
Application of weighted gene co-expression
network analysis to identify novel key genes in
diabetic nephropathy
Zheng Wang†, Xiaolei Chen†, Chao Li†, Wanxin Tang*
Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Keywords
Connectivity map analysis, Diabetic
nephropathy, Weighted gene co-
expression network analysis

*Correspondence:
Wanxin Tang
Tel.: +86-189-8060-1208
Fax: +86-028-64441357
E-mail address:
kidney123@163.com

J Diabetes Investig 2022; 13: 112–124

doi: 10.1111/jdi.13628

ABSTRACT
Aims/Introduction: Diabetic nephropathy (DN) is among the leading causes of end-
stage renal disease worldwide. DN pathogenesis remains largely unknown. Weighted gene
co-expression network analysis is a powerful bioinformatic tool for identifying key genes
in diseases.
Materials and Methods: The datasets GSE30122, GSE104948, GSE37463 and GSE47185
containing 23 DN and 23 normal glomeruli samples were obtained from the National
Center for Biotechnology Information Gene Expression Omnibus database. After data pre-
processing, weighted gene co-expression network analysis was carried out to cluster sig-
nificant modules. Then, Gene Set Enrichment Analysis-based Gene Ontology analysis and
visualization of network were carried out to screen the key genes in the most significant
modules. The connectivity map analysis was carried out to find the significant chemical
compounds. Finally, some key genes were validated in in vivo and in vitro experiments.
Results: A total of 454 upregulated and 392 downregulated genes were identified. A
total of 16 modules were clustered, and the most significant modules (green, red and
yellow modules) were determined. The green module was associated with extracellular
matrix organization, the red module was associated with immunity reaction and the
yellow module was associated with kidney development. We found several key genes in
these three modules separately, and part of them were validated in vivo and in vitro
successfully. We found the top 15 chemical compounds that could perturb the overall
expression of key genes in DN.
Conclusion: Weighted gene co-expression network analysis was applied to DN expres-
sion profiling in combination with connectivity map analysis. Several novel key genes and
chemical compounds were screened out, providing new molecular targets for DN.

INTRODUCTION
Diabetic nephropathy (DN) is among the leading causes of
end-stage renal disease worldwide1–3. The classical pathological
characteristics of DN include excessive organization and accu-
mulation of extracellular matrix (ECM) that finally deteriorates
into nodular glomerulosclerosis4,5. Stimulated by advanced gly-
cation end-products, Smad1 can upregulate the expression of
Col4a1/a2, the main component of ECM, and then cause
mesangial area expansion; meanwhile, the upstream bone mor-
phogenetic protein 4 could regulate Smad1, thereby showing

that the bone morphogenetic protein 4/Smad1 signaling path-
way plays an important role in DN6–8. Furthermore, the
Notch1/Jagged1 and Wnt/b-catenin signaling pathways report-
edly regulate the organization of ECM in DN9–13.
The immune system also plays a key role in DN. The innate

immune and complement systems are involved in DN develop-
ment, whereas cell-mediated immunity in DN requires further
investigation14–16. Previous studies have shown that excessively
activated T cells are related to proteinuria in DN, but the speci-
fic mechanism remains unclear17. Subsequent studies suggested
that it might be related to the increased infiltration of activated
CD3+, CD4+ and CD8+ T cells in the renal interstitium. Mean-
while, the interferon-c and tumor necrosis factor-a produced

†These authors contributed equally to this work.
Received 23 December 2020; revised 18 June 2021; accepted 5 July 2021

112 J Diabetes Investig Vol. 13 No. 1 January 2022 ª 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

ORIGINAL ARTICLE

https://orcid.org/0000-0001-6709-5591
https://orcid.org/0000-0001-6709-5591
mailto:
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30122
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104948
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37463
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47185
http://creativecommons.org/licenses/by-nc-nd/4.0/


by CD3+ T cells increased, which could lead to inflammatory
responses in DN18,19. Relevant studies showed that DN could
be alleviated by inhibiting the activation of T cells20,21.
However, information on the molecular mechanism remains

incomplete, and these previous studies insufficiently provided
global evidence on the molecular characteristics of DN. Thus, a
new and systematic research strategy is required. Weighted
gene co-expression network analysis (WGCNA), a new and
powerful bioinformatics analysis method, can construct scale-
free gene co-expression networks and identify functionally simi-
lar modules by analyzing gene expression profiles and calculat-
ing the gene-weighted correlation. Furthermore, a relationship
network and significant modules can be constructed. Thus,
WGCNA is widely implemented in medical research on topics
such as clear cell renal cell carcinoma, hepatocellular carcinoma,
Schmid-type metaphyseal chondrodysplasia and others, thereby
leading to research progress22–25.
In the present study, after the integration of different batches

of gene expression profiling microarray data, we used WGCNA
to construct a scale-free network and identified significant mod-
ules in DN. Then, we used Gene Set Enrichment Analysis
(GSEA) on significant modules to screen key Gene Ontology
(GO) terms. We also visualized and analyzed the networks of
the key GO terms to identify key genes. Next, we carried out
connectivity map analysis based on the key genes to determine
the chemical compounds perturbing the overall expression of
the key genes in DN. Finally, we constructed the animal and
cell models of DN to verify some key genes obtained by
WGCNA to provide new key molecular targets and data
resources for DN pathogenesis research.

MATERIALS AND METHODS
Searching and downloading of microarray data
Microarray datasets of DN were downloaded from the National
Center for Biotechnology Information Gene Expression Omni-
bus (GEO) database (http://www.nibi.nih.gov/geo/) with the fol-
lowing search strategies: (i) keyword ‘diabetic nephropathy’; (ii)
expression profiling of Homo sapiens; and (iii) glomeruli tissue.
Four datasets, namely, GSE30122, GSE104948, GSE37463 and
GSE47185, were obtained. By comparing the samples informa-
tion, we deleted some duplicate samples in DN and normal
samples. Thus, a total of 23 DN samples and 23 normal glo-
meruli samples were used in the present study. However, the
clinical information is not available in the GEO database. All
the raw data were downloaded for further analysis.

