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Abstract

The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeu-
tics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molec-
ular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination
therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This
review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination
therapeutics for complex diseases.
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Introduction

Living systems in the human body are interconnected networks of
molecular components [1]. Multiple complex molecular networks are
involved in the mechanisms of many common diseases, especially in
complex diseases (e.g., arthritis, diabetes, heart disease, cancer and
asthma) [2–6]. The complexity of these diseases limits the efficacy of
commonly used single molecular drug therapeutics, which has led to
a critical situation in new drug discovery in recent years [7]. The
strategy of combination therapeutics has been revisited with the hope
of addressing this issue [8].

The number of studies investigating combination therapeutics is
increasing annually (Fig. 1). Moreover, some drug combinations have
entered clinical trials for the treatment of complex diseases (Table 1).

This review will summarize the current achievements in combination
therapeutics in complex diseases, with a particular focus on the com-
putational strategy for drug combination.

Combination therapeutics and drugs
with multiple targets

Combination therapeutics are concerted pharmacological interven-
tions consisting of several drugs that interact with multiple targets.
The combination of drugs may be antagonistic, additive or synergistic
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if the combined effect is less than, equal to or greater than the sum of
the individual drugs, respectively [9]. Synergistic drug combinations
have numerous advantages over monotherapy, including increased
efficacy, decreased dosage with equal efficacy, reduced side effects
and reduced drug resistance [10]. These advantages are mainly due
to the targeting of multiple molecular networks in the human body.
Complex molecular networks are involved in various biological func-
tions of the human body. For example, bone homeostasis, the pro-
cess of creating new bone and removing old bone [11], has been
found to be regulated by the WNT protein signalling pathway [12], the
Notch signalling pathway [13], the RANK signalling pathway [14] and
the bone morphogenetic protein (BMP) signalling pathway [15].

Moreover, the molecular networks in the human body are also likely
to be modulated by redundant pathways, which can compensate for
one another if either one is inhibited. For example, BMP induces tran-
scriptional activation mediated by SMAD1, SMAD5 and SMAD8,
which functionally compensate for each other in various biological
processes such as bone formation [16], trigeminal ganglia subtype
specification [17] and stem cell differentiation [18]. Such pathways
are therefore optimally inhibited by multiple drugs that block all
SMAD1/5/8 pathways, which ensures that the other pathways do not
partially or completely compensate for the inhibition [16]. Blocking
the upstream signal (for example, the BMP receptor in this case)
would not be appropriate because although it could inhibit all SMAD1/

Fig. 1 Statistics of combination therapeu-

tic studies by year. The data were
obtained from the PubMed database.

Table 1 Recent clinical trials of combination therapeutics used for the treatment of complex diseases. We obtained data from articles

published in Lancet and The New England Journal of Medicine in the previous 3 years

Disease Combination therapeutics

Hypertension Nebivolol + valsartan [33]

Pyelonephritis Ceftolozane + tazobactam [98]

Membranous nephropathy Prednisolone + chlorambucil [99]

Diabetes Dulaglutide + lispro [100]

Rheumatoid arthritis Adalimumab + methotrexate [101]; Tofacitinib + methotrexate [102]

Myeloma Lenalidomide + dexamethasone+ carfilzomib [103]; Lenalidomide + dexamethasone [104, 105]

Colorectal cancer Capecitabine + bevacizumab [106]; FOLFOXIRI (fluorouracil, leucovorin, oxaliplatin, and irinotecan)+
bevacizumab [107]

Pancreatic cancer Gemcitabine + nanoparticle albumin-bound (nab)-paclitaxel (Abraxane) [108–110]

Chronic lymphocytic leukaemia Obinutuzumab + chlorambucil [111]

B-cell lymphoma Rituximab + cyclophosphamide + doxorubicin + vincristine + prednisolone [112]

Breast cancer Pertuzumab + trastuzumab + docetaxel [113]; Paclitaxel + trastuzumab [114]

Melanoma Trametinib + dabrafenib [115, 116]; Nivolumab + Ipilimumab [117, 118]; Dabrafenib + trametinib [119]
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5/8 pathways, it would also block other downstream BMP signalling
pathways, which could potentially lead to undesirable effects.

