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Quantitative Aggregation of Microbiome
Sequencing Data Provides Insights into the
Associations between the Skin Microbiome and
Psoriasis

Alfred A. Chan1, Patrick T. Tran2 and Delphine J. Lee1,2,3
Although prior studies have reported distinct skin microbiome profiles associated with psoriasis, differences in
methods and analyses limit generalizable conclusions. Individual studies have actually reported conflicting
findings; for example, Propionibacterium and Staphylococcus have been significantly associated with both
psoriatic lesions and healthy skin. Qualitative reviews have attempted to summarize this body of work, but
there is great variability across the studies’ findings and methods. To better unify these data, we created a meta-
analysis of all publicly available datasets by utilizing a uniform bioinformatics pipeline and reference database
to investigate associations of the skin microbiome in psoriasis. A total of 977 skin swab samples (341 lesional,
295 nonlesional, and 341 healthy) from 6 studies were analyzed. The aggregated analysis revealed a higher
relative abundance of microorganisms, including Staphylococcus aureus and Corynebacterium simulans,
among others, from patients with psoriasis than those from healthy swab samples; in addition, Cutibacterium
acnes, Lawsonella unclassified, and S warneri were significantly higher in healthy samples. Furthermore,
comparison of functional pathways predicted from 16S gene markers showed that L-ornithine biosynthesis and
L-histidine biosynthesis were lower in psoriatic lesions than in healthy controls. Taken together, this meta-
analysis allows for a more generalizable association between the skin microbiome and psoriasis.
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INTRODUCTION
Psoriasis affects the health of many people worldwide. The
pathogenesis of psoriasis is multifactorial, and the role of the
skin microbiome in psoriasis is still being studied. Prior
studies have reported distinct skin microbiome profiles
associated with psoriatic lesions (Chen et al, 2020), and
qualitative reviews have attempted to summarize these
studies (Carmona-Cruz et al, 2022; Lewis et al, 2019; Mazur
et al, 2021). However, differences in how the samples were
obtained and analyzed limit what can be concluded (Lewis
et al, 2019; Olejniczak-Staruch et al, 2021). A common
way to identify the taxa of the microbiome between groups of
interest is through 16S rRNA amplicon sequencing. Although
many psoriasis microbiome studies utilized this method of
sequencing, analyses varied in the following parameters:
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location of the specific variable region of the 16S amplicon
(Abellan-Schneyder et al, 2021), differences in primer com-
binations, differences in bacterial extraction kits (Paniagua
Voirol et al, 2021), differences by sequencing platform
(Allali et al, 2017), and differences in bioinformatic pipelines
and settings (Abellan-Schneyder et al, 2021; Allali et al,
2017). The variability in these parameters likely contributed
to the contradictory findings published across reports, which
showed different bacterial taxa that are significantly
increased in psoriatic lesions (Gupta et al, 2022; Olejniczak-
Staruch et al, 2021; Yan et al, 2017). Our aim was to perform
a meta-analysis of all publicly available datasets utilizing a
uniform bioinformatics pipeline and reference database to
standardize our results and to generate robust associations of
the skin microbiome with psoriasis by leveraging higher
statistical power in an aggregated multivariable analysis.

RESULTS
Sample description and distribution

Fourteen psoriatic microbiome studies were considered for
analysis (Table 1). Publicly available data from 6 16S
amplicon sequencing studies met the criteria for high-quality
filtering, resulting in an aggregate of 977 skin swabs samples:
341 lesional, 295 nonlesional, and 341 from healthy sites.
Project PRJNA281366 performed shotgun sequencing and
was separate from our aggregate analyses because it was a
different technique from 16S amplicon sequencing with
different processing pipeline. Table 1 shows how the 16S
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Table 1. Sequencing Projects on Psoriasis Microbiome

n of
Patients SRA Accession First Author (y)