Data pre-processing
Raw data were imported into an R Affy package (version
1.66.0, Harvard School of Public Health, Boston, MA, USA)
using the robust multichip analysis algorithm for background
correction, the quantile method for normalization and log2
transformation. The three microarray datasets are from differ-
ent batches based on the Affymetrix platform. Thus, to merge
the datasets and remove the batch effect, we implemented the

ComBat method by using the R sva package (version 3.28.2,
Department of Biostatistics, Bloomberg School of Public Health,
Johns Hopkins University, Baltimore, ML, USA)26.

Identification of differentially expressed genes
We used the linear fit method, Bayesian analysis and t-test
algorithm in the R package limma (version 3.36.5, Bioinformat-
ics Division, The Walter and Eliza Hall Institute of Medical
Research, Parkville, Victoria, Australia.) to identify the differen-
tially expressed genes (DEGs) between DN and the normal
controls. The values of adjusted P < 0.05 and |log2FC|≥0.585
(fold change) were set as the cut-off criteria.

Selection of genes for WGCNA
Before genes were selected for WGCNA, we identified and
removed the outlier samples. A hierarchical cluster analysis was
carried out in the R. Regarding gene selection, the genetic vari-
ance in the DN samples was calculated. The top 30% of genes
with the largest variance were selected for WGCNA.

Identification of soft-thresholding power (b)
Soft-thresholding power (b) should be determined to identify a
network that satisfies a scale-free topology. We implemented
the pickSoftThreshold function of WGCNA package (version
1.64.1, Department of Human Genetics and Department of
Biostatistics, University of California, Los Angeles, CA, USA) to
calculate the scale-free topology fit index and mean connectivity
of each power. If the value of the scale-free topology fit index
was > 0.9 for low powers (<30), and the mean connectivity
was as large as possible, then the soft-thresholding power (b)
was determined.

Construction of weighted gene co-expression networks
One-step function blockwiseModules were used to construct
the WGCNA and identify the modules. To identify the mod-
ules, the related parameters were set as follows: minModuleSize
was 30, and mergeCutHeight was 0.25. To further evaluate the
interaction of all modules, eigengene adjacency was calculated
by the flashClust function. A heatmap was operated to visualize
the correlations of each module.

Identification of important modules
Several modules were obtained by WGCNA. Combined differ-
ential expression analysis was carried out to identify the module
with a high correlation with DN. First, the average values of
the |log2(FC)| of genes were calculated in each module. Then,
the average values of -Log (adjusted P-value) of genes were cal-
culated. Only the module whose value was highest in both cal-
culations was considered the most significant to DN.

GSEA and visualization of DEGs in selected modules
We imported the most significant modules into R and clus-
terProfiler package (version 3.5, Institute of Life and Health
Engineering, Key Laboratory of Functional Protein Research of
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Guangdong Higher Education Institutes, Jinan University,
Guangzhou, People’s Republic of China) using predefined gene
sets from the Molecular Signatures Database (MSigDB v5.0) to
carry out GO enrichment analysis, including biological process
(BP), cellular component (CC) and molecular function gene
sets. To identify the key genes in each module, the relationships
among genes were visualized.

Connectivity map analysis
To connect the disease–gene–drug, we carried out the connectiv-
ity map analysis using a gene expression profile database compris-
ing cultured human cells treated with bioactive small molecules.
First, we established the gene query signature of DN derived from
the aforementioned analysis results. Then, the pattern-matching
algorithms were implemented to score each reference profile data
with the query signature for the direction and strength of enrich-
ment through the online tool https://clue.io/cmap27.

Cell culture
The rat glomerular mesangial cells were cultured in Dulbecco’s
modified Eagle’s medium containing 5.6 mmol/L glucose. The
medium was supplemented with 5% fetal bovine serum, and
1% penicillin and streptomycin. The culture was grown in a
5% CO2 humidified atmosphere at 37°C. The cells were pas-
saged at 80% confluence. The confluent cells were grown in
serum-free Dulbecco’s modified Eagle’s medium for 24 h before
the experiments. The mesangial cells were then cultured with
normal glucose (5.6 mmol/L glucose), high glucose (30 mmol/L
glucose) or high osmolarity (osmotic control; 5.6 mmol/L glu-
cose + 24.4 mmol/L mannitol) for 24, 48 and 72 h. Condition-
ally immortalized murine podocyte cells were cultured at 33°C
in RPMI medium 1,640 supplemented with 10% fetal bovine
serum and 10 U/mL mouse recombinant interferon-c. To
induce differentiation, podocytes were grown at 37°C in the
absence of interferon-c for 14 days before the experiments.
Podocytes were then maintained in normal glucose (5.6 mmol/
L), passaged at 80% confluence. The cells were then cultured
with normal glucose (5.6 mmol/L glucose), high glucose
(30 mmol/L glucose) or high osmolarity (osmotic control;
5.6 mmol/L glucose + 24.4 mmol/L mannitol) for 24, 48 and
72 h, respectively.

Establishment of DN rat models
Specific pathogen-free male Sprague–Dawley rats (200–250 g
and 8 weeks old) were obtained from the animal center of the
Sichuan University, Chengdu, Sichuan, China, and fed on stan-
dard food and water. All animal experiments were carried out
in the Experimental Animal Facility of West China Hospital,
Sichuan University. The animals were randomly distributed
into two groups, namely the control and DN groups (n = 6).
After a week of adaptive feeding and fasting, 1% streptozotocin
(STZ) solution was administered by intraperitoneal injection at
a dose of 65 mg/kg, whereas the control group was injected
with the same amount of citrate buffer. After 3 days, the rats’

blood glucose levels were measured. A blood glucose level of at
least 16.7 mmol/L for 3 consecutive days represented the devel-
opment of diabetes mellitus. Rats of the control and DN groups
were killed at 0 and 20 weeks. The right kidney was immedi-
ately removed, fixed by 4% paraformaldehyde, embedded by
paraffin and made into serial sections.
All animal procedures were approved by the Institutional

Animal Care and Use Committee of Sichuan University (ap-
proval number: 2018012A; date: 9 October 2018).

