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Plant-associated microbiomes are structured by environmental conditions and plant
associates, both of which are being altered by climate change. The future structure of
plant microbiomes will depend on the, largely unknown, relative importance of each. This
uncertainty is particularly relevant for arctic peatlands, which are undergoing large shifts
in plant communities and soil microbiomes as permafrost thaws, and are potentially
appreciable sources of climate change feedbacks due to their soil carbon (C) storage.
We characterized phyllosphere and rhizosphere microbiomes of six plant species, and
bulk peat, across a permafrost thaw progression (from intact permafrost, to partially-
and fully-thawed stages) via 16S rRNA gene amplicon sequencing. We tested the
hypothesis that the relative influence of biotic versus environmental filtering (the role of
plant species versus thaw-defined habitat) in structuring microbial communities would
differ among phyllosphere, rhizosphere, and bulk peat. Using both abundance- and
phylogenetic-based approaches, we found that phyllosphere microbial composition was
more strongly explained by plant associate, with little influence of habitat, whereas in
the rhizosphere, plant and habitat had similar influence. Network-based community
analyses showed that keystone taxa exhibited similar patterns with stronger responses
to drivers. However, plant associates appeared to have a larger influence on organisms
belonging to families associated with methane-cycling than the bulk community. Putative
methanogens were more strongly influenced by plant than habitat in the rhizosphere,
and in the phyllosphere putative methanotrophs were more strongly influenced by plant
than was the community at large. We conclude that biotic effects can be stronger than
environmental filtering, but their relative importance varies among microbial groups.
For most microbes in this system, biotic filtering was stronger aboveground than
belowground. However, for putative methane-cyclers, plant associations have a stronger
influence on community composition than environment despite major hydrological
changes with thaw. This suggests that plant successional dynamics may be as
important as hydrological changes in determining microbial relevance to C-cycling
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climate feedbacks. By partitioning the degree that plant versus environmental filtering
drives microbiome composition and function we can improve our ability to predict
the consequences of warming for C-cycling in other arctic areas undergoing similar
permafrost thaw transitions.

Keywords: microbial community assembly, permafrost thaw, plant–microbial interactions, keystone species,
climate feedbacks, IsoGenie Project, Stordalen Mire

INTRODUCTION

As ecosystems warm and undergo transitions due to climate
change, we are seeing significant shifts in microbial community
ecology and function with important implications for carbon
(C) storage (Zhou et al., 2012). This is especially true in
arctic peatlands which are warming fast and undergoing major
ecosystem transitions as permafrost thaws (McCalley et al.,
2014; Mondav et al., 2017; Monteux et al., 2018). Microbial
communities are strongly impacted by the environmental
changes associated with permafrost thaw, particularly hydrology,
available C-substrates, and plant communities. It has been
well established that different stages of permafrost-thaw harbor
substantially different bulk peat microbial communities, and
these changes have major implications for C-cycling, particularly
methane (Tveit et al., 2013; McCalley et al., 2014; Mondav et al.,
2017; Monteux et al., 2018; Woodcroft et al., 2018a). However,
plant-associated microbial communities remain under-studied.
In particular, it is unclear whether plant microbiome changes
are determined more by environmental changes as permafrost
thaws, or by the biotic effects of plant community changes
especially in the rhizosphere (Tkacz et al., 2015) and phyllosphere
(Redford et al., 2010). Abiotic effects are often thought of as
operating at a macro-scale as a filter that selects a potential
species pool, upon which biotic effects act at the micro-scale
(Aguilar et al., 2017; Cadotte and Tucker, 2017; Thakur and
Wright, 2017). However, in the case of a permafrost-thaw front,
both effects take place on a similar scale, with partial overlap
of plant species (and therefore biotic effects) across a strong
but geographically small environmental gradient. This raises
the question of whether microbial community composition is
more strongly determined by plant associate (i.e., biotic filtering)
or thaw stage (i.e., environmental filtering), and whether plant
selection on the microbial community has implications for
C-cycling. This is especially important because permafrost is
estimated to contain more than a third of the C in the top 1–3 m
of the Earth’s soil and its thaw is expected to lead to C releases
to the atmosphere in the range of 37–174 Pg by 2,100 which
would increase climate warming by 0.13–0.27◦C (Tarnocai et al.,
2009; Hugelius et al., 2014; Schuur et al., 2015). Microbes serve
as the primary decomposers and gatekeepers determining how
much C will remain in the ecosystem versus being released to the
atmosphere as CO2 and CH4. Indeed, in some systems changes
in microbial community structure and function have been shown
to mitigate C-release predicted due to warming alone (Zhou
et al., 2012). Therefore accurate prediction of the magnitude of
C releases from the arctic requires understanding how microbial
communities will be impacted by permafrost thaw.

While thawing permafrost peat microbial communities have
been well studied (Tveit et al., 2013; McCalley et al., 2014;
Mondav et al., 2017; Monteux et al., 2018; Woodcroft et al.,
2018b), the plant-associated microbial communities in these
systems have not been well characterized, nor is it clear to
what extent plant associations are responsible for the changes in
bulk peat microbial community. In most systems, rhizosphere
and phyllosphere microbial communities seem to draw at least
some members from the communities present in the surrounding
environment but they form distinct communities based on
factors such as the species, genotype, and health of the host-
plant as well as the compartment in question (Delmotte et al.,
2009; Redford et al., 2010; Fonseca et al., 2016; Nuccio et al.,
2016). For instance, the phyllosphere is likely to be enriched
in alpha-proteobacteria, particularly those adapted to stress
and with either one-C central metabolism (e.g., methanotrophy
and methylotrophy) such as Methylobacterium, or a diverse
range of substrate use such as Sphingomonas (Delmotte et al.,
2009; Knief et al., 2012). Since both metabolic types have been
found on the same phyllosphere samples, this divergence in
metabolic strategy may indicate that some organisms capitalize
on plant-associated substrates whereas others remain generalists
in a resource-limited environment. Controls on rhizosphere
community structure are complex, including the structure
of the roots, the density, size of their filaments, and on
fungal associations of the host plant (Parniske, 2008). These
rhizosphere-associated communities are often less diverse than
the microbial communities in the surrounding soil matrix but
more diverse than the phyllosphere (Berg and Smalla, 2009; Knief
et al., 2012). Rhizosphere communities are often enriched in
alpha- and beta-proteobacteria, and depleted in Actinobacteria
compared to soil microbial communities, indicating plant
influence on community structure and composition (Knief et al.,
2012; Nuccio et al., 2016).