16S
Region

Sequencing
Platform

Extraction
Kit SwabBrand Skin Sites

51 PRJNA46309 AV Alekseyenko

2013

V1V3 454 GS FLX Mobio

Powerlyzer

Epicentre

Catch-All

Abdomen, elbow, knee,

Scalp, face, hand

28 PRJEB25915 HW Chang

2018

V1V3 MiSeq MasterPure

Yeast

Epicentre

Catch-All

Arm, leg, trunk,

Axilla Buttock, Scalp

23 PRJEB14852 EA Langan

2019

V1V2 MiSeq Powerlyzer

UltraClean

Unknown Scalp, umbilicus

Elbow, knee

34 PRJNA483888 Z Stehlikova

2019

V1V2

V3V4

MiSeq DNeasy

PowerBiofilm

FLOQSwabs Back, elbow

32 PRJEB42803 D Chen

2021

V3V4 NovaSeq Mobio

Powersoil

Epicentre

Catch-All

Unknown

6 PRJEB29181 R Nijmegen

—

V3V4 MiSeq Unknown Unknown Trunk

28 PRJNA281366 A Tett

2017

Shotgun HiSeq Mobio

Powersoil

VWR Elbow, ear

134 PRJNA554499 (Errors) N Fyhrquist

2019

V3V4 454 GS

Titanium

QIAamp UCP Pathogen Mini Unknown Trunk

114 PRJNA427318 (No Data) MA Loesche

2018

V1V3 MiSeq Purelink Pro 96

Genomic Kit

Fisherbrand Synthetic Tip Arm, axilla, buttock,

leg, scalp, trunk

6 No Data Z Gao

2008

V1V6 Unknown DNeasy

Tissue Kit

Unknown Arm, elbow, leg, knee,

trunk, extremities

10 No Data A Fahlen

2012

V3V4 454 GS FLX DNeasy

Blood þ Tissue

(Biopsy) Trunk, arm, leg

1 No Data L Drago

2016

V2V3 Ion Torrent Genomic DNA

Mini Kit

(Scrapes) Unknown and Ear

27 No Data C Quan

2019

V3V4 MiSeq Plasmid

Miniprep

Unknown Extremities, buttocks,

waist, head, face, trunk

39 No Data M Assarsson

2020

V3V4 MiSeq EZ1 Tissue

Kit v2.0

ESwab Elbow

39 No Data C Jin-Young V3 Ion Torrent S5 XL QIAamp

DNA Mini

Unknown Scalp

The table presents the list of published manuscripts on psoriasis microbiome. Project PRJNA554499 was excluded owing to quality issues or errors with the
upload. Loesche et al (2018) reported a project number (PRJNA427318), but the samples were not linked to any sequencing data as of December 12, 2023.
Publicly available data from 6 amplicon sequencing and 1 shotgun sequencing were used in this study (the first 7 rows in the table).
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sequencing projects vary in the rRNA variable region
amplified, the sequencing platform (with different
sequencing chemistry: colorspace vs basespace), brands of
DNA extraction kits and swab material, and the body sites
sampled (head, trunk, upper extremities, lower extremities,
axilla, back, intergluteal fold). Such technical differences
between projects translate into strong batch effects and biases
between projects as illustrated by the beta-diversity ordina-
tion and Shannon alpha-diversity index in Figure 1. Samples
also cluster together on the basis of the choice of 16S variable
region and sequencing platform utilized.

The sample distribution and count across body sites, dis-
ease states, and projects are summarized in Table 2. Of note,
the body sites sampled are not evenly balanced between
projects and are unlabeled for PRJEB42803. Therefore, to
preserve large sample size, our analyses do not explicitly
adjust for body site parameters; partial adjustment is made by
the overall batch correction between projects.

Microbial diversity by disease state

Alpha diversity by Shannon index was significantly higher in
lesional and nonlesional samples from patients with psoriasis
than from healthy controls (P < .001 and .003; signed fold
change [FC] ¼ 1.05 and 1.15) (Figure 2a); however, between
lesional and nonlesional samples, the alpha diversity showed
JID Innovations (2024), Volume 4
no difference, even by paired analysis (P ¼ .54). Likewise,
beta diversity by BrayeCurtis dissimilarity showed significant
differences between lesional and healthy samples (P < .001,
R ¼ 0.105) and between nonlesional and healthy swabs (P ¼
.001, R ¼ 0.078) but not between lesional and nonlesional
swabs (P ¼ .83) (Figure 2b). Results remain consistent in
sensitivity tests removing any one of the projects from the
aggregate analysis.

Bacterial relative abundance by disease state

After reducing batch effect between projects and 16S variable
region, we used MaAsLin2 to identify which bacteria are
differentially abundant between psoriatic lesional, psoriatic
nonlesional, and healthy samples. Boxplots of bacteria were
statistically significant (P < .05) in 2 or more of the pairwise
comparisons shown in Figure 3. Healthy skin swabs showed a
higher relative abundance of Cutibacterium acnes, Law-
sonella unclassified, and Staphylococcus warneri than sam-
ples from patients with psoriasis (Figure 3a) (healthy vs
lesional log2FC ¼ �0.55, �0.62, �0.53; healthy vs nonle-
sional log2FC ¼ �0.27, �0.65, �0.36, respectively). On the
other hand, samples from patients with psoriasis showed a
higher relative abundance of Acinetobacter unclassified,
Acinetobacter johnsonii, Corynebacterium simulans, Cory-
nebacterium unclassified, Neisseriaceae unclassified, S



Figure 1. Beta and alpha diversity by project and 16S region. (a) Beta-diversity ordination and (b) Shannon alpha diversity across different projects and 16S

variable region prior to batch effect corrections. NMDS, nonmetric multidimensional scaling.