Quantification by real-time quantitative polymerase chain
Total ribonucleic acid (RNA) was extracted from mesangial
cells and podocytes by Trizol (Biotek, Winooski, VT, USA).
Reverse transcription of total RNA was operated by the Reverse
Transcription Kit (Thermo Scientific, Waltham, MA, USA).
Then, the SYBR Premix Ex Taq (Takara Bio, Kusatsu, Japan)
was used in a Bio-Rad CFX96 Real PCR System (Bio-Rad, Her-
cules, CA, USA.) to detect messenger RBA (mRNA) expres-
sions. The primers used for quantitative polymerase chain
reaction amplification are listed in Table S1. Finally, the fold
changes of genes were calculated by the method 2–DDCt.

Immunohistochemistry
The paraffin-embedded slides of kidney tissue were deparaf-
finized and dehydrated. After eliminating endogenous peroxi-
dase activity, antigen retrieval and blocking non-specific
antigen, the slides were incubated with primary antibody
(PYCARD1:100; LUM 1:100; COMP 1:100) overnight at 4°C.
Then, a biotin-labeled secondary antibody working solution
was added, and the slides were incubated. Next, the horseradish
peroxidase-labeled streptavidin was dropped to the slices, and
they were incubated before staining with 3,30-diaminobenzidine
and counterstaining with hematoxylin. After conventional
dewatering and neutral balsam mounting, photographs were
blindly taken at random fields under a fluorescence microscope
(AX10 imager A2/AX10 Cam HRC, Carl Zeiss AG, Oberko-
chen, Germany). The slides were digitized and analyzed by
Image Pro Plus 6.0 (Media Cybernetics, Inc., Rockville, MD,
USA).

Statistical analysis
Bioinformatic analysis was carried out in R platform (version
3.5.1). The results of validation experiments are presented as
the mean – standard error of the mean. One-way ANOVA was
used for comparison among groups, and Student–Newman–
Keuls test was used for multiple comparison by SPSS software
(SPSS, Chicago, IL, USA). P < 0.05 was considered statistically
significant. Data visualization was carried out by GraphPad
Prism 6.0 (GraphPad, San Diego, CA, USA).

RESULTS
Evaluation and preparation of data
Four microarray datasets, namely, GSE30122, GSE104948,
GSE37463 and GSE47185, were hit and downloaded from the
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GEO, then the duplicate samples were excluded. After back-
ground correction, normalization and log2 transformation,
batch effect removal was carried out to eliminate systematic
and technical differences between different platforms and data-
sets (Figure 1a,b).
The dendrogram of DN samples was used to identify and

discard the outlier samples in DN. As shown in Figure 1c, all
23 DN samples were clustered and reserved for the subsequent
analysis. Finally, 23 DN samples and 23 normal samples were
included.
After calculating the variance of genes in the DN samples,

3,731 genes obtained from 23 DN samples were operated in
the WGCNA by the one-step function.
Identification of DEGs was carried out and visualized by a

volcano plot (Figure 1d). A total of 454 upregulated genes and
392 downregulated genes were included. The number of upreg-
ulated genes (red plots) presented a pattern similar to that of
downregulated genes (green plots). The distribution of genes
was continuous. The hemoglobin subunit beta, nicotinamide N-
methyltransferase, C-X-C motif chemokine ligand 6, comple-
ment C1q B chain and complement C3 were the top five
upregulated genes, whereas AP-1 transcription factor subunit,
albumin, beta-1,3-galactosyltransferase 2, carbonic anhydrase 10
and cathepsin V were the top five downregulated genes. Fur-
thermore, the total DEGs in DN are shown in Table S2. After
data pre-processing, the quality of our data was suitable for the
next WGCNA.

Construction of gene co-expression networks and
identification of modules
Before WGCNA, we implemented the pickSoftThreshold func-
tion to raise the soft-thresholding powers for the calculation of
the scale-free topology fit index and mean connectivity in
WGCNA. As shown in Figure 2a, when the power was 8, the
scale-free topology fit index was nearest 0.9, thereby showing
that the networks were scale-free. Thus, the power 8 was
selected as the soft-thresholding value.
After hierarchical clustering tree analysis based on co-

expression relationships, 16 modules were identified and labeled
with different colors (Figure 2b). The gray module was particu-
larly reserved for genes that can no longer be clustered into speci-
fic modules and that feature low intramodular connectivity.
The network heatmap plot (Figure 2c) shows the topological

overlap matrix among all genes in the modules with each mod-
ule showing independent validation to each other. To further
evaluate the interaction of all modules, eigengene adjacency was
calculated (Figure 2d). Based on co-expression relationships,
the modules were distinguished well among one another.
Finally, the WGCNA network data were obtained and prepared
for the subsequent analysis.

Selection of significant module
In the identified modules, the average values of |log2(FC)| and -
Log (adjusted P-value) of genes were calculated. Higher average

values of the |log2(FC)| of genes in the module implied higher
differential gene expression level, indicating that the modules
were more significant and functional in the disease. As shown
in Figure 3a, the values of the green, red and yellow modules
were the highest among the 16 modules. A higher value of -
Log (adjusted P-value) presented a higher statistical significance.
As shown in Figure 3b, the values of the green, red and yellow
modules also remained the highest. Therefore, considering these
results, the green, red and yellow modules were the most signif-
icant and valuable for further analysis.

