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Abstract For the past two decades, genetics has been
widely explored as a tool for unraveling the pathogenesis of
diabetes. Many risk alleles for type 2 diabetes and
hyperglycemia have been detected in recent years through
massive genome-wide association studies and evidence
exists that most of these variants influence pancreatic [3-
cell function. However, risk alleles in five loci seem to have
a primary impact on insulin sensitivity. Investigations of
more detailed physiologic phenotypes, such as the insulin
response to intravenous glucose or the incretion hormones,
are now emerging and give indications of more specific
pathologic mechanisms for diabetes-related risk variants.
Such studies have shed light on the function of some loci
but also underlined the complex nature of disease mecha-
nism. In the future, sequencing-based discovery of low-
frequency variants with higher impact on intermediate
diabetes-related traits is a likely scenario and identification
of new pathways involved in type 2 diabetes predisposition
will offer opportunities for the development of novel
therapeutic and preventative approaches.
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Introduction

Type 2 diabetes and its complications are major global
health problems due to dramatically increasing prevalence
in both the Western world and in the developing countries
[1]. Type 2 diabetes is characterized by obesity, insulin
resistance, and a relative decrease in insulin release from
the 3-cell. The diminished insulin response is seen as a
missing first-phase insulin release after glucose stimulation
and also following stimulation with nonglucose secreta-
gogues such as the incretin hormones, glucagon-like
peptide-1 (GLP-1), and gastric inhibitory polypeptide. The
decreased insulin sensitivity seen in type 2 diabetes patients
primarily affects the liver and peripheral tissue leading to
increased hepatic glucose output and diminished glucose
uptake by skeletal muscle and adipose tissue.

Despite the crucial etiologic role of lifestyle and
environmental factors it has for years been recognized that
genetic factors are important for the development of type 2
diabetes and related intermediary metabolic traits. The
evidence of a genetic component in the pathogenesis of
type 2 diabetes and related traits comes from studies of
large families, twins and sibpairs, and from adoption
studies. Type 2 diabetes clusters in families and offspring
have a lifetime risk of developing type 2 diabetes of 35% if
one parent has type 2 diabetes and 70% if both parents have
type 2 diabetes compared with 10% in the general
population [2], translated to a sibling relative risk of 2 to
3 [3]. In studies of monozygotic and dizygotic twins the
relative importance of genetic and nongenetic factors can be
estimated rather precisely under the assumption that twin
pairs share the same prenatal and postnatal environment
and that twins resemble singletons according to the
phenotype in question [4]. Heritability estimates from twin
data have shown variable concordance rates of type 2
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diabetes in monozygotic twins from nearly 100% in early
studies [5] to more modest rates ranging from 35% to 70%
in later reports, as opposed to 20% to 30% in dizygotic
twins [6—8]. Similarly, high degrees of heritability of
diabetes-related traits have been found. In studies applying
intravenous glucose tolerance test (IVGTT), heritability
estimates of the acute insulin response to glucose ranged
from 35% to 76% [9—11]. Also, the insulin response to
nonglucose stimuli is influenced by genetic factors as
heritability of GLP-1- and arginine-stimulated insulin
release has been estimated to 53% and 80%, respectively
[12]. Both basal and insulin-stimulated glucose uptake are
also in part genetically determined, with heritability
estimates ranging from 40% to 60% [10, 12, 13].

Since 1992, several genetic subtypes of monogenic
diabetes have been described in which gene mutations result
in diabetes primarily through (-cell dysfunction. This new
knowledge means that patients who were previously catego-
rized clinically as having maturity-onset diabetes of the
young (MODY), permanent neonatal diabetes mellitus, or
transient neonatal diabetes mellitus can now usually be
classified by genetic subgroup. Definition of the genetic
subgroup can result in appropriate treatment, genetic
counseling, and prognostic information. In contrast, progress
in identification of the genetic variants influencing predispo-
sition to common forms of type 2 diabetes has, until recently,
been slow. The candidate-gene approach has brought some
success; however, the overall yield of confirmed disease-
susceptibility genes gathered by this approach has been
limited. Technologic advances have provided tools for
simultaneous genotyping of hundreds of thousands of single
nucleotide polymorphisms (SNPs) in individual samples.
This has allowed researchers to perform genome-wide
association studies (GWAS) that do not rely on prior
assumptions regarding biological candidacy, and which are
capable of identifying associations within genes that had little
or no previous credibility as disease candidates. Even though
the unraveling of the molecular pathogenesis of type 2
diabetes is still in its infancy, the last few years have brought
some very interesting progress leading to the firm establish-
ment of many genomic loci as contributing etiologic factors
in common metabolic traits as type 2 diabetes.

The objective of this review is to summarize the current
human physiologic knowledge of all gene variants with a
validated impact on type 2 diabetes or traits of glucose
homeostasis.

