) or to 
a dose- independent rate constant (ΔOFV of 27.0). The OFV was 

approximately eight units higher when individual first- cycle AUC 
(AUCcycle1) was used instead of AUCcycle n. A maximum effect (Emax) 
model for AUCcycle n did not provide a significantly better fit.

When tested alone, neither of the investigated biomarker vari-
ables (IL- 18 and ITAC) fit the data as well as AUCcycle n (Table S4). 
However, when relative CFB at day 21 for either IL- 18 (relative 
change from baseline (RCFB)IL-18,d21) or ITAC (RCFBITAC,d21) 
was included on top of AUCcycle n, the model fit improved signifi-
cantly (ΔOFV = 44.2 and 38.9, respectively). The combination of 
AUCcycle n and RCFBIL-18,d21 seemed to best predict tumor size, 
compared to AUC alone, IL- 18 alone, ITAC alone, AUC + ITAC, 
or all three combined (AUC + IL- 18 + ITAC). The timecourse of 
IL- 18 was evaluated but determined to not be a better predictor of 
the tumor response than RCFBIL-18,d21 (data not shown). The in-
clusion of an exponentially diminishing AUCcycle n effect resulted 
in a significantly better model fit (ΔOFV of 74).

The rate of tumor size changes (dSLD/dt) for the final TGI 
model is given in Eq. 1:

where KShr,Drug and KShr,IL-18 are the tumor shrinking rate constants 
related to drug exposure and IL- 18, respectively, and λDrug is the 
rate constant for reduced effect of AUC on tumor shrinkage with 
time. A reduction in the IL- 18 effect over time was investigated but 
did not provide a better fit. A schematic representation of the final 
modeling framework (i.e., PK, IL- 18, and tumor size) is shown in 
Figure 3.

(1)
dSLD
dt

=Rgrowth− (KShr,Drug ⋅AUCcyclen ⋅ e
−λDrug⋅t

+K
Shr,IL-18 ⋅RCFBIL-18,d21) ⋅SLD

Figure 1 Prediction corrected visual predictive checks (pcVPCs) of timecourse for (a) tumor size (sum of the longest diameters (SLDs)),  
(b) interleukin- 18 (IL- 18), and (c) interferon- inducible T- cell alpha chemoattractant (ITAC). The x axes are limited to 175 days after first dose for 
the biomarker pcVPCs and to 585 days after first dose for the tumor growth inhibition (TGI) pcVPC. The dashed lines represent the observed 
10th and 90th percentiles for tumor SLD and the 2.5th and 97.5th percentiles for IL- 18 and ITAC. Solid lines represent median values. The 
shaded areas are the 95% confidence intervals of the corresponding percentiles computed from the simulated datasets (N = 500). The dots 
are observed biomarker concentrations and SLD assessments.
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Three covariate- parameter relationships were identified: the 
number of metastases at baseline and SLD0 (ΔOFV = 21.5), 
presence of baseline liver metastases and RGrowth (ΔOFV = 12.4), 
and smoking status and KShr,Drug (never vs. current/former, 
ΔOFV = 11.2). For patients with two or fewer metastases at base-
line, the typical SLD0 was 4.8 cm, whereas for patients with more 
than two metastases, the corresponding value was 9.1 cm. RGrowth 
was nearly 10- fold higher for patients with liver metastases at 
baseline, compared to patients without (0.16 vs. 0.017 cm/week, 
respectively). KShr,Drug approached zero in patients who had never 
smoked and was set to 0 in the final model.

No statistically significant relationship was found between 
baseline expression of PD- L1, as assessed by immunohistochemis-
try of immune cells and immunohistochemistry of immune tumor 
cells on any of the model parameters. The distribution of PD- L1 
expression levels across the patient population is summarized in 
Table S5.

The baseline hazard (h0) for dropout was described by a constant 
hazard, and the model- predicted change from tumor size at base-
line was a significant predictor in the hazard function (P < 0.05). A 
pcVPC of the final TGI model, together with the dropout model, 
is presented in Figure 1 and reveals good fit of the model to the 
data. All parameter estimates are presented in Table 1.

