
Hindawi Publishing Corporation
Journal of Tropical Medicine
Volume 2011, Article ID 657483, 15 pages
doi:10.1155/2011/657483

Review Article

Computational Perspectives into Plasmepsins
Structure—Function Relationship: Implications to
Inhibitors Design

Alejandro Gil L.,1 Pedro A. Valiente,1 Pedro G. Pascutti,2 and Tirso Pons1
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The development of efficient and selective antimalariais remains a challenge for the pharmaceutical industry. The aspartic proteases
plasmepsins, whose inhibition leads to parasite death, are classified as targets for the design of potent drugs. Combinatorial
synthesis is currently being used to generate inhibitor libraries for these enzymes, and together with computational methodologies
have been demonstrated capable for the selection of lead compounds. The high structural flexibility of plasmepsins, revealed
by their X-ray structures and molecular dynamics simulations, made even more complicated the prediction of putative binding
modes, and therefore, the use of common computational tools, like docking and free-energy calculations. In this review, we revised
the computational strategies utilized so far, for the structure-function relationship studies concerning the plasmepsin family, with
special focus on the recent advances in the improvement of the linear interaction estimation (LIE) method, which is one of the
most successful methodologies in the evaluation of plasmepsin-inhibitor binding affinity.

1. Introduction

More than 40% of the world’s population lives with some risk
of contracting malaria, with most recent estimates suggesting
several hundred millions of clinical cases with 800,000
deaths each year [1]. In humans, the disease is the result of
the infection by Plasmodium falciparum (Pf), Plasmodium
malariae, Plasmodium ovalae, or Plasmodium vivax. Of these
species, Pf is the most lethalm and it is, therefore, the main
target for drug intervention. Once the microbe is trans-
mitted to humans by mosquitoes of the anopheles genus, it
causes many problems, but most commonly severe, recurring
fever attacks [2]. Despite considerable efforts in this field,
it has not been possible to develop an efficient vaccine
to prevent malaria. The main disadvantages are (i) the
increasing resistance of vectors to insecticides and (ii) the
emergence of multidrug-resistant variants of Pf to existing
antimalarial drugs, with the exception of the artemisinns [3].

Therefore, in the last years, researchers have focused their
efforts towards the discovery of more selective and potent
drugs [2].

Hemoglobin (Hb)-degrading enzymes of Pf emerge as
very promising chemotherapeutic targets, because Hb degra-
dation is a unique and critical process for Pf [2]. During the
intraerythrocytic stage of the parasite’s life cycle, this proto-
zoon consumes approximately 75% of the Hb in the infected
red blood cell [7, 8], which provides the main source of
amino acids for the parasite growth and maturation [2]. The
Hb degradation occurs within the acidic food vacuole (DV)
of the parasite, and it is catalyzed by four aspartic proteases
(plasmepsins) [9–11], three cysteine proteases (falcipains)
[12–15], one metalloprotease (falcilicin) [16], and one di-
peptidyl aminopeptidase 1 (DAPP1) [17]. Plasmepsin II
(PlmII) has been the most extensively characterized of these
enzymes, since several crystal structures have been deter-
mined [18–20] and potent inhibitors developed [21–24]
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(see [25] for a comprehensive review). However, most of
these compounds have generally shown limited selectivity
towards the human-related protease cathepsin D (hCatD)
[25]. This feature is an important issue to point out to
reduce the toxicity side effects when developing inhibitors of
pathogenic enzymes [26]. On the other hand, the high degree
of structural flexibility of the Plms active site cavity allows
the accommodation of different inhibitors scaffolds [6]. This
is a notable drawback for drug design using the traditional
rigid docking approaches [27], due to the great challenge that
constitutes the correct prediction of the inhibitor-binding
mode and association free-energy.

In this review, we focus on the computational perspec-
tives for plasmepsins drug design based on the sequence-
structure-function relationship of these proteins, a major
challenge in this field. To get a better understanding, we have
divided the manuscript into four sections related with key
steps of the traditional scheme, followed by virtual screening
or drug design processes. In Section 1, we provide a brief
description about the evolution of Plms as chemotherapeutic
targets. In Section 2, we show the main findings provided by
sequence and structural analysis of Plm family. In Section 3,
we describe the most popular approaches used in the
plasmepsin inhibitor design [27]. In Section 4, we provide
a detailed description about the use of the linear interaction
energy (LIE) method [30] in the refining steps of Plms
inhibitor design.

2. Evolution of Plasmepsins as
Chemotherapeutic Targets

The structure-based drug design of antimalarial compounds
targeting plasmepsins inhibition has received much atten-
tion due to their potential biomedical use. Earlier studies
indicated that Plms play essential roles in Pf life cycle,
due to the effectiveness of Plms inhibitors abolishing Hb
degradation, erythrocyte rupture, and parasite development.
Indeed, pepstatin A, a nonspecific broad-range aspartic pep-
tidase inhibitor, causes the death of the Plasmodium mi-
crobes when added to culture red cells infected with parasites
[31, 32]. A similar behavior has been reported in animal
models infected with Plasmodium parasite when E-64,
a nonspecific broad-range cysteine peptidase inhibitor was
administered, and both inhibitors displayed a synergic effect
when combined [33–36].