Physiology of Diabetes-Related Loci
Since the discovery of risk variants in PPARG in 1998,

KCNJII in 2003, and TCF7L2 in 2006, the emergence of
GWAS in 2007 combined with access to large well-
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powered study populations has quickly expanded the list
of validated type 2 diabetes susceptibility alleles [14]. Now
38 loci have shown association with type 2 diabetes at a
genome-wide significance level (P<5x10"®%). Besides from
GWAS of type 2 diabetes in case-control settings, knowl-
edge of the genetic mechanisms in type 2 diabetes has come
from GWAS of diabetes-related phenotypes such as fasting
and 2-h levels of glucose and insulin during an oral glucose
tolerance test (OGTT). These consortium studies have
generated a list of 16 loci associated with fasting glucose
and five loci associated with 2-h glucose levels [15¢, 16],
partly overlapping with each other and with the list of type
2 diabetes loci. All loci with a genome-wide significant
association with type 2 diabetes or traits of glucose
homeostasis are summarized in Table 1.

Given that most risk variants have been detected by the
agnostic GWAS approach, the knowledge of the underlying
phenotype leading to type 2 diabetes or altered glucose
levels is at first very limited for most loci. Several studies
have subsequently been performed with the objective to
unravel intermediary phenotype of these loci to obtain a
more detailed biological knowledge initially seeking to
break the diabetes-related phenotype for each locus into the
major components of type 2 diabetes pathogenesis being
insulin release, insulin sensitivity, and obesity. These
studies have taught us that a substantial part of the inherent
susceptibility for type 2 diabetes relates to the extent to
which pancreatic (-cell function can be maintained
(Table 1). This opposes the viewpoint that the majority of
type 2 diabetes genes inflict a state of insulin resistance
with the (-cell simply failing to respond to the lifelong
state of increased insulin demand.

Loci Primarily Associated with Type 2 Diabetes

The pancreatic 3-cell has an imperative function to
maintain the glucose level and malfunctions in this cell
are a requisite for development of type 2 diabetes. The
function of the [-cell can be evaluated in humans in
different ways. Often the glucose-stimulated release of
insulin or C-peptide during an OGTT has been used;
however, to map (3-cell defects in more detail, a range of
more precise measures are warranted (eg, estimation of the
acute insulin response after intravenous glucose adminis-
tration, which provides an estimate of the incretin-
independent (3-cell function). Also, insulin release during
a hyperglycemic clamp in combination with injection of
incretins, sulfonylurea, glucagon, or arginine can be used to
identify the more specific site of (-cell malfunction.
Furthermore, a detailed understanding of genetically caused
[3-cell dysfunction will often be difficult to reach without
also understanding the simultaneous and confounding effect
of the mutation in other islet cell types and/or other tissues.
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Table 1 Overview of the physiologic impact of loci associated with a diabetes-related trait at genome-wide significance®

Nearest gene(s)

Lead SNP®

Genome-wide significantly

associated trait

Other reported association with
physiologic phenotypes

Proposed mechanism

Variants with an effect on (3-cell function

KCNJ11
ABCCS

TCF7L2

WFSI

HHEX
IDE

SLC3048

CDKALI

CDKN24
CDKN2B

IGF2BP2

KCNQI

JAZF1

rs5219
(E23K)

rs7901695
17903146

rs10010131

rs1111875
1s5015480

1513266634
(R325W)

rs10946398

rs10811661

154402960

rs2237895

rs864745

T2D

T2D, FG, 2 h-G

T2D

T2D

T2D, FG

T2D

T2D

T2D

T2D

T2D

Reduced insulin release during
OGTT [20, 31, 34]

Increased glucagon levels
during hyperglycemic

clamp [79]

Impaired conversion of
proinsulin to insulin

[39, 40e, 80]

Reduced insulin release during
OGTT [34, 40e-, 80, 81]
Reduced incretin effect

[42, 43., 44, 45]

Reduced glucagon levels [44]

Reduced insulin release during
OGTT [18, 19, 46]

Reduced GLP-1 induced insulin
release during hyperglycemic
clamps [46]

Reduced insulin release during
OGTT [22¢], 23¢, 24, 34]

Borderline significant reduced

insulin release during IV glucose

stimulation [22¢, 24, 35-37]
Reduced birth weight [67, 82]

Impaired conversion of
proinsulin to insulin [39, 40¢¢]
Reduced insulin release during
OGTT [24¢, 30, 34, 40°°]
Reduced insulin release during
IVGTT [24-, 25]

Impaired conversion of
proinsulin to insulin [39]
Reduced insulin release during
OGTT [21, 23+, 34]

Reduced insulin release after IV

glucose stimulation [35, 83]

Reduced birth weight [67, 82, 84]

Reduced insulin release during
OGTT [22-, [30]

Reduced insulin release during
IVGTT [22¢]

Reduced insulin release during
OGTT [22e, 30, 34]

Reduced insulin release during
IVGTT [22-, 35]

Reduced insulin release after IV

tolbutamide stimulation [22¢]
Reduced insulin release during
OGTT [28, 47]