Simulations based on the final TGI model
Following administration of 1,200 mg atezolizumab, the TGI 
model predicts a sustained antitumor response with no tumor re-
growth up to ~27 weeks (nadir of tumor size) followed by a slow 
return to the tumor size baseline by 89 weeks postdose for an in-
dividual with a typical AUC and RCFBIL-18,d21 of 5,600 mg/l*day 
and 0.43, respectively, corresponding to the medians in the data-
set (Figure 4). The AUCcycle n- related effect played a dominant 
role in early tumor shrinkage, resulting in deeper tumor reduction 
with higher AUCcycle n, but the effect dissipated with an estimated 
average half- life of 80 days. The effect of RCFBIL-18,d21 on tumor 
shrinkage became more prevalent in later cycles of atezolizumab 
treatment and seemed to play an important role in the duration of 
the antitumor response to atezolizumab.

DISCUSSION
To our knowledge, this is the first literature on an integrated 
pharmacometric framework to evaluate predictive circulating 
biomarkers for CIT agents in the context of known or investi-
gational baseline prognostic and predictive factors. Using this 
framework, we further elucidated the relationship between drug 
exposure (AUCcycle n) and (i) the initial magnitude of the antitu-
mor response, a direct AUC- related effect, and (ii) the duration of 

Figure 2 Boxplots of the observed relative change from baseline (RCFB) of eight selected biomarkers vs. protocol- specified nominal time after 
first dose. The plots are grouped by the protocol- specified nominal dose where the light, medium, and dark boxes represent doses of 10, 15, 
and 20 mg/kg, respectively. (Data observed following dosing at 1 mg/kg are not shown.) Observations from patients receiving fixed doses 
of 1,200 mg were assigned to the closest approximates of dose levels in mg/kg (n = 5 assigned to the 15 mg/kg group and n = 2 assigned 
to the 20 mg/kg group). The upper and lower hinges of the boxes represent the 75th and 25th percentiles, respectively. Upper and lower 
ends of the whiskers correspond to the 75th percentile+1.5·interquartile range (IQR) and 25th percentile- 1.5·IQR, respectively. No outliers 
are shown. The dashed line indicates no RCFB. CRP, C- reactive protein; CD40, CD40 antigen; ICAM- 1, intercellular adhesion molecule 1; ICD, 
immunogenic cell death; ITAC, interferon- inducible T- cell alpha chemoattractant; IL- 18, interleukin 18; IL- 8, interleukin 8; VCAM- 1, vascular cell 
adhesion molecule 1; TCD8,prolif/activ, activated and proliferating CD8 T cells.
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that response, an IL- 18- related effect estimated by RCFBIL-18,d21, 
which reflects an “indirect” drug effect (Figure 4). Both AUC 
and RCFBIL-18,d21 are easily measurable and available shortly 
after treatment begins. These metrics could be used early in treat-
ment to project the potential for a long- term antitumor response. 
Patient- level PK and IL- 18 values could further be used to inform 
individualized dosing or treatment strategies.

The model predicted a sustained antitumor response followed 
by tumor regrowth for a typical patient. The potential mechanisms 
of resistance in patients who responded and then progressed in-
clude upregulation of additional inhibitory checkpoints, down-
regulation of major histocompatibility complex class I molecules 
on tumor cells, and development of an immunosuppressive tumor 
microenvironment.5,32 Although the modeling and simulations 
conducted here were not designed to predict the clinical duration 
of response as defined by Response Evaluation Criteria in Solid 
Tumors (RECIST) version 1.1, and, hence, a direct comparison to 
clinical duration of response is not possible, the model predicted a 
sustained tumor size reduction for a typical patient up to 89 weeks 
following 1,200 mg atezolizumab treatment. A sustained antitu-
mor effect was also observed in the phase II POPLAR clinical trial, 
where the median duration of response was 14.3 months in pa-
tients with NSCLC following 1,200 mg atezolizumab treatment.33

IL- 18 plays an important role in the production of interfer-
on- γ from activated T cells34 and has previously been identified 
as a PD marker following atezolizumab treatment.6 In the phase 
I study data used in this analysis, circulating levels of IL- 18 were 
transiently elevated and then rapidly declined after the first treat-
ment cycle. This pattern may reflect initial T- cell activation in the 
periphery, followed by localization to the tumor, and, thus, serve 
as a mechanistically relevant early indicator of a response to treat-
ment. Although other biomarkers, including interferon- γ, IL-2, 
and IL-6, are also relevant to T- cell biology, they did not show 
statistically significant changes from baseline upon atezolizumab 
treatment. The timecourse of reduction in tumor size was much 
more sustained than the transient increase in IL- 18, indicating the 
continued antitumor response at the site of action in tumor tissues 
following the initial peripheral T- cell activation.