Plant selection on leaf and root microbiomes is potentially
important in mediating microbial controls on decomposition
(Strickland et al., 2009) and ultimately C flux to the atmosphere.
The first communities that have the opportunity to decompose
plant material are the microbes colonizing the plant itself
(Tláskal et al., 2016). Plants often have specialized phyllosphere
communities which accompany senescing leaf tissue into the
soil (Redford et al., 2010; Nissinen et al., 2012; Bragina et al.,
2015; Lebeis, 2015; Tláskal et al., 2016; Baldrian, 2017). Members
of the phyllosphere have been shown to participate in the
initial decomposition of fresh organic material before being
replaced by microbes from the bulk soil community, and leaf
litter composition can influence decomposition dynamics such
as fungal to bacterial ratios (Kögel-Knabner, 2002; Thiessen
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et al., 2013; Tláskal et al., 2016; Baldrian, 2017). Additionally,
plant root exudates are known to be a source of C to soil
and to determine rhizosphere microbial community composition
(Tkacz et al., 2015). Microbial response to differences in C quality
in root exudates (such as through shifts in activity or bacterial to
fungal ratios) can influence decomposition dynamics such as by
stimulating decomposition or causing additional C release from
bulk peat through priming effects (Cheng et al., 2014; Pegoraro
et al., 2019). Permafrost thaw has been shown to dramatically
alter root growth patterns including quantity and quality of litter
inputs which can be expected to influence microbial community
composition (Blume-Werry et al., 2019). However, research
characterizing permafrost and bulk peat microbial communities
in arctic systems (Mackelprang et al., 2011; Hultman et al.,
2015; Mondav et al., 2017; Woodcroft et al., 2018a), has yet to
clearly describe the role of plants in influencing the microbial
community composition, decomposition, and C cycling.

Since permafrost thaw results in changes to both
environmental and plant filtering effects on the microbial
community, we investigated their relative importance in
structuring rhizosphere versus phyllosphere microbial
communities, at a well-studied permafrost thaw gradient in
Stordalen Mire, Sweden. In this area, as permafrost thaws,
palsa peat mounds (which rise above the surrounding wet areas
due to a supportive core of ice) collapse to form waterlogged
bog areas which initially remain hydrologically disconnected
from the later thaw stages but eventually sink and form fully
inundated, hydrologically connected, nutrient-rich fens. As
these three soil environments differ more strongly than the air,
we hypothesized that biotic filtering would be more important
than environmental filtering in the phyllosphere, but the reverse
would be true in the rhizosphere. Microbial communities are
highly diverse and often include taxa which may be more
important to community structure than expected based on
abundance measures (keystone species) as well as many taxa that
are of little importance to community structure. Therefore, we
consider two metrics by which microbial community differences
may be measured across sites, compartments (rhizosphere,
phyllosphere, or peat), and plant associates: (1) differences in
relative abundance and (2) differences in importance to network
structure (or keystoneness). Furthermore, to investigate whether
these community composition differences could be important
to the ecosystem’s C-cycling, we investigated functional groups
important to CH4 cycling (as a particularly important C-cycling
function which is also phylogenetically constrained). This
approach allows us to identify the degree to which plant and
environmental filtering influence C cycling through changes
in microbial functional groups as well as overall microbial
community composition, structure, and putative function.

MATERIALS AND METHODS

Site and Sample Collection
Samples were collected at three time points through the
2015 growing season: early season (20 and 21 June), peak
growing season (20 and 23 July), and late growing season

(2 September). Stordalen Mire is located 10 km east of Abisko,
at 68◦ 219 N, 18◦ 499 E, and is 363 m above sea level (with
ecologically relevant microtopography across the Mire spanning
several meters’ elevation). The site is managed by the Abisko
Scientific Research Station, the University of Stockholm, and
the Integrated Carbon Observation System. Within the mire,
there are three main habitats spanning a permafrost thaw
gradient (Figure 1): no thaw (palsa type), initial partial thaw
(bog type), and complete thaw (fen type). Palsas consist of
raised, permafrost underlain areas characterized by low shrubs
(e.g., Betula nana, Empetrum nigrum, Andromeda polifolia,
Vaccinium spp.), forbs (e.g., Rubus chamaemorus), graminoids
(e.g., Eriophorum vaginatum), lichens, and drier mosses (e.g.,
Sphagnum fuscum). Bogs are wetter low-lying areas often still
underlain by permafrost lenses characterized by more hydric
species of sphagnum (e.g., Sphagnum balticum) and small sedges
(e.g., E. vaginatum and Carex rotundata). Fens are formed after
complete permafrost thaw and collapse. They are characterized
by standing water, and hydric sphagnum and sedge species (e.g.,
Eriphorum angustifolium, C. rotundata, and Carex rostrata). As
of 2010, 49% of the area within Stordalen was made up of intact
palsa, 37% was made up of partially thawed bog, 12% was made
up of fully thawed fen (Bäckstrand et al., 2010). From 1970 to
2000, palsa extent shrank while bog sites expanded by 3% and fen
sites expanding by 54% (Bäckstrand et al., 2010).

Three areas were selected where all three habitats could be
found within close (20 m2) proximity. Samples of leaf, root, and
associated peat for seven abundant, habitat-typical plant species
were selected for phyllosphere and rhizosphere characterization
across the mire’s three habitats. Species representative of
palsa areas were: R. chamaemorus, A. polifolia, E. vaginatum,
and Sphagnum sp. Species representative of bog areas were:
A. polifolia, E. vaginatum, C. rotundata, and Sphagnum sp.
Species representative of fen areas were: E. angustifolium, and
C. rotundata. Note that palsa and bog Sphagnum spp. differed,
and that several species were representative in more than
one habitat (and were sampled separately in each habitat in
case of physiological differences). Fewer species were selected
to represent the fen habitat based on its much lower plant
diversity (Johansson et al., 2006). Replicate plants were sampled
in two ways: spatially distributed and spatially proximal. For
the former, one individual of each habitat-representative species
was sampled at each of the three locations (generating three
spatially distributed replicates). For the latter, at one location,
two additional sets of plant samples were collected for each
habitat-representative species (generating a total of three spatially
proximal replicates). In addition, a single peat sample was taken
at each location, in each habitat (for three spatially distributed
replicates per habitat).

All material was collected using forceps sterilized with ethyl
alcohol and rinsed twice with water. For each plant, phyllosphere
samples were collected first, consisting of approximately 2 g of
living Sphagnum spp. tissue, all leaf tissue from A. polifolia and
R. chamaemorus plants, and 1 cm2 of sedge plants (Eriophorum
spp. and C. rotundata). When all phyllosphere sample material
had been collected, a serrated edge knife was used to cut around
the base of the plant. The plant was then pulled out with
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FIGURE 1 | Permafrost thaw progression showing directions of possible microbial dispersal in the context of changes in plant community composition and
hydrology as ecosystems transition from: I. permafrost-underlain palsa, to II. partially thawed bog, to III. fully thawed and inundated fen. The underlying thaw
progression figure has been adopted from Johansson et al. (2006) and modified substantially.

associated peat still attached. “Bulk peat” samples were collected
as 15 mL of peat from 2 to 3 cm deep, from as close to the
root as possible without touching the root. Rhizosphere samples
were collected by snipping small pieces of the root fibers into a
1.5 mL Eppendorf tube. Both the primary root and lateral roots
were included and the root tip was excluded. A total of 4 cm
of main and lateral roots were sampled from A. polifolia and
R. chamaemorus plants, and one segment of the main root node
and 2–4 fine root hairs were sampled for each sedge rhizosphere
sample. While Sphagnum spp. plants do not have roots, 2 g
samples were taken from the base of the stalk where the tissue was
brown but still attached to the living stalk. After collection, the
samples were stored in a cooler, and then transferred to a −80◦C
freezer within 4 h of collection. The samples were shipped on dry
ice to Wellesley College and immediately stored at −80◦C until
further processing.