Reduced glucose-stimulated
incretin secretion [47]
Reduced insulin release derived
from OGTT [26]

Impaired (3-cell function
and impaired glucagon
suppression

Impaired incretin-stimulated
insulin release

Impaired expression of
prohormone convertases

Impaired incretin-stimulated
insulin release

3-cell dysfunction

Impaired formation of
insulin granules impairing
insulin release

3-cell dysfunction

3-cell dysfunction

[3-cell dysfunction

Decreased incretin
secretion

Possibly -cell
dysfunction
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Table 1 (continued)

Nearest gene(s) Lead SNPP Genome-wide significantly Other reported association with Proposed mechanism
associated trait physiologic phenotypes
CDC123 1512779790 T2D Reduced insulin release during Reduced -cell mass
CAMKID OGTT [26]
Reduced arginine-stimulated
and second-phase
glucose-stimulated insulin
release during hyperglycemic
clamp [48¢]
THADA 187578597 T2D Reduced GLP-1—and Reduced B-cell mass
(T1187A) arginine-stimulated insulin due to increased
release during hyperglycemic apoptosis
clamp [48¢]
MADD 157944584 FG Higher fasting proinsulin [40e¢] Insulin processing
defect
ADRA2A rs10885122 FG Reduced insulin release during [3-cell dysfunction
OGTT [66]
TSPANS 157961581 T2D Reduced insulin release during Possibly (3-cell
OGTT [26] dysfunction
MTNRIB rs10830963 FG, Reduced insulin release during Impaired melatonin-
OGTT [27e, 29, 34, 400, 64] stimulated insulin
T2D Reduced insulin released during release
IVGTT [29, 34, 48e, 64]
FADSI rs174550 FG Reduced insulin release during [3-cell dysfunction
OGTT [40ee, 606]
GLIS3 157034200 FG Reduced insulin release during Possibly B-cell
OGTT [66] dysfunction
C2CD4B rs11071657 FG Reduced insulin release during Impaired insulin
OGTT [40ee, 66] processing
Increased fasting proinsulin [40e] and release
PROXI 1s340874 FG, T2D Reduced insulin release during [3-cell dysfunction
OGTT [40e-, 66]
GCK rs1799884 FG, T2D Increased glucose levels during Increased glucostatic set
(-30G>A) OGTT [59] point and impaired
Reduced insulin release derived 3-cell function
from OGTT [40e¢]
DGKB 152191349 FG, T2D Reduced insulin release during [3-cell dysfunction
TMEM195 OGTT [40e°, 66]
G6PC2 1s560887 FG Increased insulin release during Unknown
OGTT [40ee, 65]
Increased insulin release during
IVGTT [65]
Increased basal hepatic glucose
production [65]
Decreased risk of T2D [16, 63]
GIPR rs10423928 2 h-G Reduced insulin release during Impaired incretin-stimulated
OGTT [15¢, 40]e insulin release
Increased fasting proinsulin [40++]  Impaired insulin processing
Impaired incretin effect [15¢]
CENTD?2 rs1552224 T2D Lower HOMA-B [49] Impaired (3-cell function
Variants with an effect on insulin sensitivity
PPARG rs1801282 T2D Decreased insulin sensitivity Whole-body insulin resistance
(P12A) derived from IVGTT and
hyperinsulinemic-euglycemic
clamp [51]
ADAMTSY rs4607103 T2D Reduced insulin-stimulated Peripheral insulin resistance
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glucose uptake during
hyperinsulinemic-euglycemic
clamp [53]
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Table 1 (continued)

Nearest gene(s) Lead SNPP Genome-wide significantly Other reported association with Proposed mechanism
associated trait physiologic phenotypes
Increased glucose-stimulated
insulin release [48, 53]
GCKR 15780094 FG, T2D, 2 h-G, triglyceride = Increased insulin resistance Hepatic insulin
derived from fasting and OGTT resistance
[16, 40se, 55, 57]
rs1260326 Increased insulin-stimulated
(L446P) hepatic glucose output [56]
IRS1 152943641 T2D Increased insulin resistance Whole-body insulin
derived from fasting and resistance
OGTT [52¢°]
IGF1 1s35767 FI Increased HOMA-IR [16] Whole-body insulin
Decreased OGTT-based insulin resistance
sensitivity [40e¢]
Variants with an effect on adiposity
FTO rs8050136 BMI, T2D¢ BMI-dependent insulin Increased BMI-dependent
1s9939609 resistance [70, 71] insulin resistance
Variants with unknown physiology
HNFI1B 154430796 T2D Unknown
ADCYS5 rs11708067 FG, 2 h-G, T2D, Decreased birth weight [67, 68] Unknown
1s2877716 birth weight
NOTCH?2 rs10923931 T2D Unknown
CRY2 rs11605924 FG Unknown
SLC242 rs11920090 FG Unknown
RBMS1 rs7593730 T2D Increased HOMA-IR [54] Unknown
KLF14 1s972283 T2D Increased fasting insulin Unknown
and HOMA-IR [49]
BCLI1IA 15243021 T2D Unknown
ZBED3 rs4457053 T2D Unknown
TP53INPI 1s896854 T2D Unknown
CHCHD?Y 1513292136 T2D Unknown
KCNQI 15231362 T2D Unknown
HMGA2 rs1531343 T2D Unknown
HNFI14 157957197 T2D Unknown
ZFANDG6 rs11634397 T2D Unknown
PRCI 158042680 T2D Unknown
DUSP9 1s5945326 T2D Unknown
VPS13C rs17271305 2 h-G Unknown

