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Abstract: Proteolytic ectodomain release is a key mechanism for regulating the function of many cell
surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of the
family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities are
low but can be abruptly upregulated via inside-out signaling triggered by diverse activating events.
Emerging evidence indicates that the plasma membrane itself must be assigned a dominant role in
upregulation of sheddase function. Data are discussed that tentatively identify phospholipid scram-
blases as central players during these events. We propose that scramblase-dependent externalization
of the negatively charged phospholipid phosphatidylserine (PS) plays an important role in the final
activation step of ADAM10 and ADAM17. In this manuscript, we summarize the current knowledge
on the interplay of cell membrane changes, PS exposure, and proteolytic activity of transmembrane
proteases as well as the potential consequences in the context of immune response, infection, and
cancer. The novel concept that scramblases regulate the action of ADAM-proteases may be extendable
to other functional proteins that act at the cell surface.
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1. Introduction

Membrane anchored metalloproteases of the ADAM family assume central functions
in the living cell by the controlled cleavage and release of biologically active proteins and
peptides from the membrane surface. Two predominant members, ADAM10 and ADAM17,
are indispensable for embryonic development in mice [1,2]. Loss of ADAM17 is associated
with severe multiorgan dysfunction in humans. Patients with a homozygous mutation in
ADAM17 presented with severe diarrhea, skin rash, and recurrent sepsis [3–5].

ADAM17 was originally identified as the TNF-alpha releasing enzyme [6,7]. Today,
ADAM17 is known to be involved in the shedding of an increasing number of cell surface
proteins including the EGFR ligands TGF-α and amphiregulin (AREG), TNF receptor 1,
and L-selectin. Very diverse biological processes are thus regulated by a single protease.

ADAM10 is the major sheddase of cell adhesion molecules including neuronal (N)-
cadherin [8], epithelial (E)-cadherin [9], and vascular-endothelial (VE)-cadherin [10], but
also releases the EGFR ligands betacellulin (BTC) and EGF [11] and the low affinity IgE
receptor CD23 [12]. Moreover, the protease mediates the non-amyloidogenic α-secretase
cleavage of the Alzheimer’s precursor protein. Dysregulated ADAM10 activity is assumed
to play a central role in diverse pathologies including Alzheimer’s disease, allergic re-
sponses, and cancer development [13,14].

The bewilderingly wide spectrum of potential substrates on the one hand is matched
by the complexity of cellular processes that fine-tune the individual shedding events on
the other. The post-translational regulation of ADAM10 and ADAM17 sheddase activity is
multifaceted. For ADAM17, inactive rhomboid proteins, iRhom1 and iRhom2, are assumed
to be key regulators of maturation, protease function and substrate selectivity [15–17].
Tetraspanins play an important role for ADAM10 subcellular localization and substrate
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interaction [18,19]. Moreover, sheddase activity is modulated by changing interaction
partners as well as subcellular compartmentalization [20].

A remarkably broad and heterogeneous spectrum of stimuli has been found to activate
the enzymes [21–24], whereupon substrate cleavage occurs at sites located very close to the
cell membrane surface.

Functional upregulation of ADAM10 is generally observed in association with cytoso-
lic Ca2+ elevation—as elicitable by treatment of cells with Ca2+ ionophores, purinergic
receptor agonists, or membrane-perturbating agents [23,25,26]. ADAM17 sheddase activity
is amplified by more diverse signaling pathways including activation of protein kinase C
(PKC) and tyrosine kinases such as VEGFR2 or EGFR [27].

The main thrust of research into the control of sheddase activation has been conducted
on these two proteases. They have targeted dissection of events underlying the trafficking
of the proteases to the cell surface, and of regulatory roles assignable to the extracellular
domains of the proteases [28,29]. The present review introduces a novel aspect into the dis-
cussion. We summarize current knowledge regarding the significance of PS externalization
on proteolytic activity of ADAM10 and ADAM17. Arguments are presented to support
the concept that scramblase-mediated shuffling of phospholipids is a key step leading to
ADAM10 and ADAM17 activation [30–35]. The potential functional consequences of these
interactions are discussed and future challenges to be met in field are outlined.

2. ADAMs and the Cell Membrane

The multifaceted role of the cell membrane in the regulation of shedding has been
an emerging theme in recent years [26,36]. Cell membrane fluidity appears to directly
promote substrate–protease interaction. Fluidity is affected by content of cholesterol
and unsaturated free fatty acids (FFA). Membrane cholesterol depletion led to increased
sheddase activity, as did the enhancement of lateral protein mobility evoked through
incorporation of unsaturated FFA [37].