In addition to combination therapeutics, one drug might also tar-
get multiple functions [19]. A drug that is designed to target multiple
processes is an adjusted combination therapeutic in single drug form
[20]. Multi-target drugs might overcome molecular heterogeneity
within or between patients diagnosed with complex diseases, such as
non-small-cell lung cancer [21], gastrointestinal stromal tumours
[22] and pulmonary fibrosis [23], and would therefore have a better
chance of successful clinical development, especially when biomark-
ers for patient selection are uncertain. However, such a multi-target
drug might not be ideal for reasonable therapeutic strategies based
on specific molecular profiles of diseases. Because these drugs are
not well ‘designed’ to interact with a particular set of targets, they
may not achieve optimal inhibition of the specific individual targets in
a particular disease [24]. For example, during kinase inhibition,
screening to detect the inhibitory activities of particular kinases of
interest resulted in the identification of multi-targeted kinase inhibi-
tors. However, additional kinases with structural similarities will be
inhibited, potentially leading to additional toxicity because cumulative
target and off-target inhibition has a broader, and perhaps less pre-
dictable, effect on cellular functions [24, 25]. For example, Sorafenib,
a multi-target tyrosine kinase inhibitor with potent anti-angiogenic
activity that is used to treat solid tumours, induces irreversible pan-
creatic atrophy in patients after long-term administration [26].

In contrast, the combination of more specific targeted drugs may
be more suitable for therapeutics tailored to individual patients based
on the specific molecular disease profiles [27]. Physicians might
adjust the concentrations of drugs within a combination therapeutic
to enhance targeted inhibition and to optimize synergy between drugs
[28]. The toxicity of the combination might also be more predictable
due to limited off-target effects [29].

Drug selection for combination
therapeutics

Currently, most of the drugs in combination therapeutics are
chemosynthetic molecules. For example, Ser-Ap-Es�, which has been
used for the treatment of hypertension since the 1950s, is a triple-
chemical-drug combination that includes reserpine, apresoline and
hydrochlorothiazide. Hypertension is a complex cardiovascular dis-
ease, and approximately 30% of the adult population in the United
States suffers from this condition [30]. Law et al. have suggested that
low-dose combinations from the five major classes of antihyperten-
sive drugs (diuretics, beta-blockers, angiotensin-receptor blockers,
calcium-channel blockers and angiotensin-converting enzyme inhibi-
tors) are more effective for reducing blood pressure and associated
with fewer side effects than monotherapy [31]. Taylor and Ragbir
evaluated some triple-drug combinations and showed that they were
well-tolerated with a low incidence of side effects [32]. Recently, a
fixed-dose combination of a vasodilating b-blocker (nebivolol) and an
angiotensin II receptor blocker (valsartan) was shown to be an effec-
tive and well-tolerated treatment option for patients with hypertension

in an 8-week, phase 3, multi-centre, randomized, double-blind, pla-
cebo-controlled, parallel-group trial [33].

Bioengineering products are becoming another important source
of drugs for combination therapeutics. Monoclonal antibodies are the
most common form of this type of drug [34]. For example, trastuzu-
mab, a monoclonal antibody that interferes with the HER2 receptor,
has been used in combination with cisplatin to inhibit the progression
of gastric cancer [35]. Cisplatin induces DNA damage and apoptosis,
which may be attenuated by DNA repair systems [36]. Trastuzumab
suppresses the DNA repair pathway and the PI3K-AKT pathway [37] to
increase cellular apoptosis [38]. The combination of ramucirumab, a
human monoclonal antibody against VEGFR2, and paclitaxel signifi-
cantly increased the overall survival of gastric cancer patients in a ran-
domized, placebo-controlled, double-blind, phase 3 trial in 27 countries
in North and South America, Europe, Asia and Australia [39].

Herbs have been widely used in eastern Asia for thousands of
years. Herbal compounds would be good candidates for combination
therapeutics. There are already several successful cases examining
this theory. Paclitaxel, a drug developed from a compound isolated
from the bark of the pacific yew tree, Taxus brevifolia, is now widely
used in combination therapeutics for cancer treatment. The combina-
tion of paclitaxel and bortezomib, a proteasome inhibitor that modu-
lates apoptosis and the cell cycle by disrupting protein degradation,
improves overall survival of non-small cell lung cancer patients [40].
Total glucosides of peony, active compounds extracted from the roots
of the herb Paeonia lactiflora Pall, reduce hepatotoxicity in combina-
tion with leflunomide and methotrexate in patients with active
rheumatoid arthritis [41]. In China, the herb Artemisia annua is used
to treat fever and malaria. In 1971, artemisinin was isolated from the
leafy portions of the A. annua plant and found to be effective for the
treatment of malaria [42]. Artemisinin-combination therapy is now rec-
ommended as a first-line treatment for falciparum malaria worldwide,
and fixed-dose combinations are preferred by the WHO. In addition,
some combinations of herbal compounds are in preclinical phases.
Deng et al. have indicated that the combination of salvianolic acid B
and ginsenoside Rg1, which are derived from roots of Salvia miltior-
rhiza and Panax notoginseng, respectively, improve the viability of car-
diac myocytes in rats with ischaemia/reperfusion injury [43]. Zhang
et al. have found that tetramethylpyrazine, a compound isolated from
Ligusticum wallichii Franchat, ameliorates oxidative organ injury asso-
ciated with methotrexate treatment in patients with rheumatoid arthritis
[44]. These examples illustrate the possibility of utilizing herbal com-
pounds in combination therapeutics. Therefore, herb might be a rich
resource for the discovery of combination therapeutics.