BMI body mass index, FG fasting glucose, FI fasting insulin, GLP-1 glucagon-like peptide-1, HOMA-B homeostasis model assessment of (3-cell
function, HOMA-IR homeostasis model assessment of insulin resistance, IV intravenous, /VGTT intravenous glucose tolerance test, OGTT oral
glucose tolerance test, SNP single nucleotide polymorphism, 72D type 2 diabetes, 2 h-G 2-h glucose

® All effects are stated for the allele increasing risk of T2D or increasing fasting/2 h-G or insulin

® Functional SNPs in bold
°FTO is only associated with T2D when not adjusting for the effect on BMI

Numerous studies have been performed investigating the
glucose-stimulated insulin response in carriers and non-
carriers of type 2 diabetes risk alleles and have shown that
many of these variants affect this aspect of diabetes
pathogenesis. This is the case for risk alleles in or near
KCNJI11, TCF7L2, WFSI, CDKN24, HHEX, IGF2BP2,

CDKALI, SLC3048, JAZF1, CDC123, TSPANS, MTNRIB,
and KCNQI [17-21, 22e, 23e, 24, 25, 26, 27, 28-31],
although results for some of the recently identified diabetes
risk variants are somewhat conflicting [26, 32-34]. Grow-
ing evidence supports the notion that these risk alleles
influence different aspects of (3-cell function. CDKALI,
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CDKNZ2A, HHEX, IGF2BP2, MTNRIB, and SLC30A48 have
been shown to inflict lower insulin response to intravenous
glucose, indicating an incretin-independent pathogenesis
[22e, 24e, 25, 27es, 29, 35-37]. For SLC30A8 a rather
detailed knowledge of diabetogenic mechanisms has been
disclosed. The SLC30A8 association signal is limited to an
interval containing a single biological candidate, a zinc
transporter expressed exclusively in (3-cells and implicated
in the maintenance of insulin granule function [38]. The
strongest association is with a SNP that changes the amino
acid structure of the encoded protein (R325W,) which may
well be the causal variant. Carriers of the R325W variant
are characterized by a reduced serum insulin response
following both an intravenous and an oral glucose
challenge and with defective proinsulin conversion as
indicated by higher fasting and orally glucose-stimulated
proinsulin levels [21, 24e, 39, 40e]. It is speculated
whether the R325W variant also indirectly has an effect
on glucagon secretion from o« cells via an altered zinc
release from the (-cells [41]. Stimulating the SLC30A48-
encoded zinc transporter production and/or activity may
potentially be a novel approach in the treatment of type 2
diabetes patients, in who zinc depletion is likely to
participate in both acute and chronic (3-cell dysfunction.

Decreased incretin secretion and/or signaling could also be
involved in altered -cell function. A recent study investi-
gated detailed phenotypes in a small number of TCF7L2 risk
and non-risk allele carriers and observed a 30% lower {3-cell
sensitivity to incretins in risk-allele carriers [42], which is in
line with earlier observations [43e, 44, 45]. The genotype-
specific incretin-induced insulin release has also been tested
for other diabetes-related risk alleles and, besides TCF7L2,
risk alleles in or near KCNJ11, KCNQI, WFSI, and THADA
influence secretion or action of the incretin hormones as
evidenced by studies of hyperglycemic clamp combined
with GLP-1 infusion [46, 47, 48+]. Recently, the DIAGRAM
(Diabetes Genetics Replication and Meta-analysis) consor-
tium published the results of an updated meta-analysis
combining eight GWAS (8130 type 2 diabetes cases and
38,987 controls in the discovery data), additionally identify-
ing 12 novel type 2 diabetes loci including a new
independent signal in KCNQ! [49]. No detailed physiologic
studies have been published on these loci but the discovery
paper investigated the basal homeostasis model assessment
(HOMA) indices of [3-cell function and insulin resistance in
about 37,000 individuals. These data suggest that the
diabetes-risk allele in CENTD?2 is associated with lower
basal (3-cell function, whereas the KLF'/4 locus may inflict
risk of diabetes by increasing insulin resistance [49]. If
confirmed, the KLF'14 locus will add to the rather short list
of diabetogenic alleles with an effect on this major
component of type 2 diabetes pathogenesis.
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Years ago, it was recognized that the P12A variant in
PPARG, an important transcription factor regulating adipo-
cyte differentiation, lipid and glucose homeostasis, and
insulin sensitivity, had a type 2 diabetogenic effect caused
by lower insulin sensitivity in peripheral insulin target
tissues [50, 51]. More recently, a variant located 500 kb
upstream of /RSI was demonstrated to increase risk of type
2 diabetes and decrease insulin sensitivity through lowering
of expression of /RS/ and diminishing insulin signaling
[52¢¢]. The ADAMTSY diabetes-associated allele has also
been associated with decreased insulin sensitivity, as
estimated from the euglycemic-hyperinsulinemic clamp
[53]; however, others investigating fasting and OGTT-
based insulin sensitivity indices have not been able to
detect a significant effect [26, 33]. Future larger studies
estimating tissue-specific insulin sensitivity and/or meta-
analysis may clarify these inconsistencies. Although it
seems evident that PPARG primarily exerts its effect in
adipose tissue and /RS possibly in skeletal muscle, the
putative tissue-specific site of action for ADAMTSY has not
been determined. One may argue that the lack of effect on
basal HOMA of insulin resistance (HOMA-IR) in large
samples reflects that a possible insulin-desensitizing effect
is not acting in the liver.