Organization of membrane nanostructure is a second major issue. Nanodomains
rich in cholesterol and sphingolipids are thought to form platforms for substrate–protease
interaction in the plasma membrane. Depletion of cholesterol or sphingomyelin enhances
shedding of several ADAM substrates. Application of sphingomyelinase leads to formation
of ceramide-enriched nanodomains. This resulted in increased ADAM17-mediated release
of substrates in different cells [24].

Increasing evidence indicates that assembly in multiprotein complexes modulates
ADAM locations and thus discriminates substrate specificity as well as timing of sheddase
activation. Vesicular compartments and intracellular organelles work as structural scaffolds
to coordinate specificity and temporal activity of functional hubs in cell signaling and
enzymatic function [20].

3. PS Exposure and Scramblases
3.1. Cell Membrane Asymmetry

A germane property of common ADAM stimuli is the breakdown of phospholipid
asymmetry. The non-random distribution of different lipid species in the lipid bilayer is a
common feature of all eukaryotic membranes. Phosphatidylserine (PS) is exclusively lo-
cated in the inner leaflet while phosphatidylcholine (PC) and glycolipids are mainly located
in the outer leaflet of the membrane. This asymmetry is maintained by P4-type ATPases
(flippases), which transfer the amino phospholipids PS and phosphatidylethanolamine (PE)
to the cytoplasmic membrane leaflet [38,39].

Irreversible PS externalization occurring upon ATP depletion is a key signal for apop-
totic cell clearance. Massive PS externalization in activated platelets triggers blood and
platelet coagulation [40].

Less well known is the fact that breakdown of membrane asymmetry also occurs as a
transient event in many physiological situations. Among others, surface PS exposure is
involved in myoblast and osteoclast fusion and is critical for neuronal regeneration [40].
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PS is externalized through the activation of scramblases, proteins that non-specifically
and bidirectionally translocate phospholipids between the outer and inner leaflets of the
plasma membrane. The existence of scramblases was postulated decades ago, but their
molecular identity eluded definition until recently. Diverse transmembrane proteins have
been implicated in lipid scrambling. Members of the TMEM16 family are by far the best
characterized [41,42].

3.2. The TMEM16/Anoctamin Family

There are 10 human TMEM16/Anoctamin (ANO) proteins. Although structurally
related, TMEM16A/ANO1 and TMEM16B/ANO2 function as Ca2+-activated chloride
channels and lack scramblase activity. Mammalian TMEM16C/ANO3, D/ANO4, E/ANO5,
G/ANO7, and K/ANO10 are primarily assigned scramblase activity, while TMEM16F/ANO6
and TMEM16J/ANO9 apparently fulfil dual functions as cationic channels and scram-
blases [41,43,44]. The function of TMEM16H/ANO8 has not yet been elucidated. ANO-
provoked breakdown of cell membrane phospholipid asymmetry can trigger a plethora
of cellular responses such as blood coagulation [45,46], microparticle release [47], mem-
brane repair [48], cell–cell fusion [49–52], and viral infection [40,53,54]. Malfunctions in
TMEM16/ANO proteins have been implicated in human diseases, including asthma, cancer,
bleeding disorders, muscular dystrophy, arthritis, epilepsy, dystonia, and ataxia [55–58].

3.3. Xkr Scramblases

Scramblase activity at the plasma membrane was also attributed to members of the Xkr
family which comprises nine family members in humans. Xkr8 was shown to facilitate PS
exposure in apoptotic cells by a mechanism that involves cleavage by caspases or activation
via phosphorylation near the caspase recognition site [59,60]. Apoptotic Xkr8-deficient cells
do not expose PS. After transfection with Xkr4, Xkr8, or Xkr9, they responded to apoptotic
stimuli with PS exposure at the cell surface [59]. However, the question whether these
proteins act as bona fide lipid scramblases is still a matter of debate since studies with
purified proteins reconstituted into synthetic vesicles have yielded contradicting results
with XKR9 [61] and are not available for XKR4 and XKR8.

3.4. Additional Phosphlipid Scramblases

There is a third family of phospholipid-translocating proteins, designated phospho-
lipid scramblases (PLSCR). Four human members of this family have been identified
hPLSCR1-4 [62]. hPLSCR1 and hPLSCR3, the most extensively studied proteins in this
family, are reported to have crucial roles in apoptosis. Recombinant purified hPLSCR1,
hPLSCR3 and hPLSCR4 showed scrambling activity in vitro when reconstituted in prote-
oliposomes [63], but the true in vivo role of hPLSCRs in PS exposure still remains a matter
of debate [40,64,65].