Sequencing of the Pf genome has identified 10 Plms
encoding genes, numbered PlmI to PlmX [26, 37]. Among
these, only PlmI, PlmII, HAP (histoaspartic protease, or
PlmIII), and PlmIV are active in the DV [38]. Although
these four enzymes are capable of cleaving native and acid-
denature hemoglobin at α chain L33-F34 site [8, 9, 38–40],
PlmIV and HAP appears to prefer denature globin over the
native protein [38]. PlmV, PlmIX and PlmX are expressed
concurrently with PlmI to PlmIV but are not transported
to the DV. Recently, it has been reported that PlmV licenses
Pf proteins for export into the host erythrocyte, therefore,
it is essential for parasite viability [41]. The remaining Plms
(PlmVI, PlmVII, PlmVIII) are not expressed during the

intraerythrocytic stage [38]. Plms from the other human-
infecting parasites (P. vivax, P. malariae, and P. ovale) have
also been identified and characterized (see [42, 43] for more
detail).

Although the degree of sequence identity among the
aspartic proteases of Plasmodium species is relatively high,
substrate specificity and their response to inhibitors dif-
fer, indicating that variations may exist in the protein-li-
gand binding interactions [40, 44–46]. Among Plasmodium
species, only Pf strains possess genes encoding PlmI, PlmII
and HAP. Furthermore, PlmIV has a higher level of sequence
identity with plasmepsins from nonfalciparum species (65–
76%) than their paralogues PlmI, PlmII, and HAP (63%,
62%, and 53%, resp.) [47]. In particular, PlmIV plays
a crucial role, as it is the only Plm of Pf with orthologs in the
other Plasmodium species that infect humans, and, therefore,
opens a way to affect all the Plasmodium parasites with one
inhibitor [47]. Considering PlmII as reference, PlmI shows
73% sequence identity, PlmIV 69%, and HAP 60%. These
sequence identity values extend to the binding site region.
In this case, PlmI shows 84% identity, PlmIV 68% identity
and HAP 39% identity. HAP has the lower degree of identity
despite most amino acid substitutions within the binding site
are rather conservative (55% sequence similarity) [48]. The
amino acid sequences of PlmI, PlmII, and PlmIV display the
classic catalytic motif of aspartic proteases [49] present in
one copy in the N-terminal and C-terminal domains [50].
Although the motifs are recognizable in the HAP sequence,
they show unusual modifications the catalytic aspartate of
the N-terminal domain is substituted by histidine, and both
conserved glycines are replaced with alanines [51].

Structure-based drug design of antimalarial compounds
targeting plasmepsin inhibition is possible due to the avail-
ability of several three-dimensional (3D) structures of these
enzymes. Nineteen crystal structures of PlmII have been
deposited so far, two of which correspond to the free enzyme
(PDB: 1LF4, 3F9Q), one to the proplasmepsin (PDB: 1PFZ),
and the others to protein-inhibitor complexes (PDB: 2R9B,
1W6H, 1W6I, 1LF3, 1LEE, 1EX5, 1EX6, 2BJU, 1ME6, 1LF2,
1SME, 1PFZ, 1XDH, 1ME6, 2IGX, 2IGY, 1M43). For PlmI,
only one homology model has been described so far [18].
From P. falciparum, there are also deposited X-ray structures
of PlmIV-inhibitor complex (PDB: 1LS5) and three of HAP;
one structure of free HAP (PDB: 3FNS) and two complexes
(PDB: 3FNT, 3FNU). In addition, structures from other
species of Plasmodium have been reported: one of PlmIV
from P. malariae (PDB: 2ANL) and two from P. vivax
(PDB: 1QS8, 1MIQ). It should be noted that Plms form
homodimers with extensive interfaces in most of the known
X-ray structures; conversely, an experimental study revealed
that PlmII exists mainly as a monomer in solution, and that
the monomer is fully functional for catalysis [52]. Therefore,
practically all the in silico studies of these enzymes use the
monomer structure as target [53–58]; with the drawback,
these proteins need an extensive computational work to relax
the regions of the protein buried in the dimmer.

The redundant functional role of the Pf DV plas-
mepsins in Hb digestion has been demonstrated by knock-
out experiments [59–61]. This feature indicates that more
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Figure 1: The different binding modes described for plasmepsin II∗. Closed (a), partially opened (b), and open (c). Protein backbones are
represented as green ribbons. Ligands (pepstatin A (a), rs370 (b), and IH4 (c) in yellow), and all amino acids in their close vicinity (up to
6 Angstrom) are shown in stick using a color code by the atom type. Panels D to F show the solvent accessible surface of a representative
protein from each binding mode (PDB ID: 1XDH (a), 1LF2 (b), and 2BJU (c)). The zone up to 4 angstrom away from the ligands is colored
in magenta, and catalytic residues D34 and D214 are shown in red. These figures were prepared with PYMOL. ∗According to Luksch and
colleagues [4].

effective drugs may be obtained by blocking more than
one plasmepsin. However, recent experiments point out that
plasmepsins are not essential for the parasite viability. Bonilla
and colleagues demonstrated the slow growth of parasite
mutants that lack all DV plasmepsins in amino-acid-limited
medium [62]. On the other hand, Moura and coworkers
showed that a wide range of previously characterized aspartic
protease inhibitors exert their antimalarial activities primar-
ily upon one or more non-DV plasmepsins and secondarily
on the DV Plms [63].