DNA Extraction and Sequencing of 16S
rRNA Gene
For each sample a standardized quantity of 50 mg of Sphagnum
spp. photosynthetic and non-photosynthetic tissue, 75 mg of
angiosperm leaf tissue, 100 mg of angiosperm root material,
or 50 mg of peat was used for DNA extraction. In all cases
bulk samples were used, meaning that results include both
endo- and epiphytic microbial communities. Total DNA from
each sample was extracted using the PowerSoil R© DNA Isolation
Kit (MoBio, Carlsbad, CA, United States) according to the
manufacturer’s instructions and eluted in 50 µL of elution

buffer. After extraction, DNA was quantified using NanoDrop
(Thermo Scientific, Inc., Wilmington, DE, United States) and
stored at−20◦C.

Sequencing at Argonne National Laboratories followed the
protocols of Caporaso et al. (2012). PCR amplification of
the V4 region of 16S rRNA gene made use of the forward
primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and the
reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′).
PCR amplicons were quantified by PicoGreen (Invitrogen,
Carlsbad, CA, United States) using a plate reader, and amplicons
were pooled in equal concentrations into a single tube. This pool
was cleaned up using UltraClean PCR Clean-Up Kit (MoBio,
Carlsbad, CA, United States) and quantified using the Qubit
(Invitrogen, Carlsbad, CA, United States). The pooled samples
were sequenced on the Illumina MiSeq platform (Illumina,
San Diego, CA, United States) according to the sequencing
procedures described in Caporaso et al. (2012). Sequences are
available in the National Center for Biotechnology Information
Sequence Read Archive, Study Accession: PRJNA599435.

Bioinformatic Analysis
An in-house workflow was used to process operational
taxonomic unit (OTU) data, which was based primarily on
Quantitative Insights into Microbial Ecology (Caporaso et al.,
2010) and SparCC. Detailed information about the SparCC
workflow can be found in Friedman and Alm (2012). Briefly,
paired-end sequences were first joined, then split into libraries
according to their index. Sequences were then filtered according
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to quality using USEARCH fastq_filter (-fastq_maxee 0.5),
dereplicated and screened against phiX174. Surviving sequences
were clustered into OTUs at 97% average nucleotide identity, then
taxonomy assigned using the Greengenes database (DeSantis
et al., 2006) version 13_8 using the Ribosomal Data Project
classifier (McDonald et al., 2012). Finally, OTUs matching
chloroplast and mitochondrial sequences were removed from the
analysis. Unifrac analysis was performed in QIIME (Lozupone
and Knight, 2005). OTU tables were pruned to address specific
experimental questions, then LEfSe biomarker analysis was
completed (Segata et al., 2011).

Network analysis began with filtering of OTU tables to exclude
any OTUs with fewer than 10 counts and represented in fewer
than three total samples across all habitat, tissue or plant types.
To generate networks, OTU tables were split according to habitat,
tissue type, and plant type, and mean OTU abundances for
each sample type were calculated based on filtered tables of
counts as described above. Compositionality-robust correlations
of each OTU table (15 total) was generated using SparCC
using the median of 20 iterations. Data were resampled and
bootstrapped 100 times (20 iterations) to generate correlation
p-values. Correlation matrices were then processed using python
packages Numpy (Walt et al., 2011), Scipy (Virtanen et al.,
2020), and Pandas (McKinney, 2010). Each correlation matrix
has its correlations filtered according to its p-value (<0.05), and
networks were built using the filtered correlations as an adjacency
matrix and rendered using python-igraph (Csardi and Nepusz,
2006) with visual refinement using Adobe Illustrator CC such
that OTUs served as “nodes” or vertices, and absolute correlation
values as the “edges” between OTUs.

We interpreted OTU PageRank score, which quantifies
connectivity, as a metric of ecological importance. We considered
the most important OTUs to be those in the 99th percentile
for each network based on PageRank scores, and compared
interpretation based on PageRank to the additional network
metrics of degree, transitivity, betweenness, and closeness.
Demonstration of the strong correlation of PageRank with the
“consequentiality” of nodes in diverse settings: for identification
of key metabolic genes in pathways of co-occurrence gene
networks (Browne et al., 2016; Wang et al., 2017, extinction
cascades in food webs (Allesina and Pascual, 2009), and complex
phylogenetic signals in communities of co-occurring bacteria
(Estrada-Pena et al., 2018). This metric has been successfully
applied to extinction food webs (Allesina and Pascual, 2009).
The nature of the metric (which quantifies the connections of
a node to others, with weighting for those neighbors’ respective
connectivity too), and these other studies, supported its use as
an indicator of keystone organisms. In order to relate OTU
importance and abundance (which are on different scales),
we used the rank of each within every sample, rather than
its absolute value.

Microbial functional groups of interest were methanogens
and methanotrophs. While functional assignation of organisms
identified using 16S sequencing cannot be definitive, methane
cycling traits are generally highly conserved (Martiny et al.,
2015) meaning that organisms belonging to taxonomic groups
known to produce or consume methane are likely to have similar

lifestyles. Methanogens were identified based on classification
into one of the following orders known to be dominated
by methanogens and active at our site: Methanosarcinales,
Methanobacteriales, Methanomicrobiales (Mondav et al., 2014;
Woodcroft et al., 2018b; Evans et al., 2019). Methanotrophs
were identified based on classification into one of the following
groups known to be predominantly methanotrophic and active
at our site: order Methylacidiphilales, families Beijerinckiaceae,
Hyphomicrobiaceae, Methylocystaceae, Crenotrichaceae, and
Methylococcaceae (Tveit et al., 2013; Knief, 2015; Singleton et al.,
2018; Smith and Wrighton, 2019).

Statistical Analysis
NMDS and variance partitioning were performed on both
Unifrac and Bray–Curtis distances of OTU tables for all samples.
Significance tests were performed with redundancy analysis
for Unifrac data and distance-based redundancy analysis for
Bray–Curtis distances using the vegan package in R (Oksanen
et al., 2019). Hierarchical clustering (based on Jaccard and
Bray–Curtis distances) was performed on both abundance and
importance scores of OTUs in networks. All statistical analyses
were performed in R studio running R version 3.6.0 (R Studio
Team, 2018; R Core Team, 2019).