One of the key goals for future immunotherapy strategy is to “raise 
the tail” of the survival curve.35 Our findings underscore the rele-
vance of an early immunological biomarker response to the overall 
survival benefit and its potential utility as an early readout to inform 
dose and treatment decisions in drug development and clinical prac-
tice. The analyses performed by Bruno et al.36 indicate the correla-
tion of tumor growth rate (Kgrowth) estimated by TGI models as a 
good predictor of survival. Future extensions of this framework may, 
therefore, include investigation of TGI and IL- 18 and relationship to 
survival following treatment with atezolizumab or other CIT agents.

Among all the potential baseline prognostic factors screened, 
number of baseline metastatic sites, patients with liver metasta-
ses at baseline, and patient smoking status were statistically sig-
nificant covariates of SLD0, RGrowth, and KShr,Drug, respectively. 
The findings are consistent with the expectation that more 
metastases are generally correlated with larger tumor size and 

Table 1 Final parameter estimates and relative standard 
errors for the interleukin 18 (IL-18), interferon-inducible 
T-cell alpha chemoattractant (ITAC), dropout and tumor 
growth inhibition (TGI) models

Parametera
Typical value 
(RSe, %)b IIV, CV% (RSe, %)

IL- 18 model

Rin (pg/mL/day) 23.0 (12) —

kout (day−1) 0.106 (13) 47 (8.7)

Pool0 (pg/mL) 499 (18) 78 (18)

Slope (mL/μg) 0.168 (26) 80 (26)

ke0 (day−1) 4.36·10−3 (25) —

Residual error (%) 22.3 (2.5) —

ITAC model

Rin (pg/mL/day) 3.07 (24) 48 (10)

kout (day−1) 7.91·10−3 (23) —

Pool0 (pg/mL) 271 (20) 115 (15)

Slope (mL/μg) 0.0599 (35) —

Proportional residual 
error (%)

28.3 (3.9) —

Additive residual 
error (pg/mL)

51.8 (15) —

TGI model

SLD0 (cm) 4.75 (11) 62 (8.3)

RGrowth (cm/week) 0.0169 (17) 93 (17)

KShr,Drug (l/mg/day/
week)

2.75·10−6 (23) 124 (21)

λDrug (week−1) 0.0609 (8.7) —

KShr,IL-18 (1/(% week)) 0.00282 (14.1) 181 (24)

θRgrowth-LiverMets 8.48 (8.5) —

θSLD0-Mets 0.927 (27) —

θKShr,Drug-Non-Smoking 0 fixed —

Residual error (%) 13.4 (2.1) —

Dropout model

h0 (week−1) 0.0306 (1.8)

Β 1.56 (8.8)

