
RESEARCH ARTICLE

On-Chip Immunoelectrophoresis of
Extracellular Vesicles Released from Human
Breast Cancer Cells
Takanori Akagi1, Kei Kato1, Masashi Kobayashi1, Nobuyoshi Kosaka2, Takahiro Ochiya2,
Takanori Ichiki1*

1 Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku,
Tokyo, Japan, 2 Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-
1-1 Tsukiji, Chuo-ku, Tokyo Japan

* ichiki@bioeng.t.tu-tokyo.ac.jp

Abstract
Extracellular vesicles (EVs) including exosomes and microvesicles have attracted consider-

able attention in the fields of cell biology and medicine. For a better understanding of EVs

and further exploration of their applications, the development of analytical methods for bio-

logical nanovesicles has been required. In particular, considering the heterogeneity of EVs,

methods capable of measuring individual vesicles are desired. Here, we report that on-chip

immunoelectrophoresis can provide a useful method for the differential protein expression

profiling of individual EVs. Electrophoresis experiments were performed on EVs collected

from the culture supernatant of MDA-MB-231 human breast cancer cells using a measure-

ment platform comprising a microcapillary electrophoresis chip and a laser dark-field microi-

maging system. The zeta potential distribution of EVs that reacted with an anti-human

CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as com-

pared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immu-

noelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on

EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer di-

agnosis, EVs collected from the blood of a mouse tumor model were analyzed by this meth-

od. By comparing the zeta potential distributions of EVs after their immunochemical

reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem

cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected

in the real sample. The result indicates that the present method is potentially applicable to

liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

Introduction
Extracellular vesicles (EVs) are small lipid vesicles ranging in diameter from 30 to 1,000 nm that
are released from cells and exist stably in body fluids such as blood, saliva, urine, and cerebrospi-
nal fluid [1]. EV is a generic term for secreted vesicles including exosomes, microvesicles, and
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apoptotic bodies [2]. Among them, exosomes are relatively small vesicles ranging in diameter
from 30 to 100 nm that are of endocytic origin with a specific composition including proteins,
lipids, and nucleic acids [3,4]. Over the last decade, intensive studies on exosome biology have
revealed many important findings. Exosomes are recognized as mediators of intercellular com-
munication in the immune system, cancer development, and cancer metastasis by transferring
functional molecules such as protein, mRNA, and microRNA (miRNA) from one cell to anoth-
er; consequently, they regulate gene expression in recipient cells at the post-transcriptional level
[5–12]. In addition to the academic interest and importance in fundamental biology, exosomes
are attracting much attention because they are considered to be useful for therapeutic and diag-
nostic applications [13–16]. Exosomes are reported to be promising biomarker candidates for
the diagnosis of various diseases including cancer [4,16–18], renal diseases [19], inflammation
[20], and metabolic disorders [21].

Although the biological characteristics and functions of exosomes are becoming increasing-
ly clear, many researchers have pointed out that conventional analytical methods are not suffi-
cient for characterizing nanoparticles such as exosomes [22–26]. Because the samples collected
from living bodies are essentially a heterogeneous assortment of diverse types with vesicles of
different cell origins and biogenetic mechanisms, methods that can characterize individual
small particles ranging in diameter from 30 to 400 nm are desired.

A powerful approach to characterizing heterogeneous biological samples is immunoassay
method using antibodies for specific molecular recognition. Particle/cell immunoelectropho-
resis is one such immunoassay method that can provide qualitative and quantitative informa-
tion on surface molecules of particles including cells and organelles. In our previous study, we
developed a method of on-chip cell immunoelectrophoresis that allows rapid and accurate
characterization of the immunogenicity of individual cells [27]. The antibody binding on the
cell surface was detected on a microcapillary electrophoresis (μCE) chip by measuring
changes in the electrophoretic velocity of cells by particle tracking velocimetry. In analogy,
the extended use of on-chip immunoelectrophoresis is expected to be a promising method for
the surface marker analysis of individual EVs, but it requires some technical problems to be
overcome such as the implementation of an appropriate imaging system that enables the
tracking of the electrophoretic migration of individual vesicles smaller than the wavelength of
light [28,29].