Table 2. Sample Distribution Across Body Sites, Disease States, and Projects

Project ID PRJEB14852 PRJEB25915 PRJEB29181 PRJEB42803 PRJNA46309 PRJNA483888 PRJNA483888

16S Variable Region V1-V2 V1-V3 V3-V4 V3-V4 V1-V3 V1-V2 V3-V4

n-Patients n-Psoriasis ¼ 23 28 6 26 51 7 25

n-Healthy ¼ 21 24 6 10 41 6 17

Arm/Leg Healthy 0 52 0 0 1 0 0

Lesion 0 48 0 0 15 0 0

Non-Lesion 0 55 0 0 14 0 0

Axilla Healthy 0 19 0 0 0 0 0

Lesion 0 8 0 0 0 0 0

Non-Lesion 0 24 0 0 0 0 0

Back Healthy 0 0 0 0 2 9 11

Lesion 0 0 0 0 8 15 20

Non-Lesion 0 0 0 0 8 16 24

Gluteal Healthy 0 25 0 0 0 0 0

Crease Lesion 0 15 0 0 0 0 0

Non-Lesion 0 27 0 0 0 0 0

Face Healthy 0 0 0 0 0 0 0

Lesion 0 0 0 0 1 0 0

Non-Lesion 0 0 0 0 1 0 0

Foot/Hand Healthy 0 0 0 0 0 0 0

Lesion 0 0 0 0 2 0 0

Non-Lesion 0 0 0 0 2 0 0

Head Healthy 21 25 0 0 3 0 0

Lesion 32 23 0 0 2 0 0

Non-Lesion 0 25 0 0 2 0 0

Knee/Elbow Healthy 38 0 0 0 44 0 8

Lesion 26 0 0 0 20 0 6

Non-Lesion 31 0 0 0 20 0 10

Trunk Healthy 12 26 6 0 9 0 0

Lesion 17 17 6 0 3 0 0

Non-Lesion 0 27 6 0 3 0 0

Umbilicus Healthy 20 0 0 0 0 0 0

Lesion 31 0 0 0 0 0 0

Non-Lesion 0 0 0 0 0 0 0

Unknown Healthy 0 0 0 10 0 0 0

Lesion 0 0 0 26 0 0 0

Non-Lesion 0 0 0 0 0 0 0

Number of swab samples with at least 2000 high-quality bacterial reads from across six amplicon sequencing projects (seven columns shown here, further
subdividing project PRJNA483888 by its two 16S variable regions e V1V2 and V3V4). The first set of rows show the total number of psoriasis patients and
healthy controls in each project (columns); The other rows are a list of body sites and how many of the samples were collected from a healthy, lesion, or non-
lesion body site.
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Figure 2. Microbiome diversity analysis between healthy, nonlesional, and lesional skin swab samples. Comparing (a) Shannon alpha diversity and (b)

BrayeCurtis beta-diversity index between healthy (green), psoriasis nonlesional (blue), and psoriasis lesional (red). By generalized linear models, Shannon

alpha diversity in lesional and nonlesional psoriasis samples was higher than in healthy skin (P < .001 and .003); however, there was no difference in alpha

diversity between lesional and nonlesional skin (P ¼ .54). Likewise, in the beta-diversity analysis, PERMANOVA test showed significant clustering between

lesional and healthy samples (P < .001) and between nonlesional and healthy skin (P ¼ .001) but no differences between lesional and nonlesional skin (P¼ .83).

NMDS, nonmetric multidimensional scaling; PERMANOVA, Permutational multivariate ANOVA.
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aureus, and S caprae (Figure 3b) (healthy vs lesional log2FC ¼
0.13, 0.24, 0.50, 0.15, 0.61, and 0.96, 0.87; healthy vs
nonlesional log2FC ¼ 0.74, 0.61, 0.45, 0.76, 0.64, 0.73, and
0.78, respectively). Lesional samples also had a higher rela-
tive abundance of Acinetobacter unclassified, S aureus, and
Corynebacterium unclassified than nonlesional samples
(nonlesional vs lesional log2FC ¼ 0.30, 0.63, and 0.62,
respectively).

A separate analysis by shotgun sequencing (PRJNA
281366), studying only psoriasis skin biopsies, compared
lesional with nonlesional samples from patients with psori-
asis. Nonlesional samples had a higher relative abundance of
C acnes, Kocuria indica, and A johnsonii (adjusted P < .05);
lesions had a higher relative abundance of S aureus, S capitis,
and C simulans than nonlesions (adjusted P < .05) (Figure 4).