GSEA analysis and visualization of significant modules
To analyze the related functions of these three modules, GO
enrichment based on the GSEA analysis was carried out.
The results of the green module are shown in Figure 4a.

Most GO terms were related to ECM organization. Especially
in BP, ECM organization (GO: 0030198), extracellular structure
organization (GO: 0043082) and collagen catabolic process
(GO: 0030574) were ranked at the top three of the GO terms.
Figure 4b shows the chord diagram of the BP in the green
module to identify the key genes. The upregulated genes FN1
(fibronectin 1), LUM (lumican), THBS2 (thrombospondin 2),
TGFBI (transforming growth factor beta induced) and COMP
(cartilage oligomeric matrix protein), and the downregulated
genes CYR61 (cysteine rich angiogenic inducer 61), FGB (fib-
rinogen beta chain) and CRISPLD2 (cysteine rich secretory pro-
tein LCCL domain containing 2) were the key genes in the
green module based on the weighted correlations.
The results of the red module are shown in Figure 4c. Most

GO terms were related to immunity and inflammation. Espe-
cially in BP, T-cell activation (GO:0042110) was ranked at the
top of the GO terms. Figure 4d shows the chord diagram of
the BP in the red module. The upregulated genes TRBC1 (T-
cell receptor beta constant 1), PYCARD (PYD and CARD
domain containing), CCL19 (C-C motif chemokine ligand 19),
CCL5 (C-C motif chemokine ligand 19) and CORO1A (coro-
nin 1A), and the downregulated gene ZBTB16 (zinc finger and
BTB domain containing 16) were the key genes in the red
module based on the weighted correlations.
The results of the yellow module are shown in Figure 4e.

Most GO terms were related to kidney development. Especially
in BP, kidney development (GO:0001822), renal system devel-
opment (GO:0072001) and urogenital system development
(GO:0001655) were ranked at the top three of the GO terms.
Figure 4f shows the chord diagram of the BP in the green
module to identify the key genes. The upregulated genes
GPM6B (glycoprotein M6B), GCNT3 (glucosaminyl [N-acetyl]
transferase 3, mucin type), PGF (placental growth factor),
AGTR1 (angiotensin II receptor type 1) and SIM1 (single-
minded family BHLH transcription factor 1), and the downreg-
ulated genes LOX (lysyl oxidase), LPL (lipoprotein lipase),
NPHS1 (nephrin), PLCE1 (phospholipase C epsilon 1) and
bone morphogenetic protein 4 were the key genes in the green
module based on the weighted correlations.
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Figure 1 | Evaluation and preparation of data. (a) Overall expression levels of all samples in the microarray after normalization. (b) The batch
removal of the samples. The first line shows the distribution of the data after batch removal. The second line shows the distribution of the original
data. (c) Clustering dendrogram of 23 diabetic nephropathy samples used to detect outliers. The vertical axis represents the cut height. The
branches of the dendrogram represent the samples that are clustered together. (d) Volcano plot of differentially expressed genes. Differentially
expressed genes in diabetic nephropathy were compared with those in normal samples. Green, red and gray plots represent downregulated,
upregulated and non-significant genes, respectively. The horizontal axis represents the log2(FC), whereas the vertical axis represents the -Log10
(adjusted P-value).
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Results of the connectivity map
We established the DN gene query signature based on the
aforementioned results. The top 10 upregulated genes were
FN1, LUM, THBS2, TGFBI, COMP, PYCARD, CCL19, CCL5,
CORO1A and FCGR2B (Fc fragment of immunoglobulin G
receptor IIb). The downregulated genes were CYR61, ELF3

(E74 like ETS transcription factor 3), FGB, CRISPLD2, GATA6
(GATA-binding protein 6), IGFBP1 (insulin-like growth factor-
binding protein 1), ZBTB16, SEMA4D (semaphoring 4D),
ENPEP (glutamyl aminopeptidase) and GHR (growth hormone
receptor). We carried out the connectivity MAP analysis. The
signature file was imported into the online tool of connectivity
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Figure 2 | Construction of gene co-expression networks and identification of modules by weighted gene co-expression network analysis. (a)
Analysis of different soft-thresholding power network topology for constructing the scale-free network. The left panel shows the scale-free topology
model fit, signed R2 (y-axis) as a function of the soft-thresholding power. The red line shows that the value of the y-axis is 0.9. The right panel
represents the mean connectivity (y-axis) as a function of the soft-thresholding power. (b) Cluster dendrogram of genes in diabetic nephropathy
samples with dissimilarity based on topological overlap. The different color row below the dendrogram represents module membership clustered
by the dynamic tree cut method. (c) Network heatmap plot. Branches in the hierarchical clustering dendrograms correspond to each module on
the left and top of the dendrograms. In this heatmap, the progressively more saturated yellow and red colors indicate the high co-expression
interconnectedness. (d) Heatmap plot of the adjacencies of modules. The colors of columns and row squares represent the adjacency of
corresponded modules. Red represents high adjacency, whereas blue represents low adjacency.
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MAP. The results are shown in Table 1, which shows that the
scores of these top 15 chemical compounds, including tri-
clabendazole, altizide, triamcinolone, QL-XII-47 and meman-
tine, were negative. These findings showed that the overall
perturbation of DN by these chemical compounds was opposite
to those of the aforementioned genes. Thus, these compounds
or their analogs might potentially play antagonistic roles
in DN.