In this paper, we present the first report on the on-chip immunoelectrophoresis of EVs for
the simple-to-use and robust surface marker profiling of individual EVs. Immunoelectrophore-
sis experiments were successfully performed on EV samples collected from the culture super-
natant of human breast cancer cells using an anti-human CD63 antibody, which is enriched in
exosomes and microvesicles [30,31]. Moreover, we attempted the specific detection of EVs of
tumor origin by the on-chip immunoelectrophoresis of EVs collected from the blood of mouse
tumor models and discuss its applicability to liquid biopsy, the low-invasive diagnosis of can-
cer, and other diseases.

Materials and Methods

Cell culture
MDA-MB-231 human breast cancer cells were cultured in Roswell Park Memorial Institute
(RPMI) medium (GIBCO) supplemented with 10% fetal bovine serum (FBS), 100 μg/ml kana-
mycin, 100 units/ml penicillin, and 100 μg/ml streptomycin in a humidified atmosphere of
95% air and 5% CO2 at 37°C.
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Mouse study
All experimental procedures and animal handling were performed according to the guidelines
of National Cancer Center Research Institute, Tokyo, Japan. The protocol was approved by the
committee on the Ethics of Animal Experiments of the National Cancer Center (Permit Num-
ber: T12-011). Four-week-old female BALB/c athymic nude mice (CLEA Japan) were anesthe-
tized by 3% isoflurane injections. MDA-MB-231 cells (2×106 cells in 100 μl of phosphate-
buffered saline [PBS]) were injected into the subcutaneous tissue of anesthetized mice. Blood
samples of approximately 1 ml were taken by heart puncture at the time of sacrifice of each
mouse on the 40th day after injection with the cancer cells. All surgery was performed under
isoflurane anesthesia, and all efforts were made to minimize suffering. The animals were used
for only one measurement in each experiment.

Collection of EV samples
EVs released from cultivated MDA-MB-231 cells were collected in accordance with the proce-
dure described previously [32]. The culture medium was replaced with a serum-free RPMI me-
dium and the supernatant was collected after incubation for 48 h. EVs were collected from the
supernatant by differential ultracentrifugation performed as follows. The samples were centri-
fuged twice at 2,000×g for 15 min using a centrifuge (Tomy LC-220) and the resulting superna-
tant was recentrifuged at 12,000×g for 35 min using an ultracentrifuge (Beckman Coulter
Optima L-90K). Subsequently, the clarified supernatant was ultracentrifuged at 110,000×g for
70 min. The resulting pellets were washed in 30 ml of PBS (1.06 mM KH2PO4, 155.17 mM
NaCl, 2.97 mM Na2HPO4�7H2O, pH = 7.4, ionic strength = 0.16, GIBCO) and finally centri-
fuged at 110,000×g for 70 min. The washed pellets containing EVs were then suspended in
PBS.

Similarly, EV samples were isolated from the mouse tumor model. Pooled plasma samples
were obtained by the centrifugation of blood of 10 mice at 3,000 rpm for 1 min at 4°C. The
pooled plasma sample was necessary to perform the on-chip immunoelectrophoresis because
of the low plasma volume of one mouse. Consequently, the detection of individual differences
was avoided as same as previous EV studies [33–35]. Then, EVs were collected from the plasma
by differential ultracentrifugation by the procedure described above.

Size distribution measurement
The size distribution of the collected EVs was evaluated using a nanoparticle tracking analysis
(NTA) system (Nanosight system, Malvern) [36]. The Brownian motion of each EV was visual-
ized by a light scattering method and recorded for 30 s, and then, specifically tracked to calcu-
late its size using the Stokes—Einstein equation.

On-chip immunoelectrophoresis
The zeta potential of EVs was measured using an electrophoresis platform developed in our
laboratory [12,28,37]. Briefly, the platform comprises a μCE chip, a pair of platinum electrodes,
a DC power supply [Matsusada Precision HVL-1.1P(A)], a 488 nm laser source (Melles Griot
85-BCD-030-053, 50 mW), a microscope (Nikon, Ti-U), and an electron-multiplying charge-
coupled device (EM-CCD) camera (Andor iXon3 897). Poly(dimethylsiloxane) (PDMS)-
based μCE chips were fabricated by the soft lithography method [38]. To suppress nonspecific
adsorption and the generation of electroosmotic flow (EOF), the surface of a rectangular
microchannel (length, 10,000 μm; width, 100 μm; height, 50 μm) was coated with a
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phospholipid copolymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and
3-methacryloxyethyl triethoxysilane (METESi) [39,40].