3. Sequence and Structure Analyses of
Plms Family

To quantify the structural variations in Plms upon ligand
binding Bhargavi and coworkers, estimated the backbone
global root mean square deviation (GRMSD) values between
the residues of uncomplexed Plms and those bound to
ligands, using crystal structures of PlmII and homology
models for PlmI, PlmIV, and HAP [6]. These authors
identified four loops that showed large structural deviations
on ligand binding, which were denoted as L1, L2, L3, and
L4, involving residues 12–14, 158–165, 231–244, and 277–
283 (PlmII numbering scheme), respectively [6]. Moreover,
the comparison of the recent HAP apoenzyme crystal and its
pepstatin A complex with PlmII, PlmIV, human pepsin, and
the complex human pepsin-pepstatin A, presented also pro-
nounced differences in the conformation of the loops 238–
245 and 276–283, corresponding to L3 and L4 regions [51].
Entropic analysis in Bhargavi’s work from wormlike chain

model for loops, along with the GRMSD values, indicated
that L3 loop has an inherent tendency to lose entropy on
binding in order to attain stability. However, in this paper,
the authors proposed, based on the crystal conformations,
that the residues of these regions have negligible electrostatics
and nonpolar interactions with the inhibitors therefore, they
highlighted the role of these loops in determining only the
openness of the binding cavity.

Recently, Luksch and colleagues classified 14 X-ray
structures of PlmII complexes into three groups (Figure 1),
exhibiting different ligand binding modes [64] (1) all com-
plexes with pepstatin and pepstatin-like ligands, because as
peptide mimetics, they exhibit an almost identical ligand
binding mode (2) three complexes in which the binding
pocket is in a partially open conformation and (3) three com-
plexes with inhibitors featuring n-pentyl substituents, that
address a new specificity pocket, the so-called “flap pocket.”
The crystallographic indicated adaptivity of the protein is
further confirmed by molecular dynamic (MD) simulations
[4, 65–69]. Bursavich and Rich suggested that PlmII, and
most likely PlmI and PlmIV, are highly flexible proteins that
adopt additional conformations not yet characterized, but
which could possibly be targeted by inhibitors [70]. Because
only three distinct binding modes have been discovered so
far, and due to the fact that the target protein has been treated
as rigid in most in silico studies, the application of automated
docking procedures appears rather limited.

The feasibility of finding or designing an inhibitor capa-
ble of targeting several proteins with high affinity requires
that the binding sites in all members of the target family share
conserved regions against which the strongest interactions
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Figure 2: Top view of the surface representation of plasmepsin II. The seven new functional residues proposed by Valiente and colleagues
[5], and the catalytic aspartic residues, are shown in stick representation. The enzyme subsites, the flap, and the flexible loops L3 and L4
(identified by Bhargavi and coworkers [6]) were sketched in orange.

can be directed [45, 53]. Highly conserved residues within
family or subfamily are strong candidates to be located in
functional important sites. These residues are expected to
be involved in determining the interaction specificity of
subfamilies members in binding pockets and are generally
referred as tree-determinant residues [71] or trace residues
[72]. Ernesto Freire’s group has probed the usefulness of
these concepts in the design of adaptive inhibitors [53,
54]. Adaptive inhibitors establish their strongest interactions
against conserved regions of the target, and contain flexible
elements and asymmetrical functional groups that allow
them to accommodate to variable regions within the target
family [53]. Nezami and colleagues [53] used this principle
to design an inhibitor with subnanomolar affinity (0.5 nM)
primary against the PlmII, and with no loss or a very small
loss of affinity against PlmIV, PlmI, and HAP (Ki ratios of 0.4,
7.1, and 17.7, resp.). To achieve this goal, the authors con-
structed a composite plasmepsin binding cavity by using the
backbone of PlmII as a template and placing the side chains
of the four plasmepsins at their corresponding site within the
binding cavity. Some regions within the composite binding
site included very conservative amino acid substitutions that
altered only the shape but not the chemical polarity or charge
of those regions; only a small area of the binding site contains
substitutions with different polarities and none of them
with opposite charge. In particular, the region corresponding
to P1′ and P2, opposite the opening of the flap, showed
significant variability. Another variable region found was
the flap itself (residues 75–79). As expected, most of the
variability was found in the HAP protease. These results
concur with a previous work published by Nezami and Freire
[54], who used entropic analysis to describe the variability
at each position in a multiple alignment of Plms sequences.
Once conserved and variable regions within the binding
site have been identified, the next step in the design of an

adaptive inhibitor is the identification of a molecular scaffold
that establishes strong interactions with the most conserved
regions of the target site. As the amino acid substitutions
were found conservative and induced only a shape distortion
in the binding site, adaptation was achieved by introducing
asymmetric functional groups linked to the inhibitor core
by rotatable bonds. Based on this information, Nezami and
colleagues designed a series of allophenylnorstatine-based
compounds, whose thermodynamic properties were exper-
imentally tested with microcalorimetric analysis. Despite
these efforts, most of these compounds having a poor se-
lectivity respect the hCatD.