In the spring of 2010 a GWAS was published demon-
strating the genome-significant association of a SNP near
RBMS]1 [54]. Of interest, the lead SNP showed borderline
significant association with increased insulin resistance as
estimated from HOMA-IR in data provided by the MAGIC
(Meta-Analysis of Glucose and Insulin-related Traits
Consortium). Despite the huge sample size, the impact on
measures of insulin resistance needs validation and refining
in further studies.

Finally, variation in GCKR has also been shown to
influence insulin action. Initially, GCKR was found to
associate with increased triglyceride levels [55]. Subse-
quent studies identified the nonsynonymous GCKR P446L
variant to be the functional variant and demonstrated that
the allele reported to be associated with elevated triglycer-
ide levels also associated with decreased plasma glucose
levels and vice versa. The genome-wide significant type 2
diabetes risk allele also associated with elevated fasting
glucose and elevated levels of insulin during OGTT,
demonstrating an insulin resistance phenotype as the
probable cause of type 2 diabetes [15, 16, 56, 57]. The
association with OGTT-based insulin sensitivity indices
was replicated in 2010 in a large-scale meta-analysis
including OGTT data on about 15,000 participants [40e°].
GCKR associates with basal HOMA-IR, with glucose-
stimulated insulin sensitivity, and in a small study sample
with increased hepatic glucose output during hyperinsuli-
nemia [56].
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Loci Primarily Associated with Quantitative Traits
in Glucose Homeostasis

Also, GWAS of quantitative diabetes-related traits have
contributed to the genetic understanding of type 2 diabetes
and intermediate phenotypes. Mutations in GCK cause a
mild subtype of MODY and also the common -30G>A
polymorphism of the (-cell specific GCK promoter is an
important player in regulation of fasting glycemia in the
general population [58, 59]. Interestingly, despite acting as
the glucose sensor of the P-cell and despite conferring a
replicated allelic approximately 0.06-mM change in fasting
plasma glucose levels, this variant has shown inconsistent
association with glucose-stimulated insulin release [40ee,
59] and only modest association (OR, 1.05) with type 2
diabetes [16].

By the first wave of GWAS two additional loci, G6PC2
and MTNRIB, regulating fasting glucose levels were
identified [27s, 60—63]. Initial and subsequent studies have
implicated variants in MTNRIB in the risk of type 2
diabetes and decreased insulin release after both oral and
intravenous glucose stimulation, thereby seemingly acting
independent of the incretin hormones [27¢¢, 64]. Although
variants in MTNRIB show the expected relationship
between effects on fasting glucose, type 2 diabetes, and
pancreatic [3-cell function, a variant in the G6PC2 locus
surprisingly shows association with elevated fasting glu-
cose, decreased risk of type 2 diabetes [16, 63], increased
risk of impaired fasting glycemia, [65] and increased (3-cell
function after both oral and intravenous glucose loads [40¢e,
65]. In addition, weak association with increased insulin-
stimulated hepatic glucose output has been reported [65].
These complex results leave no clear physiologic footprint
because they are not concordant with merely an elevation of
the glucostatic set point. However, it has been suggested
that results are due to an imbalance between GCK and
G6PC?2 leading to disturbance of the pulsatile insulin
secretion, which is correlated with oscillations in glycolysis
[40+]; yet, this hypothesis remains to be tested.

Recent analyses of quantitative glucose traits in huge
GWAS meta-analyses performed by MAGIC including
more than 45,000 individuals in the discovery stage
found a total of 16 loci associated with fasting glucose
levels, two loci associated with fasting insulin and
HOMA-IR, and five loci associated with 2-h glucose
levels during an OGTT [15¢, 16]. As might be expected,
the list of fasting and 2-h glucose-associated loci is partly
overlapping with each other and with the list of type 2
diabetes loci (Table 1).