Microbiome by PASI scores

PASI score as a response variable was tested as a categorical
variable (�12 low PASI vs >12 high PASI) to preserve sam-
ples without the continuous PASI values. By 16S sequencing,
the Shannon alpha diversity was higher with high PASI in
lesional samples (P ¼ .041), but alpha diversity was not
significantly associated with PASI in nonlesional samples
(P ¼ .59). Next, we tested for bacteria associated with PASI
scores for lesional and nonlesional samples in a combined
analysis as well as separately. In the aggregated 16S analysis,
which pooled lesional and nonlesional samples together,
only Porphyromonas unclassified was statistically significant
after false discovery correction, and it had higher relative
abundance in patients with high PASI scores. S warneri,
which was also associated with healthy samples, was asso-
ciated with low PASI (P < .05) (Table 3). C acnes was asso-
ciated with low PASI in just the lesional samples, and
S aureus was associated with high PASI in the nonlesional
samples (P < .05) (Figure 5). Similar results were obtained
from the independent analysis of metagenomic sequencing
data. S aureus and C simulans were associated with high
JID Innovations (2024), Volume 4
PASI, and C acnes was associated with low PASI across both
lesional and nonlesional samples (adjusted P < .05) (Table 4).

Bacterial pathway analysis

To investigate potential bacterial pathways that could be
active at the site of skin sampling, we compared shotgun
metagenomics sequencing data from lesional skin swab
samples with those from nonlesional skin swab samples
(adjusted P < .05) (Table 5). The top 3 pathways associated
with lesional samples were superpathway of L-methionine
biosynthesis (by sulfhydrylation), NAD salvage pathway II
(PNC IV cycle), and L-methionine biosynthesis III. Associated
with the nonlesional group was L-valine biosynthesis.

For 16S rRNA amplicon sequencing projects, PICRUSt2
was used to extrapolate microbiome pathways from bacterial
count data on the basis of marker gene sequences. Although
we found no differences in bacterial pathways when
comparing lesional with nonlesional samples, we noted that
healthy versus lesional samples revealed significantly
different pathways after applying false discovery correction
(Table 6). Two pathways were statistically significant across
the following 3 analyses: (i) the aggregated 16S analysis
comparing healthy with lesional skin swabs; (ii) the aggre-
gated 16S analysis analyzing disease state as an ordinal var-
iable, an ordered categorical variable progressing from
healthy, nonlesional, and lesional (not shown); and (iii) the
shotgun sequencing project mentioned earlier comparing
nonlesional with lesional skin swabs. Across these 3 ana-
lyses, L-ornithine biosynthesis and L-histidine biosynthesis
were lower in lesional samples (Figure 6).

Pathways were also compared between low PASI (�12)
and high PASI (>12) for both nonlesional and lesional sam-
ples together. The shotgun sequencing project showed that L-
histidine degradation II and nitrate reduction V (assimilatory)
were associated with low PASI (Table 7). However, in the
aggregated analysis of 16S sequencing projects, none of the
pathways were significantly different after correcting for



Figure 3. Comparing bacteria relative abundance between healthy, nonlesional, and lesion. Boxplots of bacteria were statistically significant (P < .05) in 2 or

more of the pairwise comparisons (healthy, green; nonlesional, blue; lesional, red). X-axis at the bottom indicates the fraction and the percentage prevalence of

the named bacteria. (a) Bacteria that had higher relative abundance in healthy skin swabs than in the skin of patients with psoriasis (both nonlesional and

lesional swab samples). (b) Bacteria were significantly more abundant in patients with psoriasis than in healthy controls.
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multiple hypothesis testing (Table 8). Without having applied
false discovery correction, both approaches showed that high
PASI was associated with sucrose degradation III (sucrose
invertase).
DISCUSSION
In this study, our aggregate analysis reproduced some of the
findings from the individual studies: the composition of the
skin microbiome was significantly different between patients
with psoriasis and normal healthy controls. We also
confirmed the qualitative assessment by Gupta et al (2022)
that psoriatic skin sites have greater heterogeneity (higher
Shannon alpha diversity) than healthy skin. In addition, our
analysis showed that lesional sites with higher PASI scores
also had higher Shannon alpha diversity, further suggesting
that greater bacterial heterogeneity (and possible loss of
community stability) is associated with disease progression.
Of interest were the findings at the bacterial genus and
species levels, which would otherwise be difficult to ascertain
from individual papers owing to differences in sequence
processing, reference databases, and methods for differential
abundance analysis. Past studies have shown that S aureus
colonizes psoriatic lesions in up to 60% of patients (Balci et al,
2009). In our aggregate analysis, Staphylococcus was differ-
entially abundant by disease state, but with nuances: S aureus
and S caprae were associated with skin swabs from patients
with psoriasis, whereas S warneriwas associated with healthy
swabs, highlighting the importance of species-level taxo-
nomic resolution. Notably, there was an incremental increase
of S aureus and C simulans from healthy to nonlesional to
lesional samples; conversely, there was an incremental
decrease of C acnes, having the highest relative abundance in
skin swabs from healthy individuals. Although past studies
have also reported an increased relative abundance of S
aureus in psoriasis skin versus in healthy skin (Chang et al,
www.jidinnovations.org 5
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Figure 4. Bacteria differential abundance by shotgun sequencing. Reanalysis of whole-genome sequencing project PRJNA281366. Here, we combined the