Gene expression validation in vitro
The green module is closely related to ECM organization,
whereas the red module is associated with T cell activation.
The representative genes we selected were the most obviously
changed in these two modules.
We focused on these 13 key genes that all played pivotal

roles in DN, as follows: the upregulated genes Fn1, Lum, Thbs2,
Tgfbi and Comp, and the downregulated genes Fgb and
Crispld2 in the green module; and the upregulated genes Trbc1,
Pycard, Ccl19, Ccl5 and Corp1a, and the downregulated gene
Zbtb16 in the red module. We validated the expressions of
these 13 hub genes in the DN model in vitro (Figure 5).
Quantitative real-time polymerase chain reaction showed that

the mRNA levels of COMP, LUM, THBS2, ZBTB16, PYCARD,
CCL19, CORO1A and CCL5 were upregulated, and that of
CRISPLD2 was downregulated after they were stimulated by
high glucose. The changes in these expression levels were con-
sistent with the bioinformatic analysis results of all genes except
for ZBTB16. Meanwhile, the osmotic pressure did not affect the

level of gene expression. The expressions of Fn1, Tgfbi, Fgb
and Trbc1 changed, but the difference was not statistically
significant.

Gene expression validation in vivo
In the present study, we verified the expressions of the proteins
encoded by COMP, LUM and PYCARD genes at 0 and
20 weeks in DN rats.
Figure 6a shows the immunohistochemical staining of

PYCARD in the glomeruli. The staining of the glomerular
mesangial area deepened. The IOD/area at 0 and 20 weeks
were 0.171629 – 0.0082202 and 0.223739 – 0.009221, respec-
tively, and the P-value was <0.001, Figure 6b shows the
immunohistochemical staining of COMP in the glomeruli. The
figure shows that the glomerular mesangial area had deepened
staining. The IOD/area at 0 and 20 weeks were
0.1468 – 0.002612 and 0.26029 – 0.00511, respectively, and the
P-value was <0.001.
Figure 6c shows the immunohistochemical staining of LUM

in the glomeruli. The figure shows that the staining of the
glomerular mesangial area deepened. The IOD/area at 0 and
20 weeks were 0.1387 – 0.00673 and 0.2205 – 0.01882, respec-
tively, and the P-value was <0.001.

DISCUSSION
DN is the leading cause of end-stage renal disease worldwide.
The pathogenesis of DN is not well known. ECM proliferation,
immune system and inflammatory response play key roles in
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Figure 4 | Gene Ontology (GO) enrichment analysis and network visualization of green, red and yellow modules. (a) The diagram of the GO
enrichment based on the Gene Set Enrichment Analysis (GSEA) analysis in the green module. In the left part, the horizontal axis represents the
z-score of GO terms, whereas the vertical axis represents the term of the -Log (adjusted P-value). The green nodes represent the biological process
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DN development and progression. In the present study, we car-
ried out a bioinformatics analysis on DN. We obtained the
transcriptome data of DN from the GEO database. After pre-
processing the raw data, we constructed the WGCNA network
based on the gene expression patterns. Through GO enrich-
ment analysis by GSEA, we found some of the most significant
gene sets related to various aspects of DN, including ECM
organization, T-cell activation and kidney development.
In the green module, the most significant gene set is related

to ECM organization. The expressions of LUM, THBS2 and
COMP were significantly upregulated under the stimulation of
high glucose, and these genes were reportedly associated with
the formation of ECM in other diseases28–31. Thus, we con-
cluded that these genes play important roles in DN by promot-
ing ECM organization. Under the stimulation of high glucose,
the expression of CRISPLD2 was downregulated. This gene is
novel and not well known. Considering the results of

bioinformatics analysis and verification, we hypothesized that
this gene could ameliorate DN by inhibiting ECM organization.
In the red module, the most significant gene set is related to

T-cell activation. The expressions of TRBC1, PYCARD, CCL19,
CCL5 and CORO1A were upregulated over time under the
stimulation of high glucose in the early stages of DN, and these
findings were consistent with the results of bioinformatics anal-
ysis. Thus, T-cell activation might be regulated by these genes.
Then, the activated T cells act as the initiating factor that
results in the occurrence of immune and inflammatory
responses. With DN development, excessive amounts of T cells
are continuously activated, further intensifying the responses
and aggravating the disease. However, the expression of
ZBTB16 was inconsistent with the results of the bioinformatics
analysis. ZBTB16 is reportedly associated with metabolic syn-
dromes32. Furthermore, ZBTB16 could regulate the maturation
of innate lymphoid cells (ILCs) through T helper cells; the ILCs
play important roles in renal inflammation and fibrosis in
DN33–37. We hypothesized that in the early stage of DN, ILCs
play a vital role along with upregulated ZBTB16. With DN
development, the function of ILCs declines, and ZBTB16
expression is downregulated.
Through the analysis of the connectivity map database, we

found some of the most significant chemical compounds. These
compounds have opposite effects on the gene expression of
DN, indicating their potential interference effects on DN. For
example, the microtubule inhibitor, triclabendazole, could inhi-
bit the upregulated genes and activate the downregulated genes,
thereby possibly correcting the overall gene expression levels to
achieve a balanced state in DN.
The p38 mitogen-activated protein kinase (MAPK) signaling

pathway plays a key role in DN, leading to albuminuria and
glomerular mesangial expansion, and affecting DN prognosis38–
40. Therefore, the inhibition of p38 MAPK signaling pathway
can effectively ameliorate DN41–43. PD-169316 is a novel inhibi-
tor of the p38 MAPK pathway in DN. Therefore, PD-169316
and its related derivatives could possibly be used to treat DN,
because they inhibit the p38 MAPK pathway.