In addition, some other transmembrane proteins have recently been implicated in
lipid scrambling such as few G protein-coupled receptors, the autophagy protein Atg9, and
the ER protein complex TMEM41B/VMP1 [66–68].

4. The Link between Sheddase and Scramblase Activity
4.1. PS Exposure and ADAM17 Activity

Scott syndrome is a rare bleeding disorder caused by the incapacity of blood cells to
expose PS in response to intracellular Ca2+ elevation. The defect is due to a missense muta-
tion in the calcium-dependent PS scramblase ANO6 [45,69]. The link between the function
of sheddases and scramblases was initially uncovered through experiments with lympho-
cytes from Scott syndrome patients. Calcium influx provoked rapid PS exposure and loss
of the ADAM17 substrate L-selectin in normal B-cells, but Scott lymphocytes responded
neither with PS exposure nor with substrate shedding. Expression of caspase-dependent
scramblases is unaltered in Scott lymphocytes, so the decisive experiment was performed
to examine whether apoptosis induction would provoke normal PS-externalization and
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shedding of the ADAM17 substrate. This turned out to be the case, and the possible mecha-
nism underlying ADAM17 activation by PS was investigated [35]. If PS directly interacted
with the protease, its soluble head group ortho-phosphorylserine (OPS) would possibly act
as a competitive inhibitor. Indeed, ADAM17-dependent substrate shedding was found to
be reduced in the presence of OPS in several cell models.

This prompted a search for a PS interaction motif in the ectodomain of the pro-
tein. Commencing at the membrane surface, the ectodomain comprises a stalk region, a
membrane-proximal domain (MPD), a disintegrin-like domain, and the catalytic domain
with resolved crystal structure [70,71] (Figure 1). The stalk region of ADAM17 contains a
unique evolutionally conserved sequence called CANDIS (Conserved Adam seventeeN
Dynamic Interaction Sequence), which forms an amphipathic helix that can interact with
the cell membrane [72].
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Figure 1. Proposed links between scramblase and ADAM17 function. (a) In non-activated cells,
negatively charged phosphatidylserine (PS, red) is mainly sequestered in the inner cell mem-
brane leaflet, while phosphatidylcholine (yellow) is mainly localized in the exoplasmic leaflet.
ADAM17 (blue) has limited access to substrates. The ectodomain consists of a metalloprotease
domain, a disintegrin domain, and a membrane-proximal domain (MPD) followed by a stalk region.
(b) Cell stimulation can lead to scramblase activation and rapid loss of cell membrane asymmetry.
Externalized PS electrostatically interacts with positively charged amino acids of ADAM17 and guides
the enzyme to its substrate.

The MPD represented a likely candidate for interaction with PS because of its proximity
to the membrane surface. To test for this possibility, recombinant MPD was produced and
found to bind to PS but not to PC liposomes. NMR-spectroscopy localized the PS interaction
site to a cluster of basic amino acids, R625/K626/K628. Mutation of these amino acids to
glycines abolished PS binding capacity. When the corresponding ADAM17 mutant was
transfected into ADAM10/ADAM17-double deficient cells, it was no longer able to cleave
its physiological substrate TGF-α. However, the cells did express ADAM17 on their surface
and the mutated protease was still capable of cleaving a soluble peptide substrate in the
culture medium. A key finding was thus made that abrogation of PS binding selectively
affected the release of cell membrane-bound substrates but not the bona fide enzymatic
activity of the protease (Figure 1).

The relevance of these findings was confirmed in vivo. Mutagenesis of the three amino
acids constituting the PS-binding motif led to embryonic lethality in mice [32]. Primary
hepatocytes and fibroblasts were found to express the mutant protease on the cell surface.
However, release of ADAM17 substrates was completely abolished. The results directly
supported the concept of transiently externalized PS as the essential trigger of ADAM17
sheddase activity in vivo.