samples from ear and elbow to perform a multivariable analysis testing for bacteria significantly associated with psoriasis lesional (red) versus nonlesional (blue)

samples. The multivariable analysis adjusted for the body site as well as the random effect from repeated samples from the same subject. The x-axis indicates the

body site as well as the fraction and the percentage prevalence of the named bacteria in the group. (a) Bacteria with significantly higher relative abundance in

nonlesional than in lesional skin (adjusted P < .05). (b) Bacteria with higher relative abundance in lesional than in nonlesional skin.
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2018; Tett et al, 2017) and decreased relative abundance of
Cutibacterium in the lesional skin (Fahlén et al, 2012; Gao
et al, 2008), they did not demonstrate this incremental dif-
ference, with nonlesional skin being an intermediary.

Comparison by PASI scores in both lesional and nonle-
sional samples showed that S aureus and C simulans were
associated with higher PASI scores, and C acnes was asso-
ciated with lower PASI scores. These findings further support
the notion that changes in the microbiota may be associated
with psoriasis disease progression and may contribute to
disease pathogenesis. Findings related to severe psoriasis
were not driven by samples taken from moist body sites (such
as inverted psoriasis) because the whole-genome sequencing
project PRJNA281366 only collected samples from the ear
and elbow.

The shift in microbiome composition may be explained by
the decreasing levels of chemerin in the epidermis with
psoriasis disease progression (Albanesi et al, 2009). Chem-
erin peptides are keratinocyte-derived factors with antimi-
crobial potential. Specifically, Chem157S can trigger
chemotaxis of several types of immune cells (Yamaguchi
et al, 2011) and inhibit the growth of bacteria such as S
aureus and C simulans but not chemerin-resistant C acnes
(Godlewska et al, 2020). With lower levels of chemerin in
JID Innovations (2024), Volume 4
psoriatic lesions, S aureus and C simulans may have a growth
advantage on the skin.

Several other mechanisms may explain the increased
relative abundance of C acnes in healthy skin and the
decreased relative abundance of S aureus and Corynebacte-
rium in psoriasis. Propionic acids are a byproduct of C acnes
metabolism and may help to modulate the pH levels, which
would otherwise be elevated as observed in inflamed skin as
well as aged and dry skin (Rozas et al, 2021). Their secretome
contains RoxP (radical oxygenase of Propionibacterium
acnes) protein, which has strong antioxidant properties and
increases the viability of monocytes and keratinocytes
exposed to oxidative stress (Andersson et al, 2019). C acnes
also outcompete pathogens for nutrient acquisition by pro-
ducing a thiopeptide antibiotic, cutimycin (Claesen et al,
2020). Finally, similarly to S epidermidis, C acnes has been
shown to ferment glycerol to reduce methicillin-resistant S
aureus (MRSA) growth (Shu et al, 2013).

The increase in S aureus and C simulans relative abun-
dance in psoriatic skin may be related to their role in T helper
17 activation. S aureus proteins have been shown to promote
T helper 17 differentiation in vitro, suggesting that coloni-
zation by S aureus can lead to increased T helper 17 acti-
vation and IL-17 secretion (Kolata et al, 2015). Teff cells