RESULTS

A total of 350 samples were sequenced and rarefied to include
1,000 high-quality bacterial or archaeal 16S rRNA gene sequences
per sample. Alpha diversity varied between rarefaction analysis
indicating that full sampling depth was achieved only for samples
with lower levels of diversity, and not with samples from
the fully thawed fen peat (Supplementary Figure S1). Out of
all sequences, 99.6% were assigned to Bacteria and 0.4% to
Archaea – the latter is consistent with previous work from
this site (Mondav et al., 2017) and reflects the known biases
of the V4 primer set against Archaea (Parada et al., 2016).
Across all samples, there were a total of 373 unique OTUs
(1,436 in the unrarefied dataset) which were assigned to 170
genera and 31 known phyla (170 genera and 32 phyla in the
unrarefied dataset). Diversity within a sample ranged from
124 to 361 OTUs (181 to 609 in the unrarefied dataset). The
four most dominant phyla when considering the entire dataset
were Proteobacteria (44%), Acidobacteria (22.9%), Bacteroidetes
(8.9%), and Verrucomicrobia (7.8%). This profile matched the
general profiles found in previous investigation into bulk peat
communities at this site by Mondav et al. (2017) but with
stronger and more consistent dominance of Proteobacteria and
lower relative abundance of Acidobacteria across all habitat
types, particularly in the phyllosphere. This is generally in
line with the findings of Mondav et al. (2017) despite major
differences in methodology.

Diversity and Composition of Bacterial
Taxa Across Sample Types
A total of 66 OTUs were ubiquitous across all sample
types (habitat, compartment, and plant) after removal
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of chloroplast sequences. These belonged to 10 phyla:
Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes,
Chlamydiae, Cyanobacteria, Planctomycetes, Proteobacteria,
Verrucomicrobia, and WPS-2. Bacterial composition at the
phylum level showed the same major phyla represented
across the permafrost thaw gradient with variation in relative
abundance by habitat type and compartment (Figure 2). Based
on LEfSe analysis, we identified phyla that were enriched in
abundance in one habitat as compared to the others within
each compartment (LDA > 2). The palsa was enriched in
Acidobacteria and Planctomycetes in all three compartments,
as well as Actinobacteria and Chlamydiae in the rhizosphere
and peat, and WPS-2 and FCPU426 in the rhizosphere
only. The bog was enriched in WS4 in all compartments,
TM6 in the phyllosphere and rhizosphere, Armatimonadetes
and Verrucomicrobia in the rhizosphere and peat, OD1
in the phyllosphere only, FBP and Proteobacteria in the
rhizosphere only, and WPS-2 in the peat only. The fen contained
the greatest number of enriched phyla with Bacteroidetes,
Chlorobi, Chloroflexi, Fibrobacteres, Firmicutes, Nitrospirae,
Spirochaetes, Euryarchaeota, and Parvarchaeota enriched in
all three compartments. The fen rhizosphere and peat were
also enriched in Crenarchaeota, Elusimicrobia, OP3, and
WWE1, with the rhizosphere enriched for OD1, TM7, AD3,
Cyanobacteria, and Fusobacteria, and the peat enriched in
Gemmatimonadetes (Supplementary Figure S2).

NMDS based on Bray–Curtis distances between OTUs showed
separation of centroids by habitat with only partial separation
by compartment and plant type and very little separation by
season (Figure 3). PERMANOVA with plant and habitat nested
within compartment indicated significant differences (p < 0.001)
between communities across all factors (compartment, plant,
habitat, and month) as well as significant interaction terms
(p< 0.001). Variance partitioning indicated that when considered
individually, habitat and plant accounted for the majority of
the variation with compartment playing a smaller role and
sample month having almost no impact (Table 1). However, the
most variance was explained when habitat, plant associate, and
compartment were all considered (adjusted r2 = 0.27, p < 0.001).
Repeating the analyses using phylogenetically weighted Unifrac
values to take phylogenetic similarity into account provided
similar results but with an increase in the unique amounts
of variance explained, particularly by compartment (adjusted
r2 = 0.39, p < 0.001, Table 1).

Considering each compartment separately, NMDS plots
indicated some separation by habitat type and plant associate,
especially for phyllosphere and rhizosphere samples (Figure 4).
Variance partitioning based on Bray–Curtis distance between
communities showed different patterns for each compartment. In
the rhizosphere, plant associate explained a similar to the amount
of variance as habitat, but in the phyllosphere plant associate
explained substantially more variance than habitat (Table 2).
Plant associate explained a similar amount of variance in
both rhizosphere and phyllosphere. However, habitat explained
substantially more variance in the rhizosphere and the bulk peat
than the phyllosphere. The total amount of variance explained by
plant and habitat together was much higher in the rhizosphere

and bulk peat than in the phyllosphere (Table 2). Much of
the explained variance overlapped between both habitat and
plant type, likely because plant species distribution was not even
across all habitats.

Methane-Cycling Functional Groups
Putative methanotrophs were identified as bacteria belonging
to groups which have previously been shown to have
active methanotrophic representatives at this site based on
metagenomic and metatranscriptomic data (Tveit et al., 2013;
Knief, 2015; Singleton et al., 2018; Smith and Wrighton,
2019). These were order Methylacidiphilales and families:
Beijerinckiaceae, Hyphomicrobiaceae, Methylocystaceae,
Crenotrichaceae, and Methylococcaceae. Methanotrophs,
particularly members of Methylocystaceae, were found across
all habitats, compartments, and plants though in varying
abundances (Figure 5A and Supplementary Table S3). Members
of Methylacidiphilales were common in palsa and bog habitats
but rare in the fen, whereas members of Methylococcales were
common in the fen but rare in the bog and not seen in the palsa.
Variance partitioning on putative methanotrophs showed similar
patterns to the full dataset except that habitat explained less and
plant associate more of the variance in phyllosphere putative
methanotroph distribution than in the full dataset (Table 3).

Putative methanogens were defined as Euryarchaeota
in orders Methanosarcinales, Methanomicrobiales,
Methanococcales, Methanobacteriales, Methanopyrales,
Methanocellales, Methanomassiliicoccales, and “Candidatus
Methanophagales” (Evans et al., 2019). Methanogens were found
across all habitats and compartments as well as all plants except
R. chamaemorus. Members of the family Methanobacteriaceae
reached the highest abundances, especially in the fen, and were
the most widespread (Figure 5B and Supplementary Table S4).
Variance partitioning based on relative abundances did not
match the pattern seen in the overall dataset. None of the
phyllosphere variance was well explained. In the rhizosphere,
plant associate explained substantially more variance than
habitat, though overlap was high (Table 4).