Drug combinations are much more
than synergistic

In the clinic, physicians often face the following pragmatic question:
should I use a second drug as an add-on instead of using more of the
first drug? In the case of complex diseases, the answer will often be
that an increased amount of the first drug cannot produce the effect
that is desired by the physician, but this effect can be achieved with
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combination treatment [28]. Moreover, in some cases, the addition of
more of the same drug will induce unacceptable negative influence.
For example, when the dosage of the first drug is slightly under the
threshold of toxicity, even a small dosage increase may be unaccept-
able [45]. Therefore, combining the first medication with a second
drug that produces non-overlapping toxicities may be beneficial, even
when the combined effects on efficacy are only Loewe additive [34,
35], which refers to a model of drug combination and will be intro-
duced in the next paragraph. Ultimately, the ideal design of combina-
tion therapeutics must reflect the requirement of the physician that,
when drugs are used in combination, an extra benefit is observed that
cannot be achieved by using the constituent drugs alone. The extra
benefit is mainly derived from the synergistic effects of the combined
drugs (Fig. 2A).

The word synergy is derived from the Greek words sunergia, which
means ‘cooperation’, and sunergos, which means ‘working together’
[19]. Modern pharmacology has embraced this concept to emphasize
the idea that a synergistic combination provides greater effects than
those predicted by simply adding the effects of individual parts [10].
Numerous investigators have attempted to provide a framework to cal-
culate the additive effects among constituents [46–48]. Among these
works, the Loewe additivity [49, 50] and Bliss independence [46, 51]
models are two of the most useful frameworks of synergy.

The Loewe additivity model assumes that two drugs act through
similar mechanisms. Equipotent dose ratios determine the effects of
each drug and their combination. According to this model, the com-
bined activity level, Lx,y, of the two drugs X and Y at the concentra-
tions, Cx and Cy, satisfies the equation, C�x

CðLx¼Lx ;y Þ þ
C�y

CðLy¼Lx ;y Þ ¼ 1. In
this equation, Cx and Cy are the single-agent concentrations for X and
Y, which individually produce an activity of Lx,y.

The Bliss independence model assumes that two drugs act
through independent mechanisms. The combination effect in this
model is represented as the union of two probabilistically independent
events [46]. According to this model, the combined activity, Lx,y, of
two compounds X and Y at the concentrations, Cx and Cy, satisfies
the equation, Lx,y = Lx + Ly � LxLy. In this equation, Lx and Ly are
the single-agent activity levels at concentrations Cx and Cy.

These two models produce different outcome, and only the Loewe
additivity model correctly predicts the cases in which the two com-
pounds are actually the same constituent. However, the debate con-
tinues over which model performs better in cases involving noisy
clinical data and uncertain therapeutic mechanisms [46, 52, 53].

Nonetheless, synergy is not the only reason for drug combina-
tions. Sometimes the combination of antagonistic drugs may also be
beneficial (Fig. 2B). In fact, the combination can have two conflicting
effects: it may reduce the evolution of drug resistance because it
cures the disease faster, thereby limiting the time window available
for drug resistant mutations to accumulate, but it may also increase
the selective advantage of drug-resistant mutants [54]. If a strong

resource competition is present, the latter effect will dominate [54].
In fact, under these conditions, antagonistic drug combinations,
which are less potent than the sum of the components, have been
shown to limit the evolution of drug resistance [55–57]. The advan-
tage of antagonistic combinations over synergistic combinations is
the result of a reduced fitness gain of drug-resistant mutants
(Fig. 2B) [55–57].