Table 3. Association Between PASI Scores and Bacteria by 16S rRNA Sequencing

Name PASI coef stderr pval qval N N.not.zero

Porphyromonas unc. > 12 1.74 0.46 < 0.001 0.025 267 105

Peptoniphilus unc. > 12 1.36 0.45 0.004 0.090 267 153

Corynebacterium tuberculostearicum > 12 1.23 0.61 0.047 0.388 267 198

Streptococcus unc. > 12 1.17 0.57 0.042 0.380 267 188

Fenollaria unc. > 12 0.91 0.42 0.034 0.336 267 71

Kocuria unc. > 12 0.88 0.44 0.051 0.388 267 68

Saccharimonadales unc. > 12 0.87 0.24 0.002 0.061 267 87

Stenotrophomonas unc. > 12 0.87 0.35 0.016 0.236 267 87

P5D1-392 unc. > 12 0.72 0.29 0.019 0.253 267 60

Pseudomonas synxantha > 12 0.60 0.25 0.016 0.236 267 64

Fusobacterium unc. > 12 0.52 0.24 0.034 0.336 267 64

Staphylococcus warneri � 12 -0.78 0.37 0.044 0.381 267 71

Novosphingobium unc. � 12 -1.10 0.35 0.002 0.061 267 80

Cutibacterium acnes � 12 -1.22 0.69 0.079 0.488 267 212

This is the aggregated analysis of the 16S sequencing projects that pooled lesion and non-lesion psoriasis samples together and tested for differences in
bacteria relative abundance between PASI low (� 12) versus PASI high (> 12). The pooled multivariable analysis adjusted for body site, disease state, and
random effect from repeated sampling from the same patient. Only Poryphyromonas was significant after false discovery correction (Benjamini-Hochberg).
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isolated from S aureusecolonized mice showed higher
expression of IL-17A, IL-17F, and IL-22, cytokines that are
implicated in psoriasis pathogenesis (Chang et al, 2018).

Corynebacterium is a major skin-resident bacteria and is
generally considered a commensal bacteria under steady-state
conditions, but little is known about the effects of Corynebac-
terium on host immunity. One study showed that
Corynebacterium, through expression of mycolic acid in their
cell envelops, may promote the production of IL-17A by gd T17
cells, which is in part mediated by IL-23 (Ridaura et al, 2018).

Two biosynthesis pathways analyzed in this study may also
be implicated in psoriasis pathogenesis. The L-ornithine
biosynthesis pathway (GLUTORN-PWY) was lower in psori-
atic lesions. L-ornithine is essential for the synthesis of
Figure 5. Bacteria associated with

PASI score in psoriasis lesional swab

samples by 16S analysis. Bacteria

associated with PASI score in (a)

lesional samples (red) and in (b)

nonlesional samples (blue). Darker

shade bars are for bacteria associated

with higher PASI. Four of the 6

projects had PASI score data available

(PRJEB14852, version 1v2;

PRJEB29181, version 3v4;

PRJEB42803, version 3v4;

PRJNA46309, version 1v3; n

lesional ¼ 99, 6, 26, and 51; n

nonlesional ¼ 29, 6, 0, and 50).
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Figure 6. Pathways differentially abundant between disease states by both whole-genome sequencing and by 16S-PICRUSt prediction from marker genes.

Boxplots of the 2 pathways that were significantly lower in lesional than in healthy skin across the 16S sequencing projects and significantly lower in

lesional in the whole-genome sequencing project PRJNA281366 (adjusted P < .05). Y-axis shows the relative abundance of the pathway (a) L-ornithine

biosynthesis and (b) L-histidine biosynthesis between healthy (green), nonlesional (blue), and lesional (red) across each psoriasis microbiome project.

AA Chan et al.
Aggregated Analysis of the Skin Microbiome Data in Psoriasis

8

polyamines that regulate cellular proliferation and differen-
tiation. Metabolism of L-ornithine leads to a precursor of
collagen synthesis, L-proline, which is important for wound
healing (Wu and Morris, 1998). Additionally, N-iminoethyl-
L-ornithine is an irreversible inhibitor of nitric oxide syn-
thase in phagocytic cells (McCall et al, 1991); nitric oxide
synthase is associated with M1 macrophages (Rath et al,
2014), which are associated with psoriatic lesions (PMID:
35837394).

The L-histidine biosynthesis pathway (HISTSYN-PWY) was
also lower in the lesional samples. L-histidine’s metabolites
include cis-urocanic acid, which has been shown to be lower
in psoriasis than in healthy controls (Yeh et al, 2023).
JID Innovations (2024), Volume 4
Urocanic acid exists as a trans-isomer in the uppermost layer
of the skin (stratum corneum) and has been proposed to act as
a natural sunscreen, absorbing UVB before the damaging rays
can penetrate lower epidermal zones (de fine Olivarius et al,
1996). Upon absorption of UV light, the naturally occurring
trans-urocanic acid isomerizes to its cis-form (Kurimoto and
Streilein, 1992). One of the proposed mechanisms underly-
ing UVB therapy is the production of cis-urocanic acid by
keratinocytes. Cis-urocanic acid may inhibit IL-23 expression
and induce PD-L1 on Langerhans cells, leading to immuno-
suppression and improvement of psoriasis (Yeh et al, 2023).
Lower levels of L-histidine in psoriasis may impact this pro-
posed mechanism of immunosuppression.
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One disadvantage of this study is the use of sequencing
data, for which the results are compositional, meaning that
the abundance features are all relative, and each bacterium’s
observed abundance is dependent on the observed abun-
dance of all other measured bacteria. This contrasts with
absolute abundance values, which factor in total bacterial
load and would give a clearer interpretation of each feature
and how they are different between biological states. How-
ever, approaches for absolute quantification are diverse and
have their own set of challenges, including distinguishing
between live and dead cells (Wang et al, 2021).