CV%, coefficient of variation; IIV, interindividual variability; IL-18, 
interleukin-18; ITAC, interferon- inducible T- cell alpha chemoattractant; RSE, 
relative standard error; SLD, sum of the longest diameter; TGI, tumor growth 
inhibition.
aRin, zero- order input rate; kout, first- order fractional turn- over rate; Pool0, 
baseline concentration in the pool compartment; Slope, linear drug effect; ke, 
first- order effect compartment rate constant; SLD0, baseline sum of longest 
diameters; RGrowth, zero- order tumor growth rate; KShr,Drug, rate constant for 
tumor shrinkage related to drug area under the curve (AUC) in former or 
current smokers; λDrug, rate constant for reduced effect of AUC on tumor 
shrinkage; KShr,IL-18, rate constant for tumor shrinkage related to IL- 18; 
θRgrowth-LiverMets, describes the fractional change in RGrowth (1 + θ) for patients 
with liver metastases at baseline; θSLD0-Mets., describes the fractional change 
in SLD0 (1 + θ) for patients with more than two metastases at baseline; 
θKShr,Drug-Non-Smoking describes the rate constant for tumor shrinkage related to 
drug AUC in nonsmokers; h0, baseline hazard; β, parameter relating the tumor 
size to dropout. bThe RSEs related to the PK model were computed based on 
the NONMEM variance covariance matrix (sandwich matrix). For the biomarker, 
TGI and dropout models, the RSEs were computed based on the NONMEM 
variance covariance matrix (S matrix).
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the presence of liver metastases typically corresponds to larger 
disease burden, faster tumor growth, and worse treatment out-
come.37 Interestingly, current or former smokers were predicted 
to have a better drug response to atezolizumab than nonsmok-
ers, whose tumor shrinkage rates were estimated to be reduced 
in early cycles of treatment compared to smokers. The model 
estimates that tumor shrinkage in nonsmokers is predomi-
nantly driven by the IL- 18- related effect, whereas the AUC- 
related drug effect was not significantly different from zero 
(KShr,Drug = 0). This is consistent with the expectation of a higher 
tumor mutational load in smokers resulting in better immune  
recognition and, hence, an enhanced drug effect.

Future work includes external model validation, which was not 
feasible at the time of the analysis as additional clinical trials did not 
collect patient- level data for IL- 18 for atezolizumab. A limitation 
of our analysis is that, although SLD is a well- accepted measure of 
tumor burden, it is a two- dimensional approximation of tumor 
volume and does not reflect the total disease burden. Technology, 
such as 3D positron emission tomography imaging,38 may offer 
a better approximation of total disease burden for future TGI  
modeling. A key advantage of the framework described here is 
its ability to assess multiple factors systematically, taking into 

account the intersubject variability of various responses and le-
veraging the full temporal dynamics of the biomarker and tumor 
size data, resulting in further insights into patient- level responses. 
Future research in biomarker discovery and characterization may 
benefit from such an integrated approach based on a pharmaco-
metric framework that enables an effective “learn and confirm” 
cycle, with the goal of informing dose and patient selection and 
ultimately optimizing patient outcomes in personalized medicine 
(Figure 5).

METHODS
Patients and data
Serum concentrations of atezolizumab and 95 plasma immunological 
biomarkers (Table S1) were analyzed in 88 patients with relapsed/
refractory NSCLC in a first- in- human, dose- escalation phase I study, 
PCD4989g.6 Tumor size was assessed by the RECIST trial39 and SLD as 
measured by computed tomography. A summary of the dose administration, 
biomarker and PK sampling, and tumor assessment schedules is presented 
in Table 2. Additional baseline tumor biomarkers evaluated include: 
PD- L1 expression as assessed by immunohistochemistry; myeloid gene 
signature; gene expression levels of MICB and MICA genes, as assessed 
using a Fluidigm- based gene expression platform6; and epidermal growth 
factor receptor mutation status (Table S6).

Figure 3 A schematic representation of (a) tumor size, (b) atezolizumab pharmacokinetic (PK), and (c) interleukin 18 (IL-18) models and how 
they are related. Solid arrows describe mass transfers, mixed dashed and dotted arrows relate to the effect compartment, and dashed 
arrows represent the statistically identified effects. The PK of atezolizumab was described by a two- compartment model. The timecourse of 
circulating IL- 18 in plasma was described by the indirect response model, linked to a pool compartment. The increased IL- 18 concentration 
was stimulated by an effect compartment concentration of atezolizumab. The changes in tumor size (sum of longest diameter (SLD)) were 
related to the atezolizumab area under the curve (AUC), and the relative change from baseline (RCFB)IL-18,d21 (IL- 18 RCFB at day 21). CL, 
clearance; Vc, central volume of distribution; Q, intercompartmental clearance; Vp, peripheral volume. Rin, zero- order input rate; kout, first- order 
fractional turn- over rate constant; Pool0, baseline concentration in the pool compartment; Slope, parameter related to the linear drug effect; 
ke0, first- order effect compartment rate constant. RGrowth is the zero- order tumor growth rate, KShr,Drug, the tumor shrinkage rate constant 
related to drug AUC; and KShr, IL-18 tumor shrinking rate constant related to drug IL- 18, respectively, λDrug, the rate constant describing the 
diminishing effect of AUC on tumor shrinkage with time.
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Exploratory analyses to support biomarker selection for 
PK/PD tumor modeling
In order to streamline the modeling efforts, a screening procedure 
was conducted to prioritize the biomarkers of interest for PK/PD 
tumor modeling from the 95 plasma biomarkers collected, as described 
previously by Herbst et al.6 Ten of the 95 showed statistically significant 
(P value  ≤  0.05) on- treatment changes from baseline levels (Table S1), 
among which five were considered biologically relevant as proximal 
markers to the mechanism of action of atezolizumab: CD40, ICAM- 1, 