Of the five known and novel loci associated with 2-
h OGTT plasma glucose, the GIPR glucose-raising allele
showed a strong effect on orally glucose-stimulated insulin

release in about 19,500 individuals in the initial discovery
paper [15¢]. A lack of influence on intravenous glucose-
stimulated insulin in 1509 individuals and a diminished
incretin effect when comparing insulin response to oral
versus intravenous glucose give evidence of an incretin-
mediated mechanism [15¢]. Paradoxically, this variant only
showed nominal significant low-impact association (OR,
1.07) with type 2 diabetes [15¢]. Notably, the lead SNP,
rs10423928, is in strong linkage disequilibrium (LD) (°=
0.93) with the nonsynonymous GIPR E354Q substitution,
which is likely to be the functional variant. The other novel
variants associated with 2-h plasma glucose during an
OGTT in the ADCY5 and VPSI3C loci show no clear
diabetes-related intermediate phenotype [16 ,40ee, 66],
although ADCY5 has been associated with decreased birth
weight [67, 68]. Another variant in ADCYS in high LD was
simultaneously associated with both fasting glucose and
type 2 diabetes [16], yet does not associate with interme-
diary phenotypes of glucose metabolism [40ee, 66].

In contrary, of the 10 novel fasting glucose-raising
alleles, many show association with decreased insulin
release during OGTT indicating a general (3-cell dysfunc-
tion. This seems to be the case for variants in DGKB,
C2CD4B, GLIS3, ADRA2A4, PROX1, and FADSI [40+e, 66].
Interestingly, alleles at TCF7L2, SLC30A48, GIPR, and
C2CD4B loci showed increased fasting proinsulin levels
in a large sample size of more than 17,000 individuals in
addition to decreased orally stimulated insulin release
[40+<], supporting earlier observations in smaller settings
for TCF7L2 and SLC30AS risk alleles [39]. This indicates a
state of 3-cell stress with deficient insulin processing and
accumulation of insulin precursor molecules as the inter-
mediate mechanism for (3-cell dysfunction, hyperglycemia,
and overt type 2 diabetes. For TCF7L2, an additional or
alternative mechanism for elevated proinsulin levels might
be decreased expression of both major genes involved in
proinsulin processing (PCSK! and PCSK?2), which contain
TCF7L2 binding sites in their promoters.

One novel locus, /IGFI, was associated with fasting
insulin and HOMA-IR [16] and the effect on insulin
resistance has since been replicated by OGTT-based insulin
sensitivity indices [40e¢]. However, the effect is minute
(0.5-2% change per allele) and was not statistically
significant in 5722 Danish individuals [66] nor in intrave-
nous measurements in 3195 individuals of the former study
[40ee].

Loci Primarily Associated with Adiposity
Obesity is a major characteristic of type 2 diabetes and one

might expect the existence of many common susceptibility
alleles for obesity and type 2 diabetes. However, GWAS of
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type 2 diabetes and obesity and subsequent association
studies have showed that this is not the case. To date, only
variation in 7O has been convincingly shown to impact
type 2 diabetes by an intermediate effect on body mass
index (BMI) and adiposity [69]. In addition, variation in
FTO has revealed association with metabolic phenotypes
showing the expected insulin resistance phenotype [70, 71];
however, these effects can be fully explained by the
correlation between BMI and traits of insulin resistance
[72]. Interestingly, a significant interaction between the
FTO variant and low physical activity on body fat
accumulation and insulin sensitivity has been reported [70].

What Have We Learned?

Genetic Overlap Between Type 2 Diabetes and Diabetes-
Defining Glucose Traits

As evidenced by the former sections and by Table 1, many
loci showing genome-wide significant association with type
2 diabetes and quantitative traits of glucose homeostasis
have been detected. Given the fact that diabetes is defined
by glucose levels in the fasting state and at 2 h during an
OGTT, one would intuitively expect a considerable overlap
between the predisposing genetic factors for these three
entities. However, recent discoveries have shown that this is
not the case. Some loci (eg, TCF7L2, SLC30A48, and
GCKR) show a validated association with both fasting
glucose and type 2 diabetes, yet other loci associate only
with fasting or 2-h glucose levels (eg, SLC2A42) or type 2
diabetes (eg, HNFIB and JAZFI). At the extremity, the risk
allele near G6PC?2 both increases fasting glucose [60, 61]
and decreases risk of type 2 diabetes [16, 63].