Other disadvantages of using 16S amplicon sequencing
data are the PCR-related biases and errors associated with
each of the variable regions (Kennedy et al, 2014). To address
this, we performed covariate-controlled batch adjustments
using MMUPHin and additionally adjusted for this effect in
our multivariable analysis using MaAsLin2. Note that
MMUPHin correction does not explicitly model PCR-related
biases but rather simply adjusts for the overall variability
between the different batches. A further disadvantage is that
this short-read sequencing approach using a region on the
16S rRNA cannot achieve the taxonomic resolution afforded
by sequencing the w1500 base-pair segments (Johnson et al,
2019). Finally, pathway analysis using 16S sequencing data
(PICRUSt2) is only predictive because it only infers the
abundance of gene families on the basis of a database of the
organism, its marker genes, and copy numbers. Shotgun
sequencing provides greater gene coverage and more accu-
rate functional profiling; only 1 shotgun sequencing project
on psoriasis was publicly available.

There are a multitude of differential abundance methods,
which, depending on the preprocessing method, would ul-
timately identify different numbers and sets of statistically
significant bacteria. A study comparing the performance of
such differential abundance methods found that the rarefied
MaAsLin2 approach produced by far the most consistent re-
sults on the basis of a set of 5 datasets, which was particularly
harder to interpret owing to their lower consistency (Nearing
et al, 2022). Using the MaAsLin2 linear mixed model has the
added advantage of not only being able to combine and
adjust for the 6 datasets and possible covariates but also
being able to adjust for repeated measures from the same
subject. This is particularly important in our reanalysis of the
shotgun sequencing project PRJNA281366. Rather than
analyzing the 2 different body sites separately (eg, olecranon
skin area [elbow] and retroauricular crease [ear]), our anal-
ysis combines all the samples in a mixed statistical model,
adjusting for body site and random effects from repeated
measures. Consequently, the results are more generalizable
between psoriasis lesional and nonlesional sites but not
specific to either the ear or the elbow (sebaceous or dry sites).

In summary, our study serves to pool the 6 available
psoriasis microbiome datasets with 1 sequence-processing
pipeline, 1 reference database, and 1 differential abun-
dance method to evaluate which results are generalizable.
The added statistical power of combining multiple datasets
and a nuanced statistical model that accounted for batch
effects and repeated measures contributed to a robust anal-
ysis. After aggregating datasets at the bacterial genus and
species levels, our results confirmed that certain bacteria are
associated with psoriasis skin versus healthy controls. How-
ever, we also showed an incremental increase in relative
abundance of some bacteria with disease states and identi-
fied potential bacterial metabolic pathways in disease path-
ophysiology. These findings further support the notion that
alterations in the microbiota may be associated with psoriasis
pathogenesis and suggest potential targets for treatment.

MATERIALS AND METHODS
For the meta-analysis of psoriasis 16S sequencing projects, only

baseline skin swab samples with sufficient high-quality reads were

considered. To elaborate, a total of 1,063 skin samples were queried

from 6 projects, and of the total, only swab samples were selected;

this excluded 37 biopsies, 129 scrapes, and 10 unlabeled, all of

which were from project PRJNA483888. Only baseline samples

were selected, which excluded 74 samples from project

PRJNA46309 collected at weeks 12 and 36 after adalimumab and or

methotrexate treatment. Ultimately, 977 had at least 2000 high-

quality bacterial reads for analysis: 341 healthy samples from 125

individuals and 341 lesional and 295 nonlesional swabs from 166

patients with psoriasis. Details of the sample distribution across body

sites, disease states, and projects are summarized in Table 1.

Processing 16S amplicon sequencing reads

Fourteen psoriasis microbiome studies were considered. We

included all publicly available datasets (Table 1) meeting the high-

quality filtering criteria for DADA2 or mothur pipeline; standard

methods for either pipeline do not allow ambiguous reads. Reads are

truncated at the first instance of a quality score less than or equal to

28. Project PRJNA554499 was excluded because the reads upon

truncation did not classify well against the SILVA reference database.

Five of the published manuscripts did not have sequencing data

associated with them. One other listed a project number

(PRJNA427318) but with no data released (as of March 23, 2023).

DADA2, version 3.11, was used to process the sequencing data.

Briefly, reads were filtered and trimmed using default parameters.

DADA2 algorithm learns the error from each dataset to further

denoise the sequencing reads. Chimeras are removed. Unique reads

(amplicon sequencing variants) are assigned taxonomy against the

SILVA, version 138.1, reference database. A total of 171 low-

frequency singleton bacteria are removed. The remaining samples

are rarefied to a sequencing depth of 2000 reads; 11 samples with an

insufficient number of high-quality reads were omitted this way.