Table 1 | Top 15 chemical compounds in connectivity map

Name Score Description

Triclabendazole -98.41 Microtubule inhibitor
Altizide -94.08 Thiazide diuretic
Triamcinolone -92.74 Glucocorticoid receptor agonist
QL-XII-47 -91.6 BTK inhibitor
Memantine -90.21 Glutamate receptor antagonist
Etamivan -90.07 Respiratory stimulant
Fluocinolone -89.82 Glucocorticoid receptor agonist
Dexketoprofen -88.99 Cyclooxygenase inhibitor
Niridazole -88.53 Phosphofructokinase inhibitor
Triciribine -88.08 AKT inhibitor
Beclometasone -87.47 Glucocorticoid receptor agonist
Azacitidine -87.07 DNA methyltransferase inhibitor
Ketoprofen -87.02 Protein synthesis inhibitor
PD-169316 -86.01 p38 MAPK inhibitor
Cytochalasin-D -85.97 Actin polymerization inhibitor

AKT, serine threonine kinase; BTK, Bruton’s tyrosine kinase; DNA, deoxyri-
bonucleic acid; MAPK, mitogen-activated protein kinase.

(BP) GO term. The red nodes represent the cellular component (CC) GO term. The blue nodes represent the molecular function (MF) GO term. The
top 10 most significant GO terms are ranked in the right part. (b) The chord diagram of the weighted gene co-expression network analysis
(WGCNA) network in the green module. The node represents the genes of top five GO term clusters in the green module. The edges of genes
represent genes’ weighted correlation in the sub-network. The depth of color represents the fold change values of the gene. (c) The diagram of
GO enrichment based on the GSEA analysis in the red module. In the left part, the horizontal axis represents the z-score of GO terms, whereas the
vertical axis represents the term of the -Log (adjusted P-value). The green nodes represent the BP GO term. The red nodes represent the CC GO
term. The blue nodes represent MF GO term. The top 10 most significant GO terms are ranked in the right part. (d) The chord diagram of the
WGCNA network in the red module. The node represents the genes of the top five GO term clusters in the green module. The edges of genes
represent genes’ weighted correlation in the sub-network. The depth of color represents the fold change values of the gene. (e) The diagram of
the GO enrichment based on the GSEA analysis in the yellow module. In the left part, the horizontal axis represents the z-score of GO terms,
whereas the vertical axis represents the term of the -Log (adjusted P-value). The green nodes represent the BP GO term. The red nodes represent
the CC GO term. The blue nodes represent the MF GO term. The top 10 most significant GO terms are ranked in the right part. (f) The chord
diagram of the WGCNA network in the yellow module. The node represents the genes of the top five GO term clusters in the green module. The
edges of genes represent the genes’ weighted correlation in the sub-network. The depth of color represents the fold change values of the gene.
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Autophagy in kidney has protective effects that could influ-
ence the outcome of DN44–46. Microtubules consist of
microtubule-associated proteins and are reportedly involved in
autophagy47,48. We also found triclabendazole, a microtubule
inhibitor. Thus, we believe that triclabendazole and its deriva-
tives can ameliorate DN by repairing the injured autophagy in
the kidney.
Serine threonine kinase (Akt), a multifunctional serine thre-

onine kinase, is involved in various signal pathways. It could
participate in the occurrence and development of DN through
Akt-related signal pathways. Akt-related inhibitors could signifi-
cantly ameliorate the clinical manifestation of DN49–52. Tricirib-
ine is a novel Akt inhibitor in kidney diseases. We
hypothesized that triciribine and its derivatives are drugs that
can potentially ameliorate DN by inhibiting Akt-related signal
pathways.
Other compounds, such as triamcinolone, fluocinolone and

beclometasone, are glucocorticoid receptor agonists that can
regulate glucose and lipid metabolism, and immune and

inflammation response, and can be used as an intervention for
DN in the early stage.
The present study featured various advantages. First, we used

WGCNA, a powerful and prevalent method to cluster signifi-
cant genes. Second, we implemented the connectivity map anal-
ysis in DN for the first time to identify disease-related
compounds. Third, some key genes were validated successively
in vitro and in vivo. However, the study suffers from certain
limitations. Gene expression levels at different DN stages were
not obtained. In addition, the clinical information of data from
GEO was unavailable. Thus, the relationship between gene
expression values and clinical features has not been determined.
In the in vivo experiments, it would be more vigorous to evalu-
ate the mRNA expressions of the genes of interest using iso-
lated glomeruli. Additionally, using STZ-induced diabetic rats
with insulin treatment as controls to eliminate the possibility
for toxic effects of STZ would be more convincing.
This study presents the first attempt to use WGCNA and

connectivity map analysis in DN. Several novel key genes and
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important compounds closely associated with DN were
screened. The present study provided a new idea for future
research on DN. Furthermore, it provided a large number of
data resources, novel targets and research clues in DN.

Supplementary data
The supplementary data showed the detailed information of
DEGs in the present study and the primers for quantitative
polymerase chain reaction in green and red modules.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (grant no. 81270805), the Science and
Technology Department of Sichuan Province (grant no.
2018SZ0378), and Chengdu Science and Technology Bureau
Grant (grant no. 2019-YF09-00090-SN).

DISCLOSURE
The authors declare no conflict of interest.

24 ***
0 week 20th week

0 week

PYCARD

***

20 week

22

20

18

16

14

30

20

IO
D

/ 
ar

ea
 %

10

0
0 week 20th week

COMP

25

20

15

0 week 20th week
LUM

10

IO
D

/a
re

a 
%

***

IO
D

/a
re

a 
%

Figure 6 | In vivo validation for key genes in green and red modules. (a) The immunohistochemical staining of PYD and CARD domain containing
(PYCARD) at 0 and 20 weeks in diabetic nephropathy rats (scale, 100 μm, magnification: 9400). All data are represented as the mean – standard
deviation (n = 6). ***Significant changes were observed in the week 20 compared with those in week 0 (P < 0.001). (b) The
immunohistochemical staining of cartilage oligomeric matrix protein (COMP) in weeks 0 and 2 in diabetic nephropathy rats (scale, 100 μm,
magnification: 9400). All data are represented as the mean – standard deviation (n = 6). ***Significant changes were observed in week 20
compared with those in week 0 (P < 0.001). (c) The immunohistochemical staining of lumican (LUM) in weeks 0 and 20 in diabetic nephropathy
rats (scale, 100 μm, magnification: 9400). All data are represented as the mean – standard deviation (n = 6). ***Significant changes were observed
in week 20 compared with those in week 0 (P < 0.001).