Further studies bore out the contention that ANO6 is a key regulator of ADAM17 func-
tion [30]. Overexpression of ANO6 in HEK293T cells led to increased Ca2+-mediated PS
exposure that was accompanied by enhanced release of ADAM17 substrates. Transfection
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of cells with a constitutively active ANO6 mutant led to spontaneous PS exposure and
to enhanced release of ADAM17 substrates in the entire absence of any stimuli. Inhibitor
experiments indicated that ANO6-mediated enhancement of substrate cleavage simul-
taneously broadened the spectrum of participating metalloproteinases. Complementary
experiments showed that siRNA-mediated downregulation of ANO6 in human umbilical
vein endothelial cells decreased ionophore-mediated release of TNFR1.

4.2. ADAM10 Sheddase Function and PS Externalization

The question arose whether the homologous protease ADAM10 would similarly be
subject to regulation by ANO6 and PS exposure.

Our results pointed to such a scenario [31]. Overexpression of ANO6 led to increased
PS externalization and substrate release. Transfection with a constitutively active form of
ANO6 resulted in maximum sheddase activity in the absence of any stimulus. Calcium-
dependent ADAM10 activation could not be induced in lymphocytes of patients with
Scott syndrome harboring a missense mutation in ANO6. In principle analogy with
ADAM17, inhibition experiments with soluble OPS indicated that triggering of proteolytic
activity involved a direct interaction of surface-exposed PS with the protein. ADAM10
has basically a similar modular structure as ADAM17. The X-ray crystal structure of the
ADAM10 ectodomain has been elucidated by Seegar et al [73]. It was found that the enzyme
active site is occluded by a short peptide loop located at the commencement of the stalk
region (residues 647–655). We became aware that a putative PS binding site similar to
the cationic motif identified in ADAM17 follows immediately after this inhibitory loop
(residues 657/659/660) within the ADAM10 stalk region. Alteration of this motif abrogated
sheddase activation by externalized PS [31]. A simple model evolved in which surface-
exposed PS attracts and draws this peptide sequence down to the membrane surface. As a
result, the enzyme-inhibiting loop will be drawn out of the catalytic site which can then
access its intended substrate [31].

5. ADAMs and Scramblases in Health and Disease
5.1. Immune Responses

Transient PS exposure is integral to a multitude of activation events in cells of the
immune system, although the relevance thereof remains unclear in many instances. Such
is the case with activated neutrophils [74]. In mast cells, transient exposure and cell de-
granulation are co-induced by IgE receptor stimulation [75]. Transient PS externalization
has also been described in T cells. Elliott et al. identified a role for PS distribution changes
in signal transduction, rapidly modulating the activities of several membrane proteins
including the P2X7 cation channel [76]. P2X7-stimulated transient PS externalization in-
duced shedding of the homing receptor L-selectin in T cells. In macrophages, ANO6 could
be identified as a responsible scramblase and essential component of innate immunity
downstream of P2X7 [77]. A new link was recently uncovered between an immunolog-
ical axis and the function of sheddases. CD137 is a member of the TNFR family that
functions as costimulatory molecule, promoting proliferation and survival of activated T
cells. A soluble form of CD137 (sCD137), hitherto considered to represent a splice vari-
ant of the membrane-anchored molecule, circulates and is elevated in plasma of patients
with rheumatoid arthritis and diverse malignancies [78–80]. A directed search led to the
finding that ADAM10 is centrally involved in the generation of sCD137 [33]. Release of
sCD137 was markedly suppressed when ADAM10 sheddase function was inhibited by
either conventional inhibitors or through the presence of soluble phosphorylserine. Overex-
pression of ANO6 increased stimulated shedding, and hyperactive ANO6 led to maximal
constitutive shedding of CD137. sCD137 was functionally active and augmented T cell pro-
liferation (Figure 2). The collective findings potentially impact current immunotherapeutic
approaches that are targeting CD137 in a variety of diseases.
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Figure 2. Transient exposure of PS plays an important role in the immune system. One example is
the release of the TNFR family member CD137 via ADAM10 (or ADAM17). Soluble CD137 (sCD137)
can bind to its ligand CD137L expressed on activated T cells and activate cell signaling. Whether
sCD137 could fulfill additional functions, e.g., activation of antigen-presenting cells (APCs) or act as
decoy is still not clear.