In this respect, identifying the functional residues res-
ponsible for plasmepsin specificity could help the devel-
opment of more potent and selective inhibitors. Recently,
Valiente and colleagues [5] performed a multiple sequence
alignment with 73 homologous amino acid sequences that
show identity ranging from 10 to 88%, in order to define key
residues for Plms activity. Based on this sequence analysis,
combined with structural analysis, and MD simulations of
Plms-ligand complexes, these authors predicted for the first
time that residues Y17, V105, T108, L191, L242, Q275, and
T298 (PlmII numbering scheme) could be important for the
plasmepsins function (Figure 2). These 7 promising amino
acid residues are conserved in the malarial strains but
not among human aspartic proteases. Residues V105 and
T108 are located in a loop of an interior pocket and
only establish contacts with a specific nonpeptide achiral
inhibitor, as was illustrated analyzing the PlmII-inhibitor
X-ray structures. Residue L242 is located in the L3 loop,
recently described as an essential region in cleaving intact
hemoglobin [73]. Residue Q275 is situated in a small
β-strand in close vicinity to the L4 loop. Finally, residues
Y17, L191, and T298 belong to well-defined pockets lining
the binding site cavity. In this work, the authors proposed
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a useful strategy that combines the information derived from
the sequence and structural analyses with MD simulations of
protein-inhibitor complexes, which gave good results applied
to the prediction of residues with functional properties.

Sequence-based methods [74] and visual inspection of
active site are not sufficient for determining the selectivity
of different targets. Limitations of those methods make
understanding of contributions of various interactions in the
binding process very difficult. The most popular method
used for mapping selectivity is the molecular interaction
fields (MIF) [75] implemented in the program GRID [76].
MIFs are calculated by placing chemical probes in the active
sites of the protein. MIFs are produced in the form of
interaction maps of the binding site, which indicate the most
favorable regions for placing ligand groups with properties
similar to the probes, thus generating complementary maps
of the active site. Therefore, MIF is a collection of energy
values calculated from the sum of the attractive and repulsive
forces between a molecule (a target) and an interacting
partner (the probe), positioned in a lattice of points (or
nodes) surrounding the target. Nodes with negative energy
values correspond to favorable interactions between the
molecule and the probe. Kumar and Ghosh [77] charac-
terized the binding site of four malarial aspartic proteases
(PlmI, PlmII, PlmIV, and P. vivax plasmepsin), and two
human aspartic proteases (hCatD and pepsin) with the
intention of identifying the regions that could be potential
sites for obtaining selectivity using a MIF approach. Their
data showed that specificity was founded towards the region
of amino terminal of the scissile bond of peptide substrate for
example, in S1′-S1, S2, S3, and S4, while selectivity occurred
towards the carboxyl terminal of that scissile bond, S1′-S1,
S2′, and S3′. The pocket S3 was retrieved to be both selective
and specific.

4. Popular Approaches Used in the
Structure-Based Drug Design of
Plms Inhibitors

The drug discovery process has changed during the last
decades by the adoption of computational methods helping
the design of new drug candidates more rapidly and at lower
cost. In silico drug design consists of a collection of tools
helping to make rational decisions at the different steps of
the drug discovery process, such as the identification of
a biomolecular target of therapeutic interest, the selection or
the design of new leading compound, and their modification
to obtain better affinities, as well as pharmacokinetic and
pharmacodynamics properties. If spatial structure of target
is known, the methods of structure-based drug design are
applicable. Among the different tools available, a particular
emphasis is placed in this review on the use of molecu-
lar docking, virtual high-throughput screening (HTS) and
fragment-based drug design (FBD).

Computer methods for drug design are based on a pos-
tulate that pharmacologically active compounds act by inter-
action with their macromolecule targets, mainly proteins or

nucleic acids. To improve the knowledge about the target-
ligand interactions and to predict the native position, orien-
tation, and conformation of a small-molecule ligand within
the binding site of a targeted macromolecule, several docking
algorithms have been developed. Docking algorithms are
combined with approximate methods for rapid estimation
of the binding affinity, named scoring functions, needed
to identify the “native” binding mode. Over 30 different
docking programs are available today [27]. The most popular
for docking, and currently used on Plms, include AutoDock
[78, 79], Dock [80, 81], FlexX [82], FlexE [83], Glide [84, 85],
and Gold [86, 87].

Although they exploit different strategies in the lig-
and placement, all of them can be categorized into four
broad categories: stochastic Monte Carlo, fragment-based,
evolutionary-based, and the shape complementary methods.
A fragment based incremental method is represented by
FlexX and Dock. In this approach, a ligand is split into
fragments, which are docked independently, and then their
molecule structure is recreated typically in an incremental
way. The evolutionary methods are used in Gold and
AutoDock. These two programs use genetic algorithms
to perform the conformational search. Force field-based
methods, like Glide, implement Monte Carlo-based engine.
Finally, the complementarity shape methods, like LigandFit
[88], exploit grids to fit the shape of a ligand into an active
site of the target combined with Monte Carlo sampling. None
of those programs use a systematical search to fully explore
all degrees of freedom in the ligand molecule because of
the enormous computational cost of such a procedure [89].
However, in order to take into account the conformational
differences during the physical binding observed in the
structural studies of receptor-ligand systems, it is necessary
to include the intrinsic flexibility of the whole system. There-
fore, the docking process is performed usually considering
only a conformational space with a reduced number of
degrees of freedom. For example, it is a common practice
to apply some flexibility to the protein during the docking
through active site side-chain rotations and more global
minimization, or to use a set of different pre-generated recep-
tor conformations obtained experimentally or with in silico
approaches. At the end, the ligands are ranked relative to
each other by a scoring function, a method that can estimate
free energies of binding from structural information, or by
purely energetic criteria, using a force field. Based on these
evaluations, the compounds with the best complementarities
to structure and properties are selected.