EVs suspended in PBS were incubated with normal mouse IgG (isotype control), an anti-
human CD63 (hCD63) mouse antibody or an anti-human CD44 (hCD44) mouse antibody for
30 min at 4°C. All the antibodies used in this study were purchased from BD Biosciences. The
final antibody concentration was adjusted to 10 μg/ml. After dispensing a small amount of the
suspension of the EV and antibody mixture (approximately 150 μl) on a μCE chip, the chip
was placed on the stage of an inverted microscope, and then electrodes were dipped into the
reservoirs at both ends of the microchannel. The electrophoresis experiment was performed by
applying an electric field of 50 V/cm in the microchannel. The motion of individual EVs was
visualized by laser dark-field imaging and their migration velocity was measured from the re-
corded video. Because the measured velocity of migrating EVs is affected by the EOF of the
buffer solution in the microcapillary, the true electrophoretic velocity of EVs, Uep, was calculat-
ed by subtracting the EOF velocity, Ueo, which was measured using charge-free beads, from the
measured velocity of EVs, Um. The zeta potential of EVs, z, was calculated from the measured
electrophoretic velocity using the Smoluchowski equation

z ¼ "0"r
Z

� Uep

E
¼ "0"r

Z
� Um � Ueo

E
; ð1Þ

where E is the electric field strength,n is the viscosity coefficient of the buffer solution, and εr
and εo are the relative permittivity of the solution and the permittivity of vacuum, respectively.

Statistical analysis
The statistical significance of differences between groups was evaluated by the Steel-Dwass test.
A probability level of P<0.05 was considered to be significant.

Results and Discussion

Immunoelectrophoresis of EVs purified from cell culture supernatant
Prior to the zeta potential measurement, the concentration and size distribution of EVs were
measured using an NTA system. Fig 1 shows the typical size distribution of EVs collected from
the culture supernatant of MDA-MB-231 cells. The EV concentration of this sample was
1.19×1012 particles/ml. The broad size distribution ranging from approximately 50 nm to
450 nm implies that the collected sample contains different types of EV. Although vesicle types
cannot be strictly classified by size [24], it is known that exosomes range between 30 and
100 nm in diameter [41] and that most microvesicles range between 100 and 300 nm [41,42].
Thus, the EV samples used in this study were considered to contain both exosomes and micro-
vesicles, where the latter were in the majority. However, it is noted that the number of exo-
somes might be rather underestimated because NTA does not yet have the sensitivity to detect
vesicles smaller than 50 nm.

The on-chip immunoelectrophoresis of EVs was examined using the mouse anti-hCD63 an-
tibody and normal mouse IgG. CD63 is a member of the tetraspanin family that constitutes the
main component of the lysosomal membrane and is enriched on microvesicles as well as on
exosomes [31]. For this reason, CD63 was used as a marker of exosomes and microvesicles in
this paper. Normal IgG was used as an isotype control antibody to estimate the nonspecific
binding of antibodies on the EV surface. As shown in Figs 2(a) and 2(b), the zeta potentials of
EVs without any antibodies added and with normal IgG showed symmetric and unimodal dis-
tributions. The mean and median of the distribution were approximately equal at −10.2 mV
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and −10.1 mV for nontreated EVs and −9.0 mV and −9.1 mV for normal-IgG-treated EVs.
Only a slight change was observed in the zeta potentials of EVs between the two groups. In con-
trast, as shown in Fig 2(c), a left-skewed distribution was observed with a peak near 0 mV and
a mean and median of −3.4 mV and −2.1 mV, respectively, when EVs were immunoreacted
with the anti-hCD63 antibody. The zeta potential of EVs with the anti-hCD63 antibody was
statistically different from that without any antibodies and with normal-IgG (p<0.05, respec-
tively, the Steel-Dwass test). As schematically depicted in Fig 3, the positive shift of the zeta po-
tential observed for the anti-hCD63 antibody is attributed to the binding of positively charged
antibodies on EVs that originally have negative charges. Here, it is worth commenting on the
concentrations of the antibodies used in the present immunoelectrophoresis experiment. The
concentration of the anti-hCD63 antibody was ~10-7 M, the total concentration of antigen pro-
teins expressed on EVs was estimated to be<10-7, and the dissociation constant for the binding
of CD63 (Kd) was estimated to be ~10-8 M [43,44]. Hence, almost all of the CD63 molecules on
EV surfaces are considered to bind to the antibody molecules. Thus, the shift of the zeta poten-
tial is expected to be proportional to the number density of the bound antibody molecules on
the EV surface, and hence it can be used as a measure for quantifying the relative number den-
sity of marker proteins expressed on EVs.