This apparent paradox raises some interesting issues to
be considered. First, quantitative GWAS of glucose traits
have all been performed in nondiabetic individuals from the
general population, whereas type 2 diabetes loci have been
found in studies of disease cases and population controls.
Therefore, it is possible that the genetic determinants of
glucose levels in the general population are somewhat
different from the genetic elements pushing glucose levels
to diabetes-defining levels. In this sense diabetes-associated
alleles without an impact on glucose levels in the general
population would act above a certain glucose threshold.
Second, the impact of genetic variants may be age-
dependent because quantitative investigations have fore-
most been performed in middle-aged individuals, whereas
ascertained type 2 diabetes cases are generally older. Yet of
importance, these coherences between glucose-raising and
diabetes-associated alleles may change considerably when
causal alleles of the known loci are found. Interestingly,
there seems to be an equal fraction of loci with an impact
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on f(-cell function among glucose-raising alleles and
diabetes-associated alleles (Table 1).

The Combined Effect of Multiple Risk Alleles

As evidenced above and in Table 1, the majority of
diabetes-related SNPs seem to inflict a change in the
function of the pancreatic (-cell. Besides SNP-by-SNP
studies, this phenomenon has also been investigated in
studies combining suspected [3-cell gene variants. In 2008,
Pascoe et al. [73] found an additive effect of [3-cell risk
alleles in CDKALI, HHEX, and TCF7L2, which was also
demonstrated in a German study of TCF7L2, CDKALI,
HHEX, and SLC30A48 [74]. Also, a Swedish prospective
study found a relative decline in (3-cell function in the
quintile of participants carrying the highest number of type
2 diabetes risk alleles [30].

Based on estimates from population-based Inter99 of
5722 nondiabetic individuals, it is evident that the common
variants depicted in Fig. 1 and Table 1 individually only
have a minor effect on the examined trait. The combined
impact of multiple alleles can also be investigated in
relation to the extent to which they explain variation in
the trait of interest in the general population. The variants
depicted in Fig. 1 explain 4% to 6% of the total
interindividual variation in insulinogenic index and only
1% to 3% of variation in ISI Matsuda. These figures show
that a minor part of the genetic origin of diabetes-related
intermediary traits in the general population has been
elucidated, telling us that future studies likely will uncover
many more risk loci. Also, insights into structural variation,
gene-gene and gene-environment interactions, and epige-
netic modifications are likely to explain the so-called
missing heritability.

Estimation of the Key Diabetes-Related Components:
Insulin Release and Insulin Sensitivity

For genetic studies of complex traits such as type 2
diabetes, it has in the last decade been acknowledged that
large sample sizes are necessary to estimate the low-impact
association with confidence. This development is also
reflected in GWAS sample sizes, which now exceeds
120,000 participants including replication sample sets
[16]. Also, follow-up studies in cohorts with more detailed
diabetes-related phenotypes now frequently include more
than 5000 individuals and, recently, the first systematic
meta-analysis was performed gathering OGTT data from
more than 15,000 participants [40+¢]. Yet, the sample sizes
used to investigate more detailed physiologic traits are
severely impeded by low sample size. This is the case for
studies applying IVGTT, hyperglycemic-hyperinsulinemic
or euglycemic-hyperinsulinemic clamp techniques and



Curr Diab Rep (2010) 10:485—497

493

:
pc2
0.10}-.. ocercz
:
E OGCKR. OSsLC2A2
© ; |
0 — IRS1 !
| O MADD
>T< 0.05 o oFfo. ' OvsPiaC
WFSH.. .
3 OWFs: ONO'TCH2 OADCY5
£ N '_G_FJ_Q _________________________
o 0.00 OFADS1 ADAMTS
= OCRY2 O JAZF1
S KCNJ1'10 DGKB %—|83OTSPAN8
(@)
E | ©GCK OTH;‘DA - OTCF7L2 oco'c\;%msa X
g -0.05 IGF2BP2 CZCD4B OKCNQT
E O MTNRIB 513048
4 © ADRA2A
3 -0.107] E ©CDKALT
o 1
| ©GIPR
= :
| © HHEX
-0.15 :
| | |
-0.10 -0.05 0.00 0.05

Resistant «— ISI Matsuda — Sensitive

Fig. 1 Graphic representation of association with insulin sensitivity
(ISI Matsuda) in relation to association with glucose-stimulated
insulin release (insulinogenic index) for 36 single nucleotide poly-
morphisms (SNPs) with a validated impact on diabetes-related traits in
5722 nondiabetic participants of the population-based Inter99 cohort.
The effect sizes are expressed as allelic change in fraction of a
standard deviation and have been estimated applying a linear

entails low statistical power, risk of type 2 errors, and
inability to draw robust inferences of no association.
Furthermore, many associations seen in such well-
characterized samples have only been observed in a single
study calling for independent replication.

Several indices of insulin release and insulin sensitivity
based on fasting and OGTT data have been validated
against more precise measures, the objective being to
enable large-scale, low-cost estimation of the primary
intermediate components of glucose homeostasis. These
estimates have in genetic studies been used to classify
diabetes-related risk alleles into broad functional classes
such as ones having an impact on insulin release or insulin
sensitivity. Yet the question remains whether fasting and
OGTT-based indices can also serve to subclassify genetic
effects to designate a more precise physiologic mechanism.