In a recent review [90], it was evaluated the perform
of seven popular docking programs (Surflex [91], LigandFit
[88], Glide, Gold, FlexX, eHiTS [92], and AutoDock), which
enclose all the mentioned ligand pose methods, on the
extensive dataset composed of 1300 protein-ligands com-
plexes from PDBbind 2007 database, where experimentally
measured binding affinity values were also available. The
results obtained clearly showed that there was not single pro-
gram that consistently outperformed all others. Nevertheless,
programs that use genetic algorithms seem to be the best
choice for the pose prediction; yet, due to the nature of the
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algorithm, docking takes much longer time than other types
of algorithms.

Drug development efforts targeting the plasmepsins
have been facilitated by previous studies on other aspartic
proteases, particularly renin and cathepsin, which have
provided most of the inhibitors used in the crystallographic
studies. There have been many works that applied to the
plasmepsins case some of the above-mentioned docking soft-
ware; among the most used are AutoDock [29, 93–96], Gold
[55–58], and FlexX [29, 64, 67]. These programs have been
employed principally to obtain complexes structures that
helped to the interpretation of the experimental results; for
the screening of different combinatorial libraries of ligands
and to generate plasmepsin-substrate conformations used to
establish the enzyme reaction mechanism [97]. Also, they
allow the rationalization of the inhibitors potency in terms
of structural parameters (like number of H-bonds or contact
surface area). Moreover, there are some reported cases in
which rigid docking failed to predict reasonable binding
modes based on previously determined crystal structures
[66, 68], therefore, a manually docking approach was used
instead. This problem was adjudged to steric reasons if the
binding pocket in the X-ray structures was partially collapsed
[66], or when it was used as a homology model of starting
protein structure [98]. Consequently, some researchers have
used a combination of manual inhibitor adjusting and
docking, or just a hand-generated structure refined with a
molecular mechanics minimization [4, 53, 66, 68, 99]. For
example, Beyer and colleagues [94] investigated the possible
binding modes of a group of designed peptidomimetic
inhibitors, using the crystallographic coordinates of the
inhibitor rs370 as a reference, to manually adjust and
approximate the position of their ligands, assuming that the
hydrogen bond network was conserved for the backbone
of the ligands. Those starting structures were subsequently
refined trough a set of restricted docking calculations with
AutoDock. The computational analysis employed in that
work was able to tell the overall trend in apparent inhibition
and to show that good experimental inhibitors interact with
the plasmepsin active site through a mixture of hydrophobic
and polar interactions. The manually docking was employed
by other researches with good results, and of course, less
consuming computing time. In general, the manual docking
approach used previously consisted in superimposing the
entire inhibitor backbone onto that of a similar ligand using
a previously crystallized structure. The side chains of the
ligands were then fitted to each corresponding subsite to
minimize steric clashes.

The scoring functions typically implemented in protein-
ligand docking can be divided into three major cate-
gories [27]: knowledge-based (e.g., ITScore [100], PMF
[101], DrugScore [102]), empirical (e.g., FlexX, Glide, Ludi
[103, 104], ChemScore [105], X-Score [106]), and force
field-based scoring functions (e.g., Dock, AutoDock, Gold,
SYBYL/G-Score [86]). The first two methods suffer from
a limited description of the physical aspects of the binding
process and from a dependence on the experimental dataset
used for their parameterization. On the other hand, the force
field-based methods are universal, usually it is employed in

a continuum solvent model to include the desolvation-
free energy contribution (e.g., LIECE [107], Dock(PB/SA)
[108]), but it does not take into account entropic effects.
Although they are easy to use and can screen large libraries
of compounds, they have difficulties in ranking ligands with
small differences in chemical structures, for example, in lead
optimization. The resulting binding affinities from scoring
functions are often associated with errors of the order of
2.5 kcal/mol [109]. Some scoring functions that have been
applied to plasmepsins inhibitor binding affinity prediction
and ranking are X-score used in the characterization of the
PlmIV binding site [57], Chemscore [105, 110]—GoldScore
[86] both utilized in parallel docking runs [58, 111, 112], and
the score functions of FlexX. In this respect, Ersmark and
coworkers applied the Chemscore to complexes of PlmII and
C2 symmetric peptidomimetic inhibitors [66]. They tested
the accuracy of the functions against a group of allyloxy
and benzyloxy stereoisomers, using single manual-docking
minimized structures and MD ensemble averages. The scor-
ing of single minimized complexes between the enzyme
and the inhibitor resulted in energies that score the allyloxy
stereoisomers incorrectly, and on the contrary it performed
satisfactorily on the benzyloxy compounds. By averaging
the score over 100 snapshots, the scoring function managed
to rank the isomer series according to the binding affinity.
The improvement of a scoring function results by taking
the average over a structure ensemble, it had been shown
previously [113]. Although the average results correctly rank
the affinity within the isomer series of inhibitor analyzed,
it largely overpredicts the affinities of a group of ligands
due to the lipophilic term of the scoring function, which
clearly overestimates the hydrophobic binding contribution
(predicted to about −10 kcal/mol). The authors indicated
that this could represent a more general problem with
scoring functions that had a built-in size dependency of
the hydrophobic term through surface area or similar size
measures. This procedure was successfully applied also to
PlmIV with a group of isosteres using X-score. The binding
estimates were also very good in the relative ranking of the
compounds. The absolute values for the predicted affinities,
however, were shifted by an average overprediction from 2.7
to 3.0 kcal/mol depending the PlmIV structure employed.
It must be appreciated the application of X-score, in that
work, to the analysis of the inhibitors selectivity, measured
as the differential binding free energy (ΔΔGbind) between
PlmIV and PlmII. The strong selectivity of the most potent
inhibitor for PlmIV was not particularly well reproduced.
Ludi is another scoring function applied to PlmII and PlmIV
using HIV-1 inhibitors, which gave a reasonable agreement
with experimentally inhibitor potencies [112]. Nevertheless,
it ranked poorly the X-ray complex of PlmIV-pepstatin A
(PDB:1LS5), which was not adjudged to an optimal filling of
the inhibitor sidechains on the protein subsites. One of the
advantages of the application of empirical scoring functions
is its simple relationship between structural parameters,
like hydrogen bonds and lipophilic interaction energy, with
enzyme inhibitory potency of the compounds. This issue lead
to a valuable information for inhibitor design, but it must be
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taken carefully, since these relations are, in the best cases, of
a qualitative value.