Network Analysis
Because networks were based on the un-rarefied dataset, they
contained greater diversity with a total of 1,436 OTUs. We
avoided rarefication in order to preserve as many members of the
community as possible; focusing on those whose importance was
greater than their relative abundance. Rarefying data masks this
signal. Since PageRank scores community members more highly
when their surrounding community members are highly scored,
rarefying even a single members’ abundance would diminish
the importance of those to which it is connected. The mean
diversity per network type was 361 with a minimum of 181
and a maximum of 609. Variance partitioning on the OTUs
included in the networks recapitulated the results seen in the
entire dataset with slight increases in the amount of variance
explained by plant and habitat, especially when using only
keystone OTUs (Table 1). Network structure varied substantially
by plant associate, retaining some similarity across habitat types
for a given plant species (Figure 6). Sphagnum, in particular,
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FIGURE 2 | Changes in relative abundance of bacterial phyla across habitats (palsa = brown, bog = green, and fen = blue) and compartments (phyllosphere,
rhizosphere, and bulk peat). Circle size corresponds to percent relative abundance.

showed a characteristic “donut” structure regardless of habitat –
despite these being different species in the different habitats.
This structure reflects a lack of a central hub of OTUs, with
instead dispersed interconnected hubs. This may indicate the
presence of multiple sub-communities connected by a few
interacting species, which could be caused by distinct niches.
A similar structure was found in a few other networks such
as E. vaginatum in the bog, but was not consistent across
habitats. Similarities in network structure between tissue types of
a given plant species are not meaningful since the shape of the
network structure visualization was held constant for each plant
species in each habitat so only node size and connectivity varied
across tissue types.

To further test whether microbial communities were more
similar when sampled from the same habitat versus the same
plant associate, we used hierarchical clustering using Bray–
Curtis distances based on both relative abundance and network
importance score (PageRank or keystoneness). The phyllosphere
microbial communities mostly clustered by habitat rather than
plant type with the exception of Sphagnum which clustered
on its own based on importance to network but with the bog
plants based on relative abundance (Figures 7A,B). Rhizosphere
microbial communities clustered primarily by habitat when
importance to network was considered, however, when relative
abundance was considered sedges from the bog clustered with the
fen sedges rather than with the other bog plants (Figures 7C,D).
As would be expected, bulk peat microbial communities clustered
by habitat based on both relative abundance and importance
to network (Figures 7E,F). Hierarchical clustering based on

Jaccard dissimilarity which considers only presence/absence not
relative abundance showed no differences in the structure of
groupings but resulted in increased dissimilarity between groups
(Supplementary Figure S3).

Keystone Organisms
Keystone organisms were defined as OTUs in the 99th percentile
of importance for each network based on each organism’s
PageRank score. PageRank has not typically been used as a
metric for identification of keystone organisms in microbial
communities. However, it has been shown to be strongly
correlated with extinction cascades in food webs (Allesina
and Pascual, 2009), identification of key metabolic genes in
pathways of co-occurrence gene networks (Browne et al., 2016;
Wang et al., 2017), and used to disentangle phylogenetic
signals in communities of co-occurring bacteria (Estrada-
Pena et al., 2018) thus indicating that it may indeed be
a strong indicator of keystone organisms. PageRank score
within a network was strongly correlated with betweenness
centrality (Supplementary Figures S4, S5), which has previously
been used as a metric for identifying keystone organisms
(Martín González et al., 2010). Keystone OTUs also scored
highly for closeness centrality, betweenness centrality, degree,
and transitivity (Supplementary Figure S4). A total of 75
unique OTUs were identified as keystone organisms across
the 27 different networks (Supplementary Table S1). This
represented an average of four keystone taxa per network with
a minimum of two and a maximum of seven (Supplementary
Table S2). OTUs were generally only keystone for one or a few
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FIGURE 3 | NMDS plots of Bray–Curtis distances between samples from each (A) habitat, (B) compartment, (C) plant associate, and (D) month. Outer ellipses
include 95% of points for a habitat, inner ellipses are 95% confidence around the centroid. Stress = 0.17.

TABLE 1 | Variance explained by each factor based on Bray–Curtis and Unifrac distances of total dataset and Bray–Curtis distances of only OTUs included in networks.

All OTUs OTUs in Networks Keystone OTUs

Distance metric Bray–Curtis Unifrac Bray–Curtis Bray–Curtis

Compartment total R2 0.07* 0.12* 0.07* 0.07*

Unique R2 0.07* 0.11* 0.07* 0.07*

Plant total R2 0.16* 0.23* 0.16* 0.19*

Unique R2 0.04* 0.04* 0.04* 0.04*

Habitat total R2 0.15* 0.24* 0.16* 0.19*

Unique R2 0.04* 0.05* 0.04* 0.00*

Month total R2 0.01* 0.00 0.00* 0.00

Unique R2 0.01 0.00 0.00 0.00

All 0.27* 0.39* 0.30* 0.33*

Total R2 is variance explained by that factor including fractions that overlap with variance explained by other factors. Unique R2 is only the variance explained by a factor
that does not overlap with any other factor. All R2 values are adjusted for multiple tests. Starred values are significant at p < 0.001 based on redundancy analysis. Unique
R2 for month for Bray–Curtis distance based analysis was significant at p < 0.004 and for OTU’s used in networks was significant at p = 0.026. Month unique and total
R2 were not significant (p > 0.1) for Unifrac based analyses. Month total R2 was significant for keystone OTUs at p = 0.007 but unique R2 was not significant (p = 0.25).

networks and none were keystones across all networks, habitats,
compartments, or plants. Considering relative abundances of
keystone OTUs across all samples indicated that they ranged from
generalists (found across habitats, plants, and compartments)

to specialists at any of the three levels (by habitat, plant type,
and compartment) (Figure 8). Generalists included members
of families Sinobacteraceae (OTU 12), Acetobacteraceae (OTU
137), and Acidobacteriaceae (OTU 274). Specialists included
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FIGURE 4 | NMDS plots of Bray–Curtis distances separated by compartment and color-coded by (A) habitat type and (B) plant associate. Outer ellipses include
95% of points for a group, inner ellipses are 95% confidence around the centroid. Stress = 0.17.

TABLE 2 | Variance partitioning by compartment based on Bray–Curtis distance between communities considering each compartment (phyllosphere, rhizosphere, and
bulk peat) separately.

Phyllosphere Rhizosphere Bulk Peat

No. observations 142 144 76

All OTUs Keystone All OTUs Keystone All OTUs Keystone

Plant total R2 0.17* 0.21* 0.27* 0.31* 0.23* 0.25*

Unique R2 0.08* 0.09* 0.08* 0.09* −0.01 −0.01

Habitat total R2 0.11* 0.14* 0.26* 0.30* 0.33* 0.37*

Unique R2 0.03* 0.02* 0.07* 0.07* 0.10* 0.11*

All 0.20* 0.23* 0.35* 0.39* 0.33* 0.36*

Unique R2 is only the variance explained by a factor that does not overlap with any other factor. All R2 values are adjusted for multiple tests. Starred values are significant
at p < 0.001 based on redundancy analysis. Plant total R2 was not significant for bulk peat samples based on all OTUs (p = 0.827) or keystone taxa (p = 0.795).
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FIGURE 5 | Relative abundances of (A) Methanotrophs and (B) Methanogens, grouped by habitat and compartment. Colors indicate plant associates.