In addition to synergistic and antagonistic drug interactions, col-
lateral responses among drugs also play a role in combination thera-
peutics (Fig. 2C) [58]. Collateral response (sensitivity or resistance),
also known as cross-resistance, is the ability of one drug to increase
or decrease sensitivity to another drug (Fig. 2C). The study of collat-
eral susceptibility changes started in the early 1950s [59] and has
been reported for many different drugs in subsequent years [60–62].
Recently, Munck et al. studied the development of resistance against
drug combinations by investigating collateral responses to compo-
nent drugs [58]. The authors provided a framework for the rational
selection of drug combinations that limit resistance evolution using
Escherichia coli.

In general, the benefits of combination therapeutics mainly result
from synergistic effects. Antagonistic effects and collateral responses
may also produce extra benefits by decreasing drug resistance.
Therefore, combination therapeutics can be more complicated than
simply taking different drugs together. To investigate the rationale of
combination therapeutics, preclinical combinational studies should be
performed prior to the initiation of clinical trials.

The development of combination
therapeutics in cell lines and animal
models

A common strategy to investigate combination therapeutics prior to
the initiation of clinical trials is through the use of cell lines and ani-
mal models. These models provide important insights into the mech-
anisms of action and interactions between drugs, which are important
in the preparation for clinical trials [63]. For example, DiCosimo et al.
estimated the efficacy of combined ridaforolimus and dalotuzumab
for the treatment of breast cancer in human cell lines and mouse
models, and the results of those studies led to the initiation of a phase
I clinical trial [64]. In fact, preclinical studies make up the majority of
studies investigating (Fig. 1) and play an essential role in the develop-
ment of combination therapeutics [65]. In general, preclinical studies
of combination therapeutics rapidly assess the synergy of combined
drugs and explore physical interactions among them. They also evalu-
ate anti-disease activity, mechanisms of action and additional factors,
such as the effects of the drugs on their targets and their pharmacoki-
netics [66].

Fig. 2 The three drug combination patterns in combination therapeutics. (A) The synergy drug combination improves therapeutic effects compared

with the single drug treatment. (B) During long-term treatment, drug resistance increases with time. The antagonist drug combination limits the evo-

lution of drug resistance and results in improved therapeutic effects. (C) After long-term drug A treatment, collateral responses increase resistance
to drug A and decrease resistance to drug B. Therefore, the addition of drug B to treatment will improve the therapeutic effect.
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However, despite the large number of preclinical combination
therapeutics studies, the number of successful clinical trials is limited
(Fig. 1). It appears that the success or failure of clinical trials examin-
ing combination therapeutics can hardly be predicted on the basis of
published preclinical data [67]. The lack of concordance between pre-
clinical studies and clinical trials is not surprising. Preclinical studies
are limited in experimental design and animal models [63]. In experi-
ments that are designed to evaluate the activity of combined drugs,
assessments are performed with limited consideration of how the
drugs are likely to function in patients [63]. Such evaluations can pro-
vide insights into the mechanisms responsible for anti-disease
actions and the interactions between the drugs within the parameters
of the experiment. However, interpretation of the evaluations and the
subsequent design of clinical trials for complex diseases must
encompass numerous variables that might exceed the designed
parameters of preclinical experiments, such as drug dose, scheduling
and route of administration [68].

Even when researchers have thoroughly designed all of the
parameters of preclinical experiments for combination therapeutics,
the inherent limitations of animal models continue to weaken the cor-
relation between laboratory and clinical outcome. The most important
limitation is that the drug targets are host components and are there-
fore of animal, not human, origin [65]. In other words, a drug that
works well in an animal model may not necessarily work in humans.
After assessing the correlation between cancer animal models and
the clinical activity of single cytotoxic drugs, previous studies have
suggested that the predictive value of cytotoxic drugs in murine mod-
els is limited [69, 70]. Limiting experimentation to a few animal mod-
els cannot reflect the diversity of complex human diseases and may
explain the failure of clinical trials based on preclinical data [67]. A
detailed understanding of human biology may enable the design of a
priori combination therapeutics to increase the success rate of clinical
trials. A growing number of scientists in the field of therapeutic dis-
covery are attempting to understand biology and disease using com-
putational approaches [71].

The development of combination
therapeutics using computational
approaches

Computational approaches, particularly those integrating data anal-
ysis and artificial intelligence, may assist in the design of combina-
tion therapeutics by generating drug–target interaction networks
and predicting drug combinations. Computation assistant construc-
tion of drug–target interaction networks mainly refer to computa-
tional algorithms and programs to reveal molecular mechanisms
and connections between drugs and targets in a dynamic network
[72]. These methods can be used to explore the therapeutic mech-
anisms underlying drug treatment at the molecular level [73].
Common methods of this type include knowledge- and ligand-
based approaches.