5.2. Cancer

TMEM16 proteins are associated with diverse malignancies. Overexpression cor-
relates with poor prognosis in breast, head and neck, and pancreas cancer [39,81]. In-
hibition of TMEM16A/ANO1 function reportedly suppresses cancer cell proliferation
and migration [82,83]. TMEM16D/ANO4 has been associated with breast cancer [84,85].
TMEM16G/ANO7 is upregulated in prostate cancer [86]. TMEM16J/ANO9 was linked to
pancreatic and colorectal cancer [87,88]. In pancreatic cancer it supposedly promotes tu-
morigenesis via modulation of EGFR signaling. This equates with a direct link to ADAM10
and ADAM17, which are the major sheddases of EGFR ligands. In an immediate context,
both ADAMs play a profound role in many types of cancers [89,90]. Recent results from
our working group indicate a direct link between ANO4 and ANO9 scramblase activity
and ADAM function [34]. Overexpression of ANO4 and ANO9 led to increased release of
ADAM10 and ADAM17 substrates, such as betacellulin, TGF-α, and AREG, upon ionophore
stimulation in HEK cells. Increased PS exposure was observed under constitutive as well
as under stimulated conditions. The direct link between scramblase activity and ADAM
activity emerged in competition experiments with the soluble PS headgroup phosphorylser-
ine. Overexpression of ANO4 or ANO9 in human cervical cancer cells (HeLa) enhanced
constitutive shedding of the growth factor AREG and increased cell proliferation. These
data indicate that ANO4 and ANO9, by virtue of their scramblase activity, may play a role
as important regulators of ADAM-dependent tumor cell functions. Uncovering the detailed
connections between TMEM proteins and ADAMs in cancer will become a rewarding field
of cancer research in the foreseeable future.

Another interesting aspect of the role of ADAMs and scramblases in cancer concerns
the role of extracellular vesicles (EVs). Released exosomes are present in body fluids
including blood or bronchoalveolar fluid, and this release is increased in many patholo-
gies ranging from oncogenesis to inflammation [91,92]. Cancer cell released exosomes
play an important role in promoting progression of cancers by increasing their invasive
potential [93]. They are carried through the blood and lymph circulation and affect the
development of the primary tumor as well as distant metastasis through the transfer of
RNA and proteins [94]. Externalization of PS and PE alters lipid packing in the membrane
and influences the membrane curvature [95]. An important consequence is the release of
extracellular vesicles as intercellular messengers. A direct connection of Anoctamins with
vesicle and exosome release has been described [81,95]. In particular, a central role for
the release of vesicles has been reported for ANO6 [47,96,97] and ANO1 [98]. A similar
function has been suggested for ANO7 in the context of prostate cancer [99] that might
also apply for other Anoctamin family members. In this context, it is of distinct interest
that both ADAM10 and ADAM17 are reportedly present in exosomes [20]. It has been
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shown that exosomal ADAM10 and ADAM17 retain their biological activity and enhance
substrate release in target cells. Addition of exosomes to cells expressing the ADAM17
substrates TGF-α and amphiregulin led to enhanced shedding [100]. Notably, contribution
of exosomal ADAM10 activity could also be shown for shedding of the ADAM10 substrates
CD44 and L1 [101–103]. Increased ANO scramblase activity could thus enhance ADAM
activity and the release of, e.g., tumor growth factors on the same cell. In addition, ANO
scramblase activity could increase the release of ADAM-containing vesicles that could
further promote tumor growth in distant target cells.

5.3. Virus and Bacterial Infection

The presence of PS in the target membrane promotes fusion of many enveloped viruses
with host cells [39,104,105]. HIV-1 entry into host cells starts with interactions between the
viral envelope glycoprotein (Env) and cellular CD4 receptors and co-receptors. Formation of
the pre-fusion receptor/co-receptor complexes triggers non-apoptotic cell surface exposure
of PS. This event involves activation of the lipid scramblase TMEM16F/ANO6 and depends
on Ca2+ signaling. Externalized PS promotes Env-mediated membrane fusion and HIV-1
infection. Blockade of externalized PS or suppression of TMEM16F resulted in the inhibition
of Env-mediated fusion and infection [53]. Promotion of membrane fusion by surface-
exposed PS seems to be relevant for the entry of many other viruses including vesicular
stomatitis virus (VSV) or alpha-herpesvirus into the cell [106,107].

Further to allowing viral entry, PS externalization may play a general downstream
role because viral replication necessarily involves cell activation events that will involve
Ca2+ influx. Then, activation of scramblases and sheddases cannot but follow. Perhaps
these recent recognitions will provide the speculation with further impetus that targeting
exposed anionic phospholipids might protect against lethal virus infections in vivo [105].