members of an unknown family in Chloroflexi (OTU 264)
and Nakamurellaceae (OTU 737) found only in the fen, a
member of an unknown family of Acidobacteria (OTU 90)
found only in palsa, a member of Neisseriaceae (OTU 5321)
found only in the rhizosphere, and members of Methylocystaceae
(OTU 167) and Cytophagaceae (OTU 371) found only in
phyllosphere. Variance partitioning based on relative abundances
of the keystone organisms increased the total amount of
variation explained to 33% but did not change the overall
patterns in variance (Table 1). Six keystone OTUs belonged
to functional groups of interest, one methanogen: OTU
36 (family Methanobacteriaceae) in the bog peat near a
Sphagnum sp.; and five putative methanotrophs: OTU 22 (family
Methylocystaceae) associated with A. polifolia rhizosphere in
the bog and with peat near C. rotundata in the fen, OTU
40 (family Bradyrhizobiaceae) associated with the rhizosphere
of R. chamaemorus in the palsa and E. angustifolium in the
fen, OTU 72 (order Methylacidiphilales) associated with the
rhizosphere of A. polifolia in the palsa and C. rotundata in
the bog, OTU 167 (family Methylocystaceae) associated with
the phyllosphere of A. polifolia and E. vaginatum in the
palsa, OTU 171 (order Methylococcales) associated with the
rhizosphere of A. polifolia, E. vaginatum, and the basal area of
Sphagnum sp. in the bog, and OTU 320 (family Crenotrichaceae)

TABLE 3 | Variance partitioning of putative methanotrophs by compartment based
on Bray–Curtis distance between communities considering each compartment
(phyllosphere, rhizosphere, and bulk peat) separately.

Phyllosphere Rhizosphere Bulk Peat

No. observations 135 141 75

Plant total R2 0.18* 0.26* 0.21*

Unique R2 0.11* 0.07* −0.01

Habitat total R2 0.08 0.28* 0.32*

Unique R2 0.01* 0.09* 0.10*

All 0.19* 0.36* 0.31*

Unique R2 is only the variance explained by a factor that does not overlap with
any other factor. All R2 values are adjusted for multiple tests. Starred values are
significant at p < 0.001 based on redundancy analysis. Plant unique R2 less
significant (p = 0.017) for Phyllosphere and not significant for bulk peat samples
(p = 0.87).

associated with the bulk peat near E. angustifolium in the fen
(Supplementary Table S1).

DISCUSSION

We investigated whether biotic filtering by plant associate
could outweigh the importance of environmental filtering
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TABLE 4 | Variance partitioning of putative methanogens by compartment based
on Bray–Curtis distance between communities considering each compartment
(phyllosphere, rhizosphere, and bulk peat) separately.

Phyllosphere Rhizosphere Bulk Peat

No. observations 46 64 41

Plant total R2
−0.01 0.36* 0.24*

Unique R2
−0.05 0.15* 0.028

Habitat total R2
−0.02 0.22* 0.25*

Unique R2
−0.01 0.07* 0.04

All −0.02 0.37* 0.28*

Unique R2 is only the variance explained by a factor that does not overlap with
any other factor. All R2 values are adjusted for multiple tests. Starred values are
significant at p < 0.001 based on redundancy analysis. Phyllosphere overall model
was not significant (p = 0.615), plant unique R2 not significant (p = 0.125) and
habitat unique R2 significant at p = 0.039.

by habitat on microbial community composition across a
permafrost thaw gradient. We found that the metric used
for assessing differences between communities (importance
to network versus relative abundance) has an impact on
which taxa appear relevant. Under both approaches, we found
evidence that in the rhizosphere, the environment first filters
microbial community (especially through moisture), and then
biotic interactions with plants further shape composition. In
the phyllosphere, environmental conditions are less variable
spatially so the effects of environmental filtering are less
than the effects biotic influence on microbial community –
though both are fairly small. However, we also found that
the role of plant associate and habitat in shaping microbial
communities may be very different for different microbial
groups. Putative methanogens and methanotrophs appeared
to be particularly strongly influenced by plant-associations,
indicating that changes in plant community composition could
have a significant influence on CH4 production from thawing
permafrost ecosystems.

Below, we consider the following questions raised by our
observations: What are the characteristics of the plant-associated
microbiome as compared to the peat microbiome observed
in other studies? Why did this study find relatively low
influence of biotic filtering by plant associate on microbial
community composition compared to other research? Does
focusing analysis on keystone organisms that determine network
structure provide clearer indication of the effects of filtering?
Does plant community transition impact CH4 cycling in a way
that contributes to permafrost thaw feedbacks?

Characteristics of the Plant-Influenced
Microbiome
Microbial communities of Stordalen mire have been well
studied but previous work has focused on bulk peat samples
especially at depth (Mondav et al., 2017; Monteux et al., 2018;
Woodcroft et al., 2018a). This represents the first known
examination of plant-associated microbial communities at
this site. Our most dominant phyla matched those seen in
previous work in which Proteobacteria and Acidobacteria
were the most common with Bacteroidetes and Actinobacteria

also common (Mondav et al., 2017). This profile matched the
general profiles found in previous investigation into bulk peat
communities at this site by Mondav et al. (2017) but with
stronger and more consistent dominance of Proteobacteria and
lower relative abundance of Acidobacteria across all habitat
types, particularly in the phyllosphere. This is consistent
with previous work that has shown enrichment of alpha-
and beta-proteobacteria in plant-associated communities –
particularly the rhizosphere – as compared to bulk soil
(Knief et al., 2012; Nuccio et al., 2016). While Mondav et al.
(2017) found high relative abundance of Euryarchaeota in
fen samples, we saw very low numbers with the highest
abundance in fen bulk peat. We found four phyla in
much higher abundance than Mondav et al. (2017) (in
which they were absent or comprised less than 1% of the
community): Firmicutes, Cyanobacteria, Armatimonadetes, and
Spirochaetes. In contrast, we saw lower than 1% abundance
of the following phyla that were reported at high abundance
by Mondav et al. (2017): Microgenomates, Woesearchaeota,
Thaumarchaeota, and Bathyarchaeota. These differences were
strongest in the plant-associated microbial communities.
Thus while our overall community composition was similar
to that found in examinations of the deeper soil profile,
our results are consistent with the idea that there are
plant-mediated differences in microbial communities in
the surface soil.

Our study also found substantially lower diversity than
Mondav et al. (2017), who found a mean OTU richness of
721 with a range of 309–1,226. This may be because they
report total diversity in pooled samples as opposed to our
singletons which may have allowed resulted in the discovery of
more different taxa. Additionally, our study used amplification
of the V4 region and Illumina MySeq while Mondav et al.
(2017) amplified the V6–V8 region and used 454 sequencing.
Different regions of the 16S gene are known to provide different
degrees of taxonomic resolution (Bukin et al., 2019) as well as
biases in taxonomic composition (Sinclair et al., 2015; Fischer
et al., 2016). Finally, our sampling approach for bulk peat
was substantially different. Because we were sampling in the
rooting zone close to plants, it is possible that even our bulk
peat samples were more strongly plant influenced than those
of Mondav et al. (2017), which were targeted at the peat
profile. Thus both sequencing differences and plant influence
may account for some of the differences in diversity and
community composition between our bulk peat samples and
those of Mondav et al. (2017).