What’s Next?
Functional Characterization of Diabetes-Related Loci
For most loci summarized in Table 1, the causal gene and

mutation leading to the described phenotype has not been
determined; instead, these variants may just as well be

regression model adjusted for sex and age. SNPs represented by
green dots associate with altered (3-cell function using the insulino-
genic index (P<0.05), SNPs shown in red dots associate with altered
insulin sensitivity using the Matsuda insulin sensitivity index (ISI
Matsuda), and SNPs shown in blue associate with altered (-cell
function and altered insulin sensitivity. [SI—insulin sensitivity index

markers of indirect association. However, for a few loci the
molecular effect of the actual causal variant has been
discovered opening for much more detailed studies of
phenotype and the underlying biology. One such example is
GCKR for which the initial GWAS SNP marker has been
refined by fine-mapping to a nonsynonymous variant
(P446L) [56], which was subsequently demonstrated to
change regulation of GCK in the liver and thereby influence
metabolic phenotypes [75]. The functional variant (R325W)
in the SLC30A8 locus has also been established and the first
functional studies reported demonstrating a role in insulin
granule storage [76]. However, these two examples are
special cases because the initial GWAS lead SNP was a
nonsynonymous variant or in high LD with a HapMap-
genotyped nonsynonymous obvious candidate mutation.
Other loci in which a probable functional variant has
been found includes GIPR, GCK, and PPARG. In the
KCNJII locus two nonsynonymous variants in two
different genes (KCNJI1l E23K and ABCC8 S1369A) in
high LD (+°=0.98 [31]) exist. A recent functional study
provided evidence for an alteration of the function of the
ATP-sensitive potassium channel in the (3-cell, encoded by
KCNJI1l and ABCCS, when these two variants were
coexpressed [77], possibly explaining previous inconclu-
sive reports of investigations of a single mutation. This
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example also illustrates the extreme complexity and
challenge in finding causal and functional variants in the
many recently identified risk loci. For the remaining loci
fine-mapping efforts and functional studies are needed to
detect and characterize the mutation of interest. Identifica-
tion of the functional variants will guide the design of more
detailed physiologic studies, which will pave the road for a
much deeper understanding of the disease mechanisms at
the whole body level.

Discovery of Novel Loci

Despite the high number of validated variants with an
impact on diabetes-related intermediary traits the
explained proportion of variance is rather low, indicating
the existence of further genetic susceptibility elements. It
seems likely that future studies will discover more
common risk variants by GWAS of type 2 diabetes and
related traits in even larger samples. However, these
variants will probably inflict very modest risk increments
and physiologic characterization of such loci will be
extremely challenging. Yet, also future decently powered
GWAS of specific intermediate phenotypes may discover
novel variants, presumably including variants with larger
impact on these intermediate traits.

Another avenue in the search for gene variants that
impact on the components of type 2 diabetes will probably
come from the emerging sequencing studies detecting
variation at low frequency in the population. It has been
proposed that accumulation of multiple mildly deleterious
rare, but not monogenic, gene variants in individual human
genomes has a huge impact on the genetic basis for
complex diseases contributing with a large relative risk at
the individual level [78]. From studies of MODY we know
that rare variants can cause Mendelian disease, which
affects the (3-cell, and it is conceivable that low-frequency
variation will have a large impact in certain subsets of the
population. The most efficient way to uncover such
variation may be to sequence individuals at the ends of
distributions of the quantitative trait of interest. The specific
physiologic defects could then be investigated in detailed
studies of in vivo physiology in individuals recruited by
genotype in supplement to association studies at the
population level.

Study Designs and Samples for the Study of Quantitative
Diabetes-Related Traits

As alluded to previously, the sample size of most studies
of detailed human physiology in relation to genetic
variants are small, with less than 1000 participants in
clamp and IVGTT studies. To close in on the more
specific physiology behind crude type 2 diabetes associ-
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ations and thereby to learn important lessons on biology
of type 2 diabetes, more individuals have to be studied
with standardized detailed physiologic methods. In the
near future these aspects need evaluation and the scientific
community and funding agencies will need to consider
spending more money on phenotypic characterization of
large study samples. Of interest are also large prospective
studies that will tell us about the time-dependent and
lifestyle-dependent nature of risk allele penetrance.

Conclusions

Many risk alleles for type 2 diabetes and hyperglycemia
have been detected in the recent years and evidence exists
that most of these variants influence pancreatic (3-cell
function. Investigations of more detailed physiologic
phenotypes, such as of the insulin response to intravenous
glucose or the incretion hormones, are now emerging and
give indications of more specific pathologic mechanisms
for diabetes-related risk variants. Such studies have shed
light on the function of some loci but also underlined the
complex nature of disease mechanism. In the future the
sequencing-based discovery of low-frequency variants with
higher impact on intermediate diabetes-related traits is a
likely scenario.
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