122 J Diabetes Investig Vol. 13 No. 1 January 2022 ª 2021 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

O R I G I N A L A R T I C L E

Wang et al. http://wileyonlinelibrary.com/journal/jdi



REFERENCES
1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology

of type 2 diabetes mellitus and its complications. Nature
reviews. Endocrinology 2018; 14: 88–98.

2. Umanath K, Lewis JB. Update on diabetic nephropathy: core
curriculum 2018. Am J Kidney Dis 2018; 71: 884–895.

3. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends
in diabetes since 1980: a pooled analysis of 751 population-
based studies with 4.4 million participants. Lancet (London,
England), 2016; 387: 1513–1530.

4. Najafian B, Fogo AB, Lusco MA, et al. AJKD Atlas of renal
pathology: diabetic nephropathy. Am J Kidney Dis 2015; 66:
E37–E38.

5. Qi C, Mao X, Zhang Z, et al. Classification and differential
diagnosis of diabetic nephropathy. J Diabetes Res 2017;
2017: 8637138.

6. Chen C, Lin J, Li L, et al. The role of the BMP4/Smad1 signaling
pathway in mesangial cell proliferation: a possible mechanism
of diabetic nephropathy. Life Sci 2019; 220: 106–116.

7. Matsubara T, Araki M, Abe H, et al. Bone morphogenetic
protein 4 and Smad1 mediate extracellular matrix
production in the development of diabetic nephropathy.
Diabetes 2015; 64: 2978–2990.

8. Tominaga T, Abe H, Ueda O, et al. Activation of bone
morphogenetic protein 4 signaling leads to
glomerulosclerosis that mimics diabetic nephropathy. J Biol
Chem 2011; 286: 20109–20116.

9. Sirin Y, Susztak K. Notch in the kidney: development and
disease. J Pathol 2012; 226: 394–403.

10. Bonegio R, Susztak K. Notch signaling in diabetic
nephropathy. Exp Cell Res 2012; 318: 986–992.

11. Sweetwyne MT, Gruenwald A, Niranjan T, et al. Notch1 and
Notch2 in podocytes play differential roles during diabetic
nephropathy development. Diabetes 2015; 64: 4099–4111.

12. Guo Q, Zhong W, Duan A, et al. Protective or deleterious
role of Wnt/beta-catenin signaling in diabetic nephropathy:
an unresolved issue. Pharmacol Res 2019; 144: 151–157.

13. He W, Dai C, Li Y, et al. Wnt/beta-catenin signaling
promotes renal interstitial fibrosis. J Am Soc Nephrol 2009;
20: 765–776.

14. Wada J, Makino H. Innate immunity in diabetes and
diabetic nephropathy. Nat Rev Nephrol 2016; 12: 13–26.

15. Flyvbjerg A. The role of the complement system in diabetic
nephropathy. Nat Rev Nephrol 2017; 13: 311–318.

16. Zheng Z, Zheng F. Immune cells and inflammation in
diabetic nephropathy. J Diabetes Res 2016; 2016: 1841690.

17. Bending JJ, Lobo-Yeo A, Vergani D, et al. Proteinuria and
activated T-lymphocytes in diabetic nephropathy. Diabetes
1988; 37: 507–511.

18. Moon J-Y, Jeong K-H, Lee T-W, et al. Aberrant recruitment
and activation of T cells in diabetic nephropathy. Am J
Nephrol 2012; 35: 164–174.

19. Lampropoulou IT, Stangou Μ, Sarafidis P, et al. TNF-a
pathway and T-cell immunity are activated early during the
development of diabetic nephropathy in Type II Diabetes
Mellitus. Clin Immunol 2020; 215: 108423.

20. Zhang F, Wang C, Wen X, et al. Mesenchymal stem cells
alleviate rat diabetic nephropathy by suppressing CD103
DCs-mediated CD8 T cell responses. J Cell Mol Med 2020;
24: 5817–5831.

21. Herrera M, S€oderberg M, Sabirsh A, et al. Inhibition of T-cell
activation by the CTLA4-Fc Abatacept is sufficient to
ameliorate proteinuric kidney disease. Am J Physiol Renal
Physiol 2017; 312: F748–F759.

22. Langfelder P, Horvath S. WGCNA: an R package for
weighted correlation network analysis. BMC Bioinformatics
2008; 9: 559.

23. Chen L, Yuan L, Wang Y, et al. Co-expression network
analysis identified FCER1G in association with progression
and prognosis in human clear cell renal cell carcinoma. Int J
Biol Sci 2017; 13: 1361–1372.

24. Yin LI, Cai Z, Zhu B, et al. Identification of key pathways and
genes in the dynamic progression of HCC based on
WGCNA. Genes (Basel) 2018; 9: 92.

25. Wang B, He L, Miao W, et al. Identification of key genes
associated with Schmid-type metaphyseal chondrodysplasia
based on microarray data. Int J Mol Med 2017; 39: 1428–
1436.

26. Gautier L, Cope L, Bolstad BM, et al. affy–analysis of
Affymetrix GeneChip data at the probe level. Bioinformatics
(Oxford, England) 2004; 20: 307–315.

27. Subramanian A, Narayan R, Corsello SM, et al. A next
generation connectivity map: L1000 platform and the first
1,000,000 profiles. Cell 2017; 171: 1437–1452 e17.

28. Boguslawska J, Kedzierska H, Poplawski P, et al. Expression
of genes involved in cellular adhesion and extracellular
matrix remodeling correlates with poor survival of patients
with renal cancer. J Urol 2016; 195: 1892–1902.