Despite a good number of scoring functions that have
been developed, none of them is perfect in terms of accuracy
and general applicability. To take the advantages and balance
the deficiencies of different scoring functions, the consensus
scoring technique has been introduced to improve the
probability of finding correct solutions by combining the
scores from multiple scoring functions. The critical step in
consensus scoring is the design of an appropriate combining
strategy of individual scores so that the true modes/binders
can be discriminated from others accordingly [109]. As
alternative to the scoring function, a new combined dock-
ing workflows—AutoxX—unifies the interaction models of
AutoDock and FlexX rather than combining the scores
afterward which allows interpretability of the results [114].
The application of this strategy to 4 plasmepsin experimental
complexes achieved an improvement of the root mean square
deviation (rmsd) of predicted conformations versus the
corresponding native one over AutoDock and FlexX of 1.70
against 3.98 and 7.09, respectively.

A high-throughput screening is typically used at an early
stage of the drug design process in order to test a large
compound collection for potential activity against the cho-
sen target [115–117]. Unfortunately, this method is time-
consuming and expensive. For this reason, virtual HTS has
become an important tool to precede the large in vitro
screening assays [118–120]. This method aims at using com-
putational tools to estimate a priori, from an entire database
of existing (or hypothetical) compounds, those that are the
most likely to have some affinity for the target. The general
techniques are random screening and generation of focused
libraries based on pharmacophore with subsequent screening
of the resulting virtual compound. A current application
of this methodology to design of new plasmepsin inhibitor
was reported by Kasam and coworkers, in the frame of the
WISDOM (Wide In Silico Docking On Malaria) project
[29] (Figure 3). They developed a computational random
screening approach, based on a high-throughput molecular
docking and implemented it at large scale on the EGEE grid
infrastructure [28]. In the mentioned study, structures of
PlmII and PlmIV were used with or without crystal water
molecules, to check the influence of waters in the docking
scores. As a result, for the protein structure 1LEE with crystal
water molecules, all ligands failed to form interactions with
the key residues. A total of 1,000,000 compounds were down-
loaded from ZINC database and docked into plasmepsins
using FlexX. One crucial step of the virtual HTS is the
result analysis, due to the difficulty of scoring functions,
like the usually emergence of top scoring compounds with
poor binding modes or which failed to form the expected
interactions to key residues of the protein. After undergoing a
filtering procedure to the docking solutions, 100 compounds
were selected by Kasam and coworkers for reranking by
molecular simulations. Most of the compounds selected
were thiourea, guanidino analogues, and diphenyl urea; the
last known micromolar inhibitors of plasmepsin [93]. By
utilizing the same procedure, docking software and chemical
compounds from the ZINC database, the same researches

performed large-scale virtual screening against four different
proteins implicated in malaria producing short lists of par-
ticularly promising molecules [121]. If human proteases are
including the screening, this kind of computational initiative
could give an important contribution to the development of
potent and selective inhibitors.

Since a few years, FBD has become an attractive alter-
native to the experimental or virtual HTS [122]. Contrary
to virtual HTS, where complete molecules are screened
for activity, FBD aims at building new ligands piece by
piece by connecting small and well-chosen compounds that
bind into separate binding pockets, close enough to be
chemically linked in their relative favorable positions [123].
Haque and colleagues [36] used a combination of FBD
and synthetic combinatorial library design to find potent
and low-nanomolar inhibitors of PlmII. The “anchor and
grow” algorithm implemented in Dock was employed to
model each scaffold and side chain from a virtual library
in the PlmII active site and scores consisted of van der
Waals and electrostatic terms from the AMBER force field
[124]. Recently, Friedman and Caflisch used FBD procedure
to search for inhibitors of PlmII [125] (Figure 3). A total
of 4.6 million compounds were first clustered according to
2D structural similarity resulting in about 40,000 molecules
which were then used for FBD. Docking into the PlmII active
site was followed by consensus scoring using four force field-
based energy functions. A total of 19 compounds were tested
in an enzymatic assay, and three of them showed single-
digit micromolar inhibitory activity. One of these three
inhibitors was halofantrine, an antimalarial drug discovered
more than 40 years ago whose mechanism of action is
still unknown. To better investigate the binding mode of
halofantrine, four 50 ns MD simulations with explicit solvent
were performed starting from two different poses, one
generated by automatic docking and the other by manual
fitting with the help of a computer graphics program. The
MD simulations indicated that the binding mode generated
by fragment-based docking was more stable than the one
obtained by manual docking, although it was not possible to
definitively discard either one.