Amplicon sequencing variant features were aggregated to their

taxonomic classification by their sum.

PICRUSt2 (Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States) was used to predict bacterial

pathway abundances using default settings. Samples with less than

2000 high-quality bacterial reads were excluded to be consistent

with the bacterial composition analysis.

Processing whole-genome sequencing reads

There was 1 shotgun sequencing project with publicly available data

for psoriasis skin swab samples (PRJNA281366) (Table 1); our

analysis combines data from both the ear and the elbow in a

multivariable analysis rather than analyzing them separately.

HUMAnN3, version 3.0.1, pipeline was used to profile the microbial

pathways abundance. Reads mapping to the reference human

genome (hg37) were subtracted using kneaddata. Then, the forward

and reversed reads were merged using fastp before finally mapping

to ChocoPhlAn and UniRef90 database. Output tables were
www.jidinnovations.org 9

http://www.jidinnovations.org


AA Chan et al.
Aggregated Analysis of the Skin Microbiome Data in Psoriasis

10
renormalized into CPM (counts per million). Kraken2 was used for

bacterial taxonomic classification using the prebuilt minikraken

reference database (20200312). Bracken (Bayesian Reestimation of

Abundance with KrakEN) computed the abundance of species in the

DNA sequences.

Microbiome diversity analysis

Alpha diversity (effective number of species) was calculated using

Shannon index before rarefaction to avoid loss of data; Shannon

index is less dependent on library size because it takes into account

both the total number of species and their abundances within a

sample. Generalized linear model with binomial distributions was

used to test the association between Shannon diversity (fixed effect).

Beta-diversity analysis used BrayeCurtis dissimilarity index; ordi-

nation plots used nonmetric multidimensional scaling. Each point on

the plot represents a sample, and the shorter distance between points

show increasingly similar microbiome signature. Permutational

multivariate ANOVA (adonis test) was performed on BrayeCurtis

dissimilarities with stratification by the different projects and 16S

variable regions to determine whether the samples from lesional,

nonlesional, and healthy clustered by their beta-diversity partition

distance

Statistical analysis

MMUPHIn (Meta-analysis Methods with a Uniform Pipeline for

Heterogeneity in Microbiome Studies), version 1.2.0, was used to

perform covariate-controlled batch and study effect adjustments for

differential abundance testing. MMUPHIn reduced the batch effect

between different projects while controlling for covariates such as

the disease state of the samples (lesional, nonlesional, healthy). This

method helps to keep the sample variation from disease states intact,

thus preserving our study condition.

After reducing technical batch effects, multivariable analysis was

performed using linear mixed-effect models with MaAsLin2

(Microbiome Multivariable Associations with Linear Models),

version 1.2.0. MaAsLin2 sets the outcome variable as the per-feature

taxa or PICRUSt2. The fixed effect being tested was the disease status

(healthy, nonlesion, or lesional—subsetted for pairwise compari-

sons). Each model also contained random effects from the different

projects and from repeated sampling from the same individual.

Settings and options required at least 0.1% abundance from across

10% of the samples, and by default, MaAsLin2 also performs log

transformation and total sum scaling normalization. False discovery

correction was not applied to comparisons at the bacterial level;

BenjaminieHochberg correction was applied to comparisons of

PICRUSt2 pathways between disease states.

PASI scores

PASI score was analyzed as a categorical variable (PASI � 12 vs PASI

> 12) to preserve sample size; Project PRJEB42803, version 3v4,

only had samples from lesions (lacking the nonlesional counterpart),

and continuous PASI scores were not provided, only indicating that

all their samples had PASI scores >12. In addition, a PASI threshold

of 12 has been shown to be a justifiable cutoff to define a severe state

of psoriasis (Schmitt and Wozel, 2005). In total, 4 of the 6 projects

had PASI score data available (PRJEB14852, version 1v2;

PRJEB29181, version 3v4; PRJEB42803, version 3v4; PRJNA46309,

version 1v3; n lesional ¼ 99, 6, 26, and 51; n nonlesional ¼ 29, 6, 0,

and 50). Differential abundance analyses by PASI scores were per-

formed using MaAsLin2 linear mixed model with the detailed set-

tings mentioned earlier. Lesional and nonlesional psoriasis samples
JID Innovations (2024), Volume 4
were analyzed separately, and analyses were pooled together in a

multivariable analysis. Each model contained random effects from

the different projects and from repeated sampling from the same

individual. The fixed effect being tested was PASI score; for the

pooled analysis of both lesional and nonlesional samples, the model

additionally included a fixed effect for the disease state.
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