29. Posey KL, Coustry F, Hecht JT. Cartilage oligomeric matrix
protein: COMPopathies and beyond. Matrix Biol 2018; 71–72:
161–173.

30. Halper J, Kjaer M. Basic components of connective tissues
and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen,
fibronectin, laminin, tenascins and thrombospondins. Adv
Exp Med Biol 2014; 802: 31–47.

31. Dupuis LE, Berger MG, Feldman S, et al. Lumican deficiency
results in cardiomyocyte hypertrophy with altered collagen
assembly. J Mol Cell Cardiol 2015; 84: 70–80.

32. �Seda O, �Sedov�a L, V�cel�ak J, et al. ZBTB16 and metabolic
syndrome: a network perspective. Physiol Res 2017; 66(Suppl
3): S357–S365.

33. Shih H-Y, Scium�e G, Mikami Y, et al. Developmental
acquisition of regulomes underlies innate lymphoid cell
functionality. Cell 2016; 165: 1120–1133.

ª 2021 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd J Diabetes Investig Vol. 13 No. 1 January 2022 123

O R I G I N A L A R T I C L E

http://wileyonlinelibrary.com/journal/jdi WGCNA revealed novel key genes in DN



34. Savage AK, Constantinides MG, Han J, et al. The
transcription factor PLZF directs the effector program of the
NKT cell lineage. Immunity 2008; 29: 391–403.

35. Kovalovsky D, Uche OU, Eladad S, et al. The BTB-zinc finger
transcriptional regulator PLZF controls the development of
invariant natural killer T cell effector functions. Nat Immunol
2008; 9: 1055–1064.

36. Lu P, Ji X, Wan J, et al. Activity of group 2 innate lymphoid
cells is associated with chronic inflammation and
dysregulated metabolic homoeostasis in type 2 diabetic
nephropathy. Scand J Immunol 2018; 87: 99–107.

37. Liu C, Qin L, Ding J, et al. Group 2 innate lymphoid cells
participate in renal fibrosis in diabetic kidney disease partly
via TGF-1 signal pathway. J Diabetes Res 2019; 2019:
8512028.

38. Chang P-C, Chen T-H, Chang C-J, et al. Advanced
glycosylation end products induce inducible nitric oxide
synthase (iNOS) expression via a p38 MAPK-dependent
pathway. Kidney Int 2004; 65: 1664–1675.

39. Ma FY, Tesch GH, Nikolic-Paterson DJ. ASK1/p38 signaling in
renal tubular epithelial cells promotes renal fibrosis in the
mouse obstructed kidney. Am J Physiol Renal Physiol 2014;
307: F1263–F1273.

40. Komers R, Lindsley JN, Oyama TT, et al. Renal p38 MAP
kinase activity in experimental diabetes. Lab Investig 2007;
87: 548–558.

41. Tesch GH, Ma FY, Han Y, et al. ASK1 inhibitor halts
progression of diabetic nephropathy in Nos3-deficient mice.
Diabetes 2015; 64: 3903–3913.

42. Wang S, Zhou Y, Zhang Y, et al. Roscovitine attenuates
renal interstitial fibrosis in diabetic mice through the TGF-
b1/p38 MAPK pathway. Biomed Pharmacother 2019; 115:
108895.

43. Peng L, Li J, Xu Y, et al. The protective effect of beraprost
sodium on diabetic nephropathy by inhibiting inflammation

and p38 MAPK signaling pathway in high-fat diet/
streptozotocin-induced diabetic rats. Int J Endocrinol 2016;
2016: 1690474.

44. Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte
autophagy exacerbates proteinuria in diabetic nephropathy.
Diabetes 2016; 65: 755–767.

45. Huang C, Zhang Y, Kelly DJ, et al. Thioredoxin interacting
protein (TXNIP) regulates tubular autophagy and mitophagy
in diabetic nephropathy through the mTOR signaling
pathway. Sci Rep 2016; 6: 29196.

46. Lenoir O, Jasiek M, H�enique C, et al. Endothelial cell and
podocyte autophagy synergistically protect from diabetes-
induced glomerulosclerosis. Autophagy 2015; 11: 1130–1145.

47. Polletta L, Vernucci E, Carnevale I, et al. SIRT5 regulation of
ammonia-induced autophagy and mitophagy. Autophagy
2015; 11: 253–270.

48. Wang S, Livingston MJ, Su Y, et al. Reciprocal regulation of
cilia and autophagy via the MTOR and proteasome
pathways. Autophagy 2015; 11: 607–616.

49. Yan R, Wang Y, Shi M, et al. Regulation of PTEN/AKT/FAK
pathways by PPARc impacts on fibrosis in diabetic
nephropathy. J Cell Biochem 2019; 120: 6998–7014.

50. Zhang YH, Wang B, Guo F, et al. Involvement of the TGFb1-
ILK-Akt signaling pathway in the effects of hesperidin in
type 2 diabetic nephropathy. Biomed Pharmacother 2018;
105: 766–772.

51. Wu W, Hu W, Han WB, et al. Inhibition of Akt/mTOR/p70S6K
signaling activity with Huangkui capsule alleviates the early
glomerular pathological changes in diabetic nephropathy.
Front Pharmacol 2018; 9: 443.

52. Huang S, Xu Y, Ge X, et al. Long noncoding RNA NEAT1
accelerates the proliferation and fibrosis in diabetic
nephropathy through activating Akt/mTOR signaling
pathway. J Cell Physiol 2019; 234: 11200–11207.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Primers for quantitative polymerase chain reaction in green and red modules
Table S2 | Detailed information of differentially expressed genes in the represent study

124 J Diabetes Investig Vol. 13 No. 1 January 2022 ª 2021 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

O R I G I N A L A R T I C L E

Wang et al. http://wileyonlinelibrary.com/journal/jdi