Immunoelectrophoresis of EVs collected from blood of tumor mouse
model
As described in the above section, on-chip immunoelectrophoresis is a promising analytical
method for characterizing the surfaces of individual EVs. Another concern about the present
method is its applicability to disease diagnosis. Compared with the cell culture supernatant,
blood samples contain a more heterogeneous population of EVs owing to the diverse cell type
of origin, so both sensitivity and specificity are required. To explore the applicability of on-chip
immunoelectrophoresis to cancer diagnosis by liquid biopsy using EVs as biomarkers, a proof-

Fig 1. Size distribution of EVs collected from cell culture supernatant of MDA-MB-231 human breast
cancer cells and evaluated using nanoparticle tracking analysis (NTA) system.

doi:10.1371/journal.pone.0123603.g001
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Fig 2. Zeta potential of EVs collected from culture medium of MDA-MB-231 human breast cancer cells
and evaluated without any antibodies (a) and after treatment with normal mouse IgG (b) and anti-
hCD63 antibody (c). The zeta potential of EVs with the anti-hCD63 antibody was statistically different from
that without any antibodies and with normal-IgG (p<0.05, respectively, the Steel-Dwass test). CD63 is a
marker protein of exosomes and microvesicles. The number of measured vesicles is 100 for
each distribution.

doi:10.1371/journal.pone.0123603.g002
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of-concept study was carried out using EVs collected from the pooled blood plasma of 10
orthotopic mouse models of breast cancer. In addition to the anti-hCD63 antibody and normal
IgG used as described in the above section, the anti-hCD44 antibody was also used. CD44 is a
transmembrane adhesion glycoprotein, functioning as a hyaluronan receptor and participating
in the metabolism of its principal ligand hyaluronan [45], and it is abundant in MDA-MB-231
cells [46]. Fig 4 shows the zeta potential distributions of EVs collected from the blood of the
mice and treated with the three different antibodies. The zeta potential of normal-IgG-treated
EVs shows a broader distribution and rather more complicated histogram than that shown in
Fig 2(b) of EVs released only from MDA-MB-231 cells. This finding seems to reflect the diver-
sity of cell origin and biogenetic mechanisms in the animal body. By comparing the zeta poten-
tial distributions of EVs after immunoreactions with the normal IgG, anti-hCD63 antibody,
and anti-hCD44 antibody, the zeta potentials of EVs with the anti-hCD63 antibody and with
the anti-hCD44 antibody were statistically different from that with normal-IgG (p<0.05, the
Steel-Dwass test). Furthermore, we observed additional peaks near 0 mV for both the anti-
hCD63 and anti-hCD44 antibodies. Note that these peak positions are in good agreement with
those in Fig 2(c). Hence, the additional peaks are most reasonably attributed to the immunor-
eactions between the antibodies and EVs. In particular, a bimodal distribution is clear in the
case of the anti-hCD44 antibody, as shown in Fig 4(c). Thus, EVs of human tumor origin circu-
lating in blood were differentially detected in the real sample, which inevitably also contains
EVs of mouse nontumor origin. In the future it is necessary to evaluate the difference between

Fig 3. Schematic of immunoelectrophoresis of EVs on μCE chip. Because antibody binding increases
the number of positive charges on the EV surface, the immunoreactivity of individual EVs is reflected in their
electrophoretic mobility, and hence, their zeta potential. To suppress nonspecific adsorption and
electroosmotic flow, the inner surface of the microchannel was coated with 2-methacryloyloxyethyl
phosphorylcholine (MPC) polymer.

doi:10.1371/journal.pone.0123603.g003
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Fig 4. Zeta potential distribution of EVs collected from the pooled plasma sample of 10 orthotopic
mousemodels of breast cancer measured by on-chip immunoelectrophoresis using normal mouse
IgG (a), mouse anti-human CD63 antibody (b), andmouse anti-human CD44 antibody (c). The zeta
potentials of EVs with the anti-hCD63 antibody and with the anti-hCD44 antibody were statistically different
from that with normal-IgG (p<0.05, respectively, the Steel-Dwass test). CD63 is a marker protein of
exosomes and microvesicles. CD44 is used as a marker of MDA-MB-231 cell origin. Normal IgG was used as
an isotype control to estimate the nonspecific binding of antibodies. The number of measured vesicles is 100
for each distribution.

doi:10.1371/journal.pone.0123603.g004
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normal and tumor derived vesicles extracted from the plasma of healthy persons and cancer
patients for application development. Although the present feasibility study was performed for
cancer diagnosis, such an EV-based diagnosis is expected to be applicable to various diseases
with the advances in the development of exosome biomarkers.