ITAC, IL- 8, and VCAM- 1. Additionally, CRP, IL- 18, and TCD8,prolif/activ 
were prioritized based on scientific interest and biological relevance. These 
eight prioritized plasma markers were then further evaluated by graphical 
exploratory analysis and inspected for biomarker response in relation to 
atezolizumab exposure and changes in tumor size. The intrapatient and 
interpatient variability in the biomarker response, as well as potential 
complementary information (i.e., lack of strong between- biomarker 
correlations) by the different biomarkers, were evaluated through visual 
inspections of the individual and group- averaged response- time profiles. 

Figure 4 Simulations of the sum of the longest diameters (SLDs) timecourse for a typical patient (former/current smoker, has two or less 
metastases at baseline, and no liver metastases at baseline) to illustrate the impact of interleukin (IL)- 18 (relative change in IL- 18 from 
baseline at day 21 (RCFBIL)-18,d21; left panel) or area under the curve (AUC) (right panel) on the tumor dynamics. Left panel: Simulations based 
on the 5th percentile (solid line), median (dashed line), and 95th percentile (dotted line) values of RCFBIL-18,d21 and an AUC of 5,600 mg/l*day. 
Right panel: Simulates based on the 5th percentile (solid line), median (dashed line), and 95th percentile (dotted line) values of patient 
clearance and associated AUC values, and a typical RCFBIL-18,d21 of 0.43.

Figure 5 Schematic representation of a flexible, quantitative pharmacometric modeling framework to integrate multidimensional patient- level 
data to inform the identification of circulating predictive biomarkers for the ultimate goal of personalized cancer treatment.
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Following exploratory analyses, these eight biomarkers were studied in the 
final analyses of nonlinear mixed effect modeling.

PK model for atezolizumab
The PK of atezolizumab was described by a fit- for- purpose, two- 
compartment population PK model with dose- linear elimination, 
developed on data from 167 patients in the PCD4989g study who 
received doses of 10, 15, and 20 mg/kg every 3 weeks. The model post hoc 
estimates were used to derive cycle- specific AUCcycle n for the 88 patients 
with NSCLC according to Eq. 2:

where Dosen is the dose administered in cycle n and CLi is the individual 
(empirical Bayes) estimate of clearance. In addition, AUCcycle1 was 
computed based on PK data from cycle 1 and tested as an alternative 
PK metric for correlation with antitumor response due to the low level 
of time- varying PK of atezolizumab (US Prescribing information, 2018). 
Parameter estimates are presented in Table S3.

Biomarker model
The change in biomarker concentration (BioM) in response to 
atezolizumab over time was evaluated by an IDR model40 with a zero- order 
input rate (Rin) and a first- order fractional turnover rate constant (kout), 
where the BioM at baseline (BioM0) is the ratio between Rin (estimated) 
and kout (estimated). Linear and saturable (Emax model) drug effect (EFF) 
models were evaluated. An Emax model did not provide a statistically better 
fit (P > 0.01) than the linear effect model. A dampening of the response 
over time was evaluated by linking a pool compartment (e.g., precursor of 
the biomarker) to the IDR model (Eq. 3)41:

where BioMpool is the biomarker concentration in the pool compartment, 
krel is the first- order rate constant for the release of biomarker from the 
pool to plasma, and BioMpool,0 (estimated) is the biomarker concentration 
in the pool compartment at baseline. The effect compartment model is 
described in Eq. 4:

where CE is the effect compartment concentration of atezolizumab, ke1 and 
ke0 are two first- order effect compartment rate constants (here; ke1 = ke0, 
estimated) and Catezolizumab is the PK model predicted atezolizumab 
concentration in the central compartment. The initial condition of CE 
was set to zero.