Biotic Versus Environmental Filtering
Variance partitioning of relative abundances of the microbial
community provided support for our hypothesis that habitat
is less important for structuring phyllosphere microbial
communities. In the phyllosphere, plant associate explained
more variation than habitat – particularly when overlapping
factors were excluded – indicating that biotic filtering was
stronger than environmental filtering (Table 2). Additionally,
both plant associate and habitat explained more variance
in community composition in the rhizosphere than the

Frontiers in Microbiology | www.frontiersin.org 11 May 2020 | Volume 11 | Article 796

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00796 May 14, 2020 Time: 20:7 # 12

Hough et al. Plant Microbiomes, Permafrost Thaw Gradient

FIGURE 6 | Network diagrams of the microbial community associated with each sample type (separated by habitat, compartment, and plant associate). Blue lines
indicate positive correlations and red lines indicate negative correlations. Colors indicate phyla.

phyllosphere. This is consistent with there being higher dispersal
rates and less filtering (biotic or abiotic) on phyllosphere
communities. Indeed, habitat and plant associate together only
explained 20% of the variation in phyllosphere community
composition (as compared to 35% in the rhizosphere and 33%
in the bulk peat). This is consistent with previous findings
that the phyllosphere tends to be more variable than the
rhizosphere (Lebeis, 2015). We hypothesize that phyllosphere
microbial communities are either more strongly determined
by stochastic processes or simply more strongly impacted by
variables not associated with plant-associate or thaw stage
such as humidity or radiation. Testing these hypotheses
was beyond the scope of the current study but would be a
useful step for improving our understanding of phyllosphere
microbial communities.

In contrast, in the rhizosphere plant associate and
habitat explained similar amounts of variance in community
composition (Table 2), indicating that both were important but
neither strongly overrode the other. This was not entirely in line
with our hypothesis which proposed that environmental filtering
by habitat would override biotic effects in the rhizosphere.
Indeed, biotic effects explained slightly more variance than
habitat (8% vs 7%). This is particularly striking given the
large differences in habitat type, ranging from dry palsa to
fully inundated fen. This difference was large enough that our
plant species did not span all three habitats, and some were
found in only a single habitat. This last is a major cause of
the high degree of overlap in the variance explained by both
plant and habitat. While it has long been known that plants
strongly influence their rhizospheres (Berg and Smalla, 2009;
Knief et al., 2012; Ferrera-Rodríguez et al., 2013; Philippot
et al., 2013; Lebeis, 2015; Lee et al., 2015), this influence is
not always sufficient to override environmental differences

(Kumar et al., 2016, 2017; Nuccio et al., 2016). Thus, it is
striking that even with such a large difference between habitat
types, plant associate still explained as much or slightly more
variation than habitat.

One hypothesis to explain why previous studies have
found that environmental factors were more important than
species associate – in contrast to our finding and despite the
strong influence of plants on rhizosphere communities – is
that differences between plant functional groups are a key
factor. Nuccio et al. (2016) found that rhizosphere community
composition was most strongly correlated with moisture and
then with region but not with species. However, this study
was conducted within grasslands and focusing on a single
plant genus (Avena). While our study included a strong
moisture gradient, it also included a number of different
plant functional types (sphagnum mosses, sedges, forbs, and
ericaceous shrubs). It may be that the larger differences
between plant functional types explain why plant associate
had such a strong influence on rhizosphere community across
our large environmental gradient. Indeed, research has shown
substantial differences between plant species in quantity and
quality of root litter inputs in thawing permafrost ecosystems
which could influence microbial community composition
(Blume-Werry et al., 2019). Cluster analysis based on relative
abundances showed that sedge rhizosphere communities from
the wet bog and fen habitats grouped together – though
the sedge-associated community in the dry palsa grouped
with its habitat (Figure 8). This is consistent with the
finding of Nuccio et al. (2016) that moisture is a key
factor filtering rhizosphere communities. Similarly, Sphagnum
phyllosphere communities from palsa and bog habitats were
more similar to each other than to any other communities,
particularly when clustered by organisms’ network importance

Frontiers in Microbiology | www.frontiersin.org 12 May 2020 | Volume 11 | Article 796

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00796 May 14, 2020 Time: 20:7 # 13

Hough et al. Plant Microbiomes, Permafrost Thaw Gradient

FIGURE 7 | Hierarchical clustering of Bray–Curtis dissimilarity between community networks weighting organisms by (A,C,E) relative abundance for a given
habitat/plant and (B,D,F) relative importance for a given habitat/plant. Main colors correspond to habitat with brown = palsa, green = bog, blue = fen. Accent colors
represent plant species with orange = A. polifolia, brown = R. chamaemorus, olive = E. vaginatum, dark green = Sphagnum, teal = C. rotundata, dark
blue = E. angustifolium.

(Figure 8). Sphagnum mosses are known to cultivate a
specialized endophytic microbial community (Bragina et al.,
2012, 2014; Bragina et al., 2015; Holland-Moritz et al.,
2018), however, this community has also been known to
demonstrate high specificity to host and environmental factors.

This means it is somewhat surprising that the phyllosphere
communities from the different Sphagnum species and very
different hydrologic conditions of the palsa and bog were so
similar. Overall, these findings are consistent with the idea
that environment first filters microbial community (especially
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FIGURE 8 | Comparison of (A) relative importance and (B) relative abundance of organisms in the 99th percentile of importance to network structure across habitat,
compartments, and plant associates. Stars indicate methanotrophs and diamonds indicate methanogens.

through moisture), then biotic interactions with plants further
shape composition.

Keystone Organisms
The high diversity of microbial communities provides a challenge
in considering how to weight each taxonomic group in
terms of its importance to community composition. Typically,
community composition is compared using relative abundance
as a weighting, which essentially assumes that the higher
abundance of an organism, the larger is its importance to
the community composition. While this may be true in many

cases, when considering the impacts of community changes
on ecosystem function often low-abundance organisms can be
highly influential (Paine, 1969; Shade et al., 2014; Banerjee
et al., 2018). Network analysis provides a mechanism for
identifying these keystone organisms in microbial communities.
Previous studies have used high betweenness and centrality
scores to identify keystone taxa within microbial communities,
however, there is not yet a consensus over which network
metrics best measure keystoneness (Martín González et al.,
2010; Berry and Widder, 2014; Vick-Majors et al., 2014;
Banerjee et al., 2016a,b). An alternate approach has been applied
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by Allesina and Pascual (2009) who found that PageRank
scores were strongly associated with extinction cascades in
food webs. This provides a strong biological rationale for
use of this metric. Additionally, we found that PageRank
was strongly correlated with the other metrics of betweenness
and centrality (Supplementary Figure S4). Therefore, we used
PageRank scores as an indication of an organism’s importance
to its network and defined keystone organisms as those in
the 99th percentile of importance (PageRank score) for each
community (network).