5. Calculation of Absolute Binding
Free of PlmII-Inhibitor Complexes
Using the LIE Method

One of the main challenges in computational structure-
based ligand design is the estimation of absolute binding
affinities for ligand-receptor complexes. Several approaches
to this problem have been developed (Figure 4), ranging
from empirical and “knowledge-based” scoring functions
to those based on free energy calculations, such as the
rigorous free energy perturbation (FEP) and thermodynamic
integration (TI) methods [126, 127]. However, FEP and TI
approaches are quite time consuming, and the associated
sampling and convergence problems limit their use to relative
binding free energy calculations between pairs of molecules
having only minor structural differences [126–128]. Thus,
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further development of fast and accurate methods for
structure-based drug design is still needed. Åqvist and
coworkers developed a semiempirical method [30] termed
as the linear interaction energy (LIE) approximation, for the
estimation of absolute binding free energies. This method,
which is based on conformational sampling by MD or
Monte Carlo (MC) simulations, is faster than FEP and
TI, since it avoids sampling of any unphysical intermediate
states between the initial and final configurations. However,
it is considerably slower than single-conformation scoring
function methods [30]. LIE has been successfully applied in

several projects addressing ligand binding as well as protein-
protein interactions [126, 129, 130], and has inspired other
related methods [107, 131–133]. Two examples are SGB-
LIE [133] and LIECE, both of which treat the solvent as
a continuum, compared to LIE where water molecules are
explicitly represented. The LIE method is based on the lin-
ear response (LR) assumption for electrostatic interactions
with an empirical expression for nonpolar effects. In this
approach, the binding free energy is estimated according to
(1):

ΔGbind = αΔ
〈
V vdw
l−s
〉

+ βΔ
〈
V ele
l−s
〉

+ γ, (1)
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where 〈V vdw
l−s 〉 and 〈V ele

l−s〉 denotes MD or MC averages from
the nonbonded van der Waals and electrostatic interactions
of the ligand (l) with its surrounding environment (s),
respectively. The Δ’s denote the change in average values
when transferring the ligand from solution (free state) into
the binding site of the solvated receptor (bound state). The
coefficients α and β are scaling factors for these energy terms,
while γ is a constant correction term sometimes proposed
to represent entropic contributions to the free energy of
binding of different types of receptor sites [134, 135]. The
LR approximation theory provides a physical basis for the
treatment of the electrostatic contribution to the binding
free energy, which predicts a value of β = 0.5 [30, 136].
The assumption that nonpolar ligand-surrounding van der
Waals energies (represented by a Lennard-Jones potential)
can be used to calculate the nonpolar contribution to binding
free energy is based upon the observation that the salvation-
free energies of nonpolar compounds scale linearly with
molecular size descriptors such as surface area [30]. However,
it is not a straightforward task to predict the α or γ values
from theoretical considerations, being usefully obtained as
empirical parameters by fitting to experimental data on small
set of receptor-ligand complexes [129, 130, 134, 135, 137,
138].

The LIE method usually employs MD simulation aver-
aging of the intermolecular interactions between the ligand
and its surrounding environment in the two relevant states,
for example, the ligand solvated in water (free state) and
the solvated protein-ligand complex (bound state). MD
sampling of the protein-ligand complex allows structural and
energetic relaxation of the starting structures. This is a major
difference compared to the use of scoring functions, where
binding energy is usually determined from a single energy
minimized receptor/ligand complex. Prior to all simulations,
the ligand or the ligand-protein complex was solvated with
explicit water molecules, and restrained spherical simulation
boundaries were used in all calculations [19, 26, 55, 56].

Like other semiempirical methods, the success of LIE
resides principally in the selection of the parameter values.
Several parameter schemes have been developed so far [139,
140]. The empirical coefficient α was initially calibrated
against the experimental binding data on a small training
set of four endothiapepsin inhibitors of similar scaffold
using β = 0.5 [30] giving α = 0.161 with a version
of the Gromos96 force field [141]. This original model
yielded reasonable binding free energy estimates for different
proteins in complexes with ligand of dissimilar scaffolds
such as endothiapepsin [30] HIV-1 protease [142, 143],
glucose binding protein [144], and trypsin [145]. This
parameterization was subsequently refined by Åqvist and
coworkers [134, 135] using results from simulations of 18
protein-ligand complexes of the same proteins as training
set. These authors determined the specific β values using
FEP calculations, motivated by systematic deviations from
the linear response theory observed for dipolar group com-
pounds [134, 146]. As a result, it was obtained an improved
LIE model, which included βFEP values ranging between 0.33
and 0.5, along with α = 0.18 and γ = 0, that resulted
in calculated binding free energies in good agreement with