The observed baseline tumor size (SLD0) was evaluated as a potential 
covariate for the production (Rin) of IL- 18 and ITAC but was not 
significant (change in the OFV, ΔOFV, of 0.40 and 0.13, respectively).

A sequential method, the population PK parameters and data method,42 
was applied to estimate the PD parameters.

Tumor growth inhibition model
Change in tumor size was evaluated in three different structural TGI 
models.21,31,43 Both exponential and linear23,44 growth rate models were 
evaluated. Dose and drug exposure (i.e., AUC, Eq. 2) and model- based 
metrics of the biomarkers, including biomarker concentration over time 
(BM(t)), CFB, relative change from baseline at days 21 (RCFBBM,d21) 
and 42 (RCFBBM,d42), and cumulative AUC from baseline (AUCBM,0-t) 
for IL- 18 and ITAC, were evaluated for effect on the tumor shrinkage 
rate. Additionally, the RCFB at days 21 and 42, corresponding to 
peak levels of biomarkers, were evaluated as potential early metrics 
of response. An exponential decay in the AUC or biomarker effect 
on tumor shrinkage was investigated, as well as inclusion of an effect 
compartment. RCFBBM,d21 and RCFBBM,d42 were predicted for each 
individual from the biomarker models and set to zero before day 21 and 
day 42, respectively.

A covariate analysis was performed using the stepwise- covariate model 
building tool with P value <  0.01 level and P value <  0.001 level for 
forward selection and backward elimination, respectively. All explored 
parameter- covariate relationships are given in Table S6. Continuous 
covariates were included as power models and categorical covariates 
as a percentage of an effect relative to a reference category. The PD- L1 
expression level was evaluated as a categorical covariate (i.e., PD- L1- 
high defined as immunohistochemistry of immune cell category 3 or 
immunohistochemistry of immune tumor cell category 3 vs. all other 
categories) in the TGI model. Nine patients (~10%) did not have known 
PD- L1 expression values due to insufficient tumor contents from the 
collected biopsy samples and were excluded from the covariate analysis 
when PD- L1 expression was evaluated (Table S5).

A time- to- event model for dropouts was developed for model 
evaluation by VPC and to avoid potential bias in the simulated tumor size 
in comparison to clinical trial observations. A dropout event was assumed 
to occur 3 weeks after the last tumor observation time. The baseline hazard 
(h0(t)) was evaluated as an exponential and as a Weibull distribution. 
Potential predictors of dropout were explored, alone and in combination, 

(2)AUCcyclen=
Dosen
CLi

(3)

dBioMpool

dt
=Rin−krel ⋅BioMpool ⋅ (1+EFF)

dBioM
dt

=krel ⋅BioMpool ⋅ (1+EFF)−kout ⋅BioM

krel=kout ⋅
BioM0

BioMpool,0

(4)
dCE

dt
= ke1 ⋅Catezolizumab−ke0 ⋅CE

Table 2 Summary of dosing, PK, and biomarker sampling as 
well as tumor size assessment schedules in patients with 
NSCLC in the PCD4989g study

Dosing and sampling/
assessment Description

Dosing schedule 30–60 min I.V. infusion of 
atezolizumab every 3 weeks

Dosage 10–20 mg/kg or a fixed dose of 
1,200 mg* 
*1 patient received 16 cycles of 1 mg/
kg doses

PK sampling schedulea Predose in cycles 1–8, 10, 12, 14–16, 
and ≥17; 30 minutes after end of 
infusion in cycles 1–7; 1, 3, 7, and 
14 days after end of infusion in cycle 1

Biomarker sampling schedule

All biomarkers (except 
TCD8,prolif/activ)

b
Predose in cycles 1–4 and 7; 
30 minutes, 1 day and 7 days after end 
of infusion in cycle 1