Comparative discussion of surface marker analysis of individual EVs
Hereafter, we discuss the unique characteristics of the present method as a tool for surface
marker analysis in comparison with flow cytometry. Fluorescence flow cytometry is a golden
standard for the surface marker analysis of cells and is also considered to be applicable to the
characterization of individual EVs in principle. Practically, however, it is difficult to use con-
ventional flow cytometry for analyzing EVs. The reason for this is obvious when considering
the scaling of measured physical parameters to the diameter d, as illustrated in Fig 5. Assuming
that the measured vesicles have the same chemical components, the fluorescence signal intensi-
ty decreases rapidly with decreasing d as the square of d because the number of attached fluo-
rescently labeled antibodies is considered to be proportional to the surface area. Practically, the
decrease in the intensity of the light scattering signals as the sixth power of d is also a serious
problem in operating a fluorescence flow cytometer because it is usually used as a trigger signal
for fluorescence measurement. Although recent improvements of high-resolution flow-
cytometry-based methods have enabled the detection and analysis of fluorescently labeled EVs
of ~100 nm [47], the requirement for an experienced operator and expensive apparatus will

Fig 5. Comparison of size scaling of signal intensity in surface marker detection between fluorescence flow cytometry and on-chip
immunoelectrophoresis. Schematic illustration of scaling effect on particle-antibody complexes (upper figure). Relationship between signal intensity and
size of bioparticles (lower figure).

doi:10.1371/journal.pone.0123603.g005
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limit their widespread use. Additionally, the use of high-power lasers usually induces the prob-
lematic phenomenon of photobleaching.

In contrast, immunoelectrophoresis does not require fluorescent labeling for detecting
bound antibodies; hence, photobleaching is no longer a problem. Additionally, the most im-
portant point is that the shift in the zeta potential is not scaled to the size of vesicles as long as
the number density of bound antibody molecules is not changed. The main factor that deter-
mines the performance limit of on-chip immunoelectrophoresis is the sensitivity of the imag-
ing system used for particle tracking analysis. Practically, the combined use of laser dark-field
imaging and a sensitive EM-CCD camera enables the detection of particles with a diameter of
50 nm or smaller. Thus, on-chip immunoelectrophoresis is advantageous for the surface mark-
er analysis of EVs including exosomes.

Conclusion
To enable the simple-to-use and robust surface marker analysis of individual EVs, on-chip par-
ticle immunoelectrophoresis has been studied using a platform comprising a μCE chip and a
laser dark-field imaging system. The immunoelectrophoresis of EVs collected from the culture
supernatant of MDA-MB-231 human breast cancer cells was performed using mouse anti-
hCD63 antibody, which is an exosome and microvesicle marker, and the result was compared
with that for the normal mouse IgG isotype control. The zeta potential of EVs evaluated using
normal IgG showed a symmetric and unimodal distribution with a peak near −9 mV, whereas
a left-skewed distribution was observed with a peak near 0 mV when the anti-hCD63 antibody
was used. Thus, immunogenicity of EVs was detected successfully as the positive shift of the
zeta potential. Moreover, the zeta potential of EVs collected from the blood of nude mice im-
planted with MDA-MB-231 cells was evaluated by on-chip immunoelectrophoresis using the
anti-hCD44 and anti-hCD63 antibodies. By analyzing the difference in the result between the
isotype control and the antibodies, we observed additional peaks that indicate the formation of
an antibody-EV complex near 0 mV for both the anti-hCD44 and anti-hCD63 antibodies. The
approach described here is expected to facilitate the surface marker analysis of EVs circulating
in blood as a noninvasive “liquid biopsy” for personalized medicine in the future. In particular,
the sensitive profiling of EVs of tumor origin using a certain set of vesicle and tumor-specific
antibodies will be useful for early cancer screening, tumor-type determination, prognosis, and
the monitoring of treatment outcomes or tumor dynamics over time.
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