experimental data for several protein-ligand systems [58, 65,
66, 147, 148]. However, in other cases, a nonzero γ constant
term is required to reproduce the experimental absolute
binding free energies [130, 137, 138]. Some notable cases
are the binding of retinoids to retinol binding protein
(RBP) [130], biotin analogs to avidin [137], substrates to
cytochrome P450 (P450cam) [138], and inhibitors to human
thrombin [149]. For these systems, the γ values ranged
from −2.9 kcal/mol to −7 kcal/mol [129]. Recently, Almlöf
and colleagues [147] found a clear relationship between the
ordering of hydrophobicity ranking of these binding sites
(RBP > P450cam > thrombin > trypsin) and the value of
γ. To some extent, this is similar to the idea developed by
Wang and coworkers [137], who investigated variations of
the nonpolar coefficient α in the absence of the constant
term γ, as a way to distinguish between different types of
binding sites. The main outcome is the linear correlation
obtained between the weighted nonpolar desolvation ratio
(WNDR) and the values of α in the LIE method. Briefly,
the WNDR was defined [137] as the ratio of all nonpolar
groups’ weighted desolvation solvent accessible surface area
(SAS), carbon and sulfur atoms in this case, to the total
weighted desolvation SAS. The WNDR parameter can be
useful to predict the value of α for those systems in which
very different ligands bind to the same protein, as a way to
distinguish between different ligand binding modes or when
these ligands bind to different sites of the same protein [137].

The standard parameterization of LIE (β = βFEP,
α = 0.181, and γ = 0) has been applied with excellent results
to predict the binding free energies of Plms in complexes
with inhibitors based on the 1,2-dihydroxyethylene scaffold
[58, 65, 66, 68, 111]. Conversely, in recent LIE studies were
not able to reproduce the absolute binding affinities of PlmIV
in complex with inhibitors based on the α-phenylnorstatine
[55, 150] and α-benzylnorstatine [55] scaffolds, and macro-
cyclic inhibitors (PlmII and PlmIV). In addition, Valiente
and colleagues [140] reported that the standard param-
eterization of LIE failed to reproduce the experimental
binding free energy of PlmII in complex with achiral (IH4
[151]) and hydroxyethylamine/hydroxypropylamine (EH58
[152]/rs367 [153], rs370 [153]) inhibitors. However, in this
study, the absolute value of the binding free energy of
PlmII in a complex with pepstatin A was in agreement
with the experimental data. This fact suggests that the
possible dependency of PlmII-inhibitor system on the LIE
method might be circumvented by using higher values of the
nonpolar scaling factor α, or alternatively, by the addition
of different nonzero γ constant term for each PlmII-ligand
binding mode [140]. To achieve this goal, these authors
developed three different approaches of the LIE method,
to predict binding free energies by combining different
approaches to estimate α, β, and γ parameters. The best
model combined an optimized α parameter, calculated from
the second one parameterization model of WNDR versus
α, while setting γ = 0, and β according to model E pro-
posed by Almlöf and colleagues [139]. Their results agreed
well with the experimental data and the chemical nature of
the inhibitors assessed. In addition, Valiente and colleagues
also showed that the WNDR parameter yielded better
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results for proteins with high structural flexibility, when
it was applied to the fitting of the α parameter rather
than γ. The analysis of calculated interaction energies for
these training set showed that the nonpolar contribution
(ΔGnp = α〈V vdw

l−s 〉) of each PlmII-inhibitor complex was
always favorable to binding. An earlier study showed that
nonpolar interactions gave the largest contributions to
absolute binding affinities of inhibitors based on the 1,2-di-
hydroxyethylene scaffold [66]. Although the van der Waals
interaction energies from the complexes used by Valiente and
colleagues looked quite similar, the nonpolar contribution
to the binding affinities showed striking differences among
pepstatin A and the other inhibitors (rs367, rs370, EH58,
and IH4). Since the α scaling factor took into account the
fraction of the enzyme interacting with the inhibitors, the
lower percentage of enzyme nonpolar groups desolvated after
pepstatin A binding determined the less favorable nonpolar
contribution from this inhibitor to protein association. In
contrast, the electrostatic interaction energies from these
inhibitors showed that pepstatin A has only a favorable elec-
trostatic contribution to binding.

6. Concluding Remarks

The structure-based drug design of antimalarial com-
pounds targeting P. falciparum DV plasmepsin inhibition has
received much attention in the last 15 years due to their
potential biomedical use. However, a recent study showed
that a wide range of previously characterized aspartic pro-
tease inhibitors exert their antimalarial activities primarily
on one or more non-DV plasmepsins and secondarily on the
DV plasmepsins [63]. This finding indicates the relevance
in the intraerythrocytic stage of the non-DV plasmepsin as
PlmV [41], PlmIX, and PlmX, although these enzymes have
not 3D structures solved by experimental methods yet.

Despite some limitations, the combination of docking
algorithms with the LIE method constitutes a good starting
point to develop new potent and selective plasmepsin
inhibitors. In this respect, identifying the functional residues
responsible for plasmepsin specificity could help to achieve
these goals. Moreover, we consider that new aims as the
identification of novel conformational states of Plms (non-
DV and DV) that cannot be adopted by the human aspartic
proteases need to be addressed and would be useful for
inhibitors design.
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