TCD8,prolif/activ Predose in cycle 1–3 and 5

Tumor assessment 
schedule

Every 6 weeks for 24 weeks and every 
12 weeks thereafter until disease 
progression, death, or further systemic 
cancer therapy

NSCLC, non- small cell lung cancer; PK, pharmacokinetic; TCD8,prolif/activ, 
activated and proliferating CD8 T cells.
aThe PK sampling scheduled varied for patients allocated to dose expansion or 
dose escalation cohorts. b“All biomarkers except TCD8,prolif/activ” were: 
C- reactive protein, CD40 antigen, intercellular adhesion molecule 1, 
interferon- inducible T- cell alpha chemoattractant, interleukin 18, interleukin 8, 
and vascular cell adhesion molecule 1.
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on the hazard (h(t)), Eq. 5:

where β1 and β2 are parameters describing the effect of the predictors 
x1 and x2.

Model simulation of AUC and IL- 18 effect on tumor size
The tumor size kinetic profile for a reference patient with NSCLC 
(two or less metastases at baseline, no liver metastases at baseline, and 
former/current smoker) given a fixed dose of 1,200 mg atezolizumab was 
simulated. Three different values corresponding to the 5th, 50th, and 95th 
percentiles of estimated AUC and the RCFBIL-18,d21, respectively, were 
used in the simulations.

Model development
The first- order conditional estimation method with interaction and the 
Laplacian estimation method were used for parameter estimation for the 
biomarker, and tumor size and the dropout models using NONMEM 
version 7.3.45 Data management, graphical evaluation, and further 
processing of the NONMEM output were performed using R software 
version 3.1.2 (https://www.R-project.org). The Perl- speaks- NONMEM 
toolkit version 4 was used to execute model runs and automate processes, 
such as VPCs, and to perform covariate model building.46 The R- based 
packages Xpose version 4 and ggplot2 version 1.0.0 (www.ggplot2.org) 
were used for model diagnosis and graphical explorations. Simulations 
based on the different biomarker variable values were performed in 
Berkeley Madonna.47

Discrimination between models was primarily based on inspection of 
graphical diagnostics and changes in the OFV (i.e., −2 × log- likelihood) 
using the likelihood ratio test. Given that models are nested, the ΔOFVs 
are nominally χ2 distributed and the additional number of parameters 
(larger to smaller model) is the degree of freedom. A P value of <  0.01 
was used for significance testing. VPCs and pcVPCs48 were generated to 
evaluate the predictive performance of the models, given the observed data.

The data were log- transformed and the residual error was modeled as 
being additive and proportional for the ITAC model, but proportional 
for the IL- 18 and TGI models on the log- scale. Other error models were 
explored when misspecification was indicated based on the graphical 
diagnostics. Interindividual variability was assumed to be log- normally 
distributed with a mean of 0 and a variance of ω2.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version 
of this article on the Clinical Pharmacology & Therapeutics website 
(www.cpt-journal.com).

Figure S1. The relative change in biomarker level from baseline (at day 
21) vs. the relative change in tumor size from baseline (at the end of 
cycle 6) for the eight evaluated biomarkers.
Figure S2. Prediction corrected visual predictive check (pcVPC) of the 
population pharmacokinetic (PK) model for atezolizumab applied to 
the 88 patients with non- small cell lung cancer, where the structural 
parameters were estimated as: clearance (CL), 0.233 l/day; volume 
of distribution (Vc), 3.35 l; intercompartmental clearance (Q), 0.452 l/
day; peripheral volume of distribution (Vp), 3.36 l.
Table S1. Peripheral biomarkers (n = 95) evaluated using Rules 
Based Medicine (Myriad RBM), MESO Scale Discovery (MSD), and 
fluorescence- activated cell sorter (FACS) panels.
Table S2. Number of observations above the limit of quantification 
(LOQ) and tumor size assessments.
Table S3. Final parameter estimates and relative standard errors 
(RSE) for the population PK model.
Table S4. Summary of objective function values (OFVs) of selected 

tumor growth inhibition (TGI) models evaluated with different predic-
tors of tumor shrinkage.
Table S5. Summary statistics of baseline covariates evaluated during 
the TGI model development.
Table S6. Parameter- covariate relationships explored in the covariate 
analysis.
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