The spike protein of SARS-CoV-2 can also activate TMEM16F/ANO6 and thus induce
syncytia formation [50], a finding consistent with the previously proposed role of PS
exposure in physiologic cell fusion events [40]. Moreover, it has been speculated that PS
exposure may be an important mechanism related to ADAM17-mediated ACE2, TNF-alpha,
EGFR and IL-6R shedding that might contribute to the pathophysiology of COVID-19
inflammation and coagulation abnormalities [108]. However, the possible relevance for the
disease is not clear.

PS externalization could promote virus infection in an additional way, namely by
activating ADAM sheddase function. The importance of ADAM activity for viral infections
was recently demonstrated for human papillomavirus (HPV) [109]. HPVs are small DNA
viruses that infect epithelial cells. After HPV binding to cell surface receptors, a cascade of
molecular interactions mediates viral internalization. Metalloproteases of unknown identity
appeared to be involved in these processes [110], and we recently identified ADAM17 as
the prime candidate [109]. It was found that shedding of growth factors by ADAM17
triggered the extracellular signal-regulated kinases (ERK1/2) pathway, which then led to
formation of the endocytic entry platform for the virus (Figure 3). In subsequent studies,
the tetraspanin CD9 was identified as another regulator of ADAM17 activity and HPV
infection [111].

An interesting link to ADAM10 comes from the field of bacterial defense. ADAM10 is
a high-affinity receptor for cytotoxic Staphylococcus aureus alpha-toxin [112]. The protease it-
self is subject to cleavage and removal from the membrane surface by other sheddases [113].
This must be expected to render the respective cells less susceptible to the action of alpha-
toxin, one of the most important pathogenicity factors of Staphylococcus aureus [114]. In-
triguingly, Lizak and Yarovinsky (2012) have reported that IFNα-mediated protection from
alpha-toxin is dependent on induction of PLSCR1 [115]. If increased expression of PLSCR1
would lead to enhanced PS exposure, the activation of transmembrane metalloproteases
might reduce the surface amounts of ADAM10 and limit the cytotoxic effects of alpha-toxin.
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Figure 3. PS externalization could be of high relevance for virus entry into host cells. First, formation
of the primary virus–receptor complex triggers non-apoptotic cell surface exposure of PS via scram-
blases. Externalized PS promotes membrane fusion and virus infection. Second, scramblase activation
would lead to ADAM activation. Subsequent EGFR signaling has been identified as important step
for infection with the human papillomavirus.

It is evident that we are witnessing just the beginning of an exciting field of re-
search into the interwoven roles of scramblases and sheddases in the context of viral
and bacterial infections.

6. Conclusions and Perspectives

Externalization of PS effected by scramblases is envisaged to exert a key regulatory
function in controlling substrate cleavage by ADAM10 and ADAM17. Major challenges
arise for future research. There is still little reliable data that indicate whether proposed
scramblase proteins indeed function as a scramblase or whether other molecules are neces-
sary. This could only be examined by appropriate in vitro reconstitution assays in synthetic
proteoliposomes. In addition, knockout and gain of function mouse models could help
to further understand the in vivo relevance and the potential compensation mechanisms.
It is obvious that several proteins must be involved in such a central element of life as
the regulation cell membrane asymmetry. It is also clear that ADAM10 and ADAM17 will
not be the only proteins whose function is regulated by scramblases. Our data indicate
that ANO6-mediated enhancement of substrate cleavage simultaneously broadened the
spectrum of participating metalloproteinases far beyond ADAM10 and ADAM17 [30]. In
accordance with the literature, cleavage of TGF-alpha provoked by ionophore in normal
cells is affected predominantly by ADAM17 and inhibitable with ADAM17 inhibitors. In
cells overexpressing ANO6, however, the substrate release could not be blocked anymore
with ADAM17 inhibitors but only with broad-spectrum metalloprotease inhibitors, indicat-
ing that further metalloproteases participated in the cleavage of TGF-alpha [30]. Recently,
we obtained similar results upon ANO4 and ANO9 overexpression [34]. Could other
membrane-anchored proteases or proteins operating at the cell surface underlie similar
regulatory principles? These and many other intriguing questions await resolution.

The scramblase–ADAM connection could also be important under pathologic conditions.
The proteases promote several inflammatory as well as tumorigenic pathways [90,116–118].
Much less is known about the significance of the scramblases in health and disease, but
there are indications that there may be a causal link to protease activity. To target scram-
blase proteins and treat scramblase-related diseases, it is critical to have a comprehensive
understanding of these proteins and their function at the molecular level. Elucidation of
the possible links between scramblase activity and protease/protein function represent an
exciting future challenge for research in cell membrane biology.
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