Knowledge-based approaches are high-throughput computational
methods of artificial intelligence that enable computers to learn from

the available knowledge, including drug chemistry and structural
information, as well as drug–target networks, to predict new knowl-
edge, such as new drug indications, targets and drug–target interac-
tions [74]. These approaches can be classified into unsupervised
and supervised methods [75]. The unsupervised methods extract
and predict patterns and interactions based on a series of input vari-
ables. The commonly used unsupervised methods include cluster-
ing, data compression and outlier detection methods such as
principal-component-based methods [76]. For example, Guimera
et al. studied novel drug–drug interactions using a large-scale unsu-
pervised method that deals with various types of data to accurately
predict adverse, synergistic and antagonistic drug interactions [77].
Kissa et al. examined drug–gene associations and assisted in drug
repositioning with a fully corpus-based unsupervised method that
utilizes the available knowledge [78]. The supervised methods divide
the data into training and validation datasets, and they finalize a
robust model that can be used to predict the binding probability
between drugs and targets [79]. The most widely used supervised
methods are the Bayesian model [80], the support vector machine
[81] and the decision tree [82]. These methods can be combined if
appropriate. For example, Kim et al. predicted drug–target interac-
tions by applying two machine learning approaches, a support vec-
tor machine and a kernel-based L1-norm regularized logistic
regression, to evaluate drug–drug interaction data [83].

Ligands are small molecules that bind to a site on a target protein
to alter the biological functions of the protein. Ligand-based
approaches predict drug–target interactions by means of chemical or
structural ligand similarities, with the basic assumption that similar
ligands tend to bind to similar targets [84]. Ligand-based approaches
are highly dependent on the availability of chemical and structural
information on targets, from either wet experiments or numerical sim-
ulations [85, 86]. The similarity ensemble approach [87], the pharma-
cophore model [88], docking [89] and quantitative structure-activity
relationships [90] are commonly used methods. Based on these types
of methods, Yco et al. identified sepiapterin reductase as a new thera-
peutic target for the treatment of human neuroblastoma [91].

Knowledge- and ligand-based approaches are often combined to
achieve better results. Afzal et al. combined multiple methods to con-
struct drug–target predictions and obtained more applicable results
[92]. These computational approaches accelerate the acquisition of
drug–target data. The accumulation of these data, once again, pro-
motes novel predictions of drugs targets [93].

In addition to accelerating the accumulation of drug targets, com-
putational approaches directly predict new combination therapeutics.
Bansal et al. assessed 32 computational approaches and found that
the computational prediction of drug combination activity is possible
[94]. The prediction of new combination therapeutics should include
network pharmacology that encompasses systems biology, network
analysis, connectivity, redundancy and pleiotropy [95]. Gu et al. pre-
dicted a drug combination in the context of the pathway network of
the biological process [96]. The computational approach may become
an important complement to traditional preclinical studies. It is possi-
ble that computational approaches will be used to identify promising
combinations that can be tested in vitro to further determine the com-
binations, which would be advantageous compared with random
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combination screening in vitro. This method may even replace in vitro
screening in cell lines in the future, but in vivo efficacy testing would
be still required. Large and complex biological data and multiple com-
putational methods are often used in studies focused on the predic-
tion of combination therapeutics [97]. With the accumulation of
chemical, biological, ‘omics’ data and the advancement of artificial
intelligence, computational approaches will acquire a more prominent
role in the development of combination therapeutics for complex dis-
eases.

Conclusions

The use of combination therapeutics is an appropriate approach to
address the complexity of human diseases. The advantages of combi-
nation therapeutics are mainly due to the ability of combination prod-
ucts to act on multiple targets. Chemical drugs, biological drugs and
drugs from natural products are widely used in combination thera-
peutics. Drug interactions, including synergistic and antagonistic drug
interactions, as well as collateral responses, might influence the ther-
apeutic actions of drug combinations. Preclinical studies in cell and
animal models have been performed to evaluate the effects of drug
combinations. However, subsequent successful clinical trials of drug
combinations are limited, potentially because the limited experimental
conditions in preclinical studies cannot reflect the diversity of

complex diseases. Computational approaches can complement tradi-
tional preclinical studies. The use of computational approaches not
only facilitates an understanding of drug interactions, but it also pro-
motes the discovery of new combination therapeutics. Computational
approaches might help to define the number of candidate combina-
tions for further in vitro and in vivo investigations. In future, the accu-
mulation of multiple types of human ‘omics’ data, including
genomics, transcriptomics, proteomics and metabolome, among
others, will deepen our understanding of complex diseases and pro-
mote the computational discovery of combination therapeutics.
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