Environmental filtering appeared to influence keystone
organisms more strongly than the overall microbial community.
Habitat explained an increased portion of the variance in
microbial community across all compartments when only
keystone organisms were considered (Table 2). Similarly,
clustering communities based on keystoneness (PageRank score)
changed the grouping of rhizosphere communities such that
sedges no longer clustered together, indicating that habitat was
a more critical factor in determining keystone taxa in this case
(Figure 7). On the other hand, in the phyllosphere, sphagnum-
associated communities clustered farther apart from others
when only keystone organisms were considered, suggesting
that these organisms were more strongly influenced by their
plant associate. It is not surprising that some organisms
will be more strongly influenced by habitat and others
by plant-associate, but these findings suggest that it is
important to think carefully about which metrics we use to
measure changes in community composition since they may
alter our results.

We found some evidence that keystone organisms can
be important to C-cycling as well as community assembly
processes. Five keystone OTUs belonged to functional groups
of interest, one methanogen and four putative methanotrophs.
The methanogen was a keystone in bulk peat and all but one
of the methanotrophs were keystones in rhizosphere and/or
phyllosphere communities (Supplementary Table S1). Since the
effect of methanotrophs can be large enough to remove up
to 50–97% of CH4 from an ecosystem (Segarra et al., 2015),
these keystone organisms may indeed play an important role in
ecosystem processes.

Potential Impacts on CH4-Cycling
An important change taking place as permafrost thaws is
conversion to increasingly hydric habitats with increasing
methane (CH4) production (Johansson et al., 2006). This
change has the potential to have a major impact on climate
change since CH4 has a warming potential roughly 25
times that of CO2 (IPCC, 2013). In order to understand
the implications of biotic and abiotic filtering of microbial
communities on C-cycling in these systems we separately
investigated organisms associated with CH4 cycling. Use of
16S data to infer functionality carries with it caveats since
any inferences are based solely on taxonomic associations with
organisms known to perform particular functions. However,
complex traits such as methanogenesis and methanotrophy
tend to be more highly conserved than other microbial traits,
with methanogenesis in particular conserved across entire

families or even orders (Martiny et al., 2015). Methanotrophy
is also generally conserved within families, though there
are examples where it has been lost by particular species
(Tamas et al., 2014). While activity of an organism or
any particular gene cannot be inferred from presence alone,
previous research at this site has used metagenomic and
metatranscriptomic data to show the presence and activity
of the families identified here as putative methane-cycling
organisms (Mondav et al., 2014; Singleton et al., 2018;
Woodcroft et al., 2018b).

Putative methanotrophs identified in this dataset were
members of groups previously identified as encoding
genes for methanotrophy at this site (Singleton et al.,
2018): Alpha-proteobacterial families Methylocystaceae,
Beijerinckiaceae, Hyphomicrobiaceae, and Methylocystaceae;
Gammaproteobacterial families Methylococcaceae and
Crenotrichaceae; and the Verrucomicrobia order Methylacidi
philales (Smith and Wrighton, 2019). We found putative
methanotrophs across all habitats, plants, and compartments.
This is perhaps unsurprising in an environment with high
CH4 production. The most ubiquitous were members of
Methylocystaceae, and this family also reached the highest
relative abundances, which were in the phyllosphere –
particularly when associated with A. polifolia and sedges
(Eriophorum spp. and C. rotundata). In the palsa and fen,
Methylacidiphilales and Crenotrichaceae, respectively, were
also very common. Variation in methanotroph communities
was driven by both habitat and plant associate, with the
latter more important in the phyllosphere and the former
more important in the rhizosphere and peat (Table 3). This
suggests that methanotrophs in the rhizosphere are more
influenced by soil parameters such as moisture and oxygenation,
whereas methanotrophs in the phyllosphere are shaped by
plant characteristics such as structure or biochemistry. If
so, future investigations of functional gene abundance and
activity may identify associations between plant functional
types and microbial functional types. For instance, sedges have
aerenchymous roots that may vent methane to the phyllosphere
(Iversen et al., 2015) thereby shaping the microbial community.

Putative methanogens at this site were all members of
genuses previously identified as methanogens at this site based
on functional genes (Woodcroft et al., 2018a) belonging to
Methanobacteriaceae (Methanobacterium), Methanoregulaceae
(Candidatus Methanoregula), and Methanosarcinaceae
(Methanosarcina). These organisms were distributed across
all habitats and compartments, though they were rare in the
phyllosphere and most abundant in the bulk soil (Figure 5b).
Although methanogenesis is an anaerobic process, methanogens
and even methane production have been previously observed in
bulk aerobic environments such as the phyllosphere (Keppler
et al., 2006; Taffner et al., 2019), and it is possible they inhabited
anaerobic pockets of leaf tissue. Plant associate explained much
more variation in relative abundances of putative methanogens
in the rhizosphere than it did for any other group of organisms
(Table 4). Tighter interaction between plant roots and putative
methanogens than other groups could be driven by differences
in substrate availability due to root exudates or differences in
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electron acceptor availability as a result of gas transport by
roots. This strong influence of plant associate on explaining
putative methanogen abundance has important implications for
climate change since CH4 production from thawing permafrost
ecosystems is a major potential feedback to global warming.

CONCLUSION

We began by asking to what degree plant community
composition versus environmental shifts are important to
structuring microbial communities under climate change.
We additionally asked whether the relative contribution of
each differs when considering only keystone organisms or
particular functional groups versus the whole microbiome.
Such questions are important because microbes are responsible
for driving many important processes, such as C-cycling,
which are changing rapidly with climate. If we can better
understand which forces structure microbial communities or
key functional groups, we can better predict the implications
of changing conditions for these processes. Our results showed
that such prediction is difficult, since much of the variation
in microbial community composition remains unexplained
by either biotic (plant) or environmental filtering. This may
be an argument for investigating the role of more specific
environmental variables such as moisture or pH in driving
microbial community composition, but it should be noted that
when investigating more specific drivers it becomes more likely
that their effects will vary amongst microbial groups. We did
show that both types of filtering play a role, with their relative
importance differing between rhizosphere and phyllosphere and
for particular functional groups but not for keystone organisms.
Putative methane-cycling microbes were especially strongly
impacted by plant associates beyond the effects of ecosystem
transition, suggesting that plant community composition may be
particularly important to shifts in the CH4 cycle. Further research
should confirm the functionality and quantify activity levels
of these putative CH4-cycling organisms when associated with
different plant species. Such information may prove particularly
useful to remote-sensing approaches, which could potentially
use maps of plant community composition to infer information
about CH4-cycling microbes. However, such approaches should
consider microbial functional groups individually, rather than
entire microbiomes, since the importance of plant versus
environment seems to vary by group.
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