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Could the SARS-CoV2-related complications rely on blood foaming?
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A B S T R A C T

A study by Saraiva et al. (2011) demonstrated the presence of Angiotensin II receptors on the erythrocyte
membrane. This little-known information should be deemed as crucial as the SARS-CoV-2 relationships with
oxygen saturation and the Renine Angiotensin System but it currently remains unexploited.

The pulmonary and cardiovascular systems are involved in any typical complications of COVID-19 but nu-
merous other unrelated symptoms may occur. To fill the gap, we shall first emphasize some similarities between
the complications of this infectious disease and Decompression Illness (DCI), which involves bubble formation.

We theorized that the Angiotensin II clearance by the red blood cells could trigger the release of its oxygen
content in the bloodstream. The resulting foam would worsen the widespread endotheliitis, worsen the gas
exchange, trigger the coagulation process, the inflammation process and the complement pathway as typically
occurs in DCI. At the end, we propose a plausible mechanism.

Introduction

According to Kuba et al. in 2006, one mystery of SARS-CoV is why,
in contrast to the other coronaviruses infecting humans, infections with
the SARS-CoV trigger severe lung disease with such high mortality [1].
Eighteen years after the SARS outbreak, this assumption unfortunately
remains true for SARS-CoV-2. We shall therefore propose a novel hy-
pothesis to better understand the COVID-19 pathophysiology. As a
matter of fact, an astounding amount of similarities between Decom-
pression Illness (DCI) and COVID-19-related complications have at-
tracted our attention.

In occupational medicine, we deal with specific work conditions
such as caisson workers. DCI (or caisson disease) covers both arterial
gas embolism, in which alveolar gas or venous gas emboli are in-
troduced into the arterial circulation, and decompression sickness,
which is caused by in-situ bubble formation from dissolved inert gas.
Both syndromes can occur in divers, compressed air workers, aviators,
and astronauts, but arterial gas embolism also arises from iatrogenic
causes unrelated to decompression [2].

Symptoms of pulmonary DCI are similar to those of a thrombotic
pulmonary embolus; specifically, substernal pain, cough, and dyspnea,
which may progress quickly to pulmonary edema, respiratory failure,
right ventricular dysfunction, and cardiovascular collapse [3].

Results

Pulmonary and cardiovascular systems

The patients with Covid-19 pneumonia, fulfilling the Berlin criteria
of ARDS, present an atypical form of the syndrome [4]. The cardio-
vascular system is also affected, with complications including myo-
cardial injury, myocarditis, acute myocardial infarction, heart failure,
dysrhythmias, venous thromboembolic events [5] and stroke [6]. Both
large and small vessels are affected with manifestations ranging from
pulmonary embolism to purpuric lesions on extremities [7].

There are several hypotheses as to the mechanism of cardiovascular
symptoms. SARS-CoV-2 infection facilitates the induction of a wide-
spread endothelium dysfunction such as endotheliitis in several organs
as a direct consequence of viral involvement [8].

Interestingly, there is evidence of endothelial dysfunction in diving
[9] as in decompression bubbles in animals. In addition to mechanically
obstructing blood flow through the pulmonary vasculature, vascular
bubbles may directly contact and damage the vascular endothelium
[10]. After hyperbaric decompression, bubbles in the body may be lo-
cated within tissues or carried along with the bloodstream [11]. The
interface between the blood and the bubbles produces red cell sludging
in the microcirculation, causes protein denaturation, increases platelet
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adhesiveness, and promotes the formation of lipid emboli [12]. Vas-
cular bubbles may cause direct blockage, aggregate platelets and red
blood cells, and trigger the coagulation process, causing local and
downstream clotting [13].

Vascular bubbles activate the inflammatory cascade, which can re-
sult in or contribute to pulmonary edema and pulmonary hypertension
[14]. Mesenteric injury and organ infarction such as stroke are typical
sequelae of severe DCI [3,15].

We suggest that previous infectious endotheliitis might be amplified
by bubbles. Finally, in COVID-19, stroke, acute myocardial infarction,
findings of thrombi in small pulmonary arterioles of lung parenchyma
and exudative/proliferative diffuse alveolar damage are consistent with
the above findings in DCI.

Radiological findings

The radiological findings in COVID-19 are ground-glass opacity [16]
and bilateral patchy shadows. In severe form of DCI of chest involve-
ment, radiological results are similar [17].

Biological findings

Numerous biological anomalies affect COVID-19 patients. Complete
blood counts revealed lymphocytopenia in most hospitalized cases.
According to researchers, multiple mechanisms work together to cause
lymphopenia [18]. Less common are elevated levels of alanine amino-
transferase (ALT), aspartate aminotransferase (AST), creatine kinase
(CK), and d-dimer [19]. Acute decompression stress (in rats) has also
been shown to cause a transient lymphocytic leucopenia [20] and to
result in significantly increased ALT values [21]. There is also evidence
of rhabdomyolysis (high CK levels) secondary to arterial gas embolism
in skeletal muscles [22].

Finally, COVID-19 and DCI biological features share a number of
anomalies.

Immune system and inflammatory features

The pathogenesis in the later stages of SARS-CoV and SARS-CoV-2
infections results not only from direct viral toxicity but also from im-
mune dysregulation and hyperactivity (IL-6, TNF-α) [23]. Furthermore,
the complement system plays a vital role in the host immune response
to SARS-CoV infection [24].

Interestingly, the lung tissue mRNA levels of TNF-α, Il-1β and Il-6
were significantly increased at 0.5 h after simulated fast buoyancy as-
cent escape in an animal experiment [25]. In vitro, plasma samples
incubated with air bubbles activated complement pathway (C3a and
C5a) [26].

Eventually, there is an argument that the COVID-19-related “cyto-
kine storm” [23] might be related to a nucleation of bubbles in the
blood (foaming process). Moreover, there is evidence that bubbles ac-
tivate the inflammatory cascade [25], which could explain COVID-19
hyper-inflammation.

Vascular and vasculitic skin changes including petechiae, purpura,
ecchymosis, livedoid lesions, have been described in mostly pediatric
COVID-19 patients. COVID-19 may show signs of small blood vessel
occlusion such as petechiae or tiny bruises [27]. It is noteworthy that
livedoid eruptions and rashes are typical skin manifestations seen in
divers [3]. Hence, nucleation of bubbles in the skin microvasculature
could be involved in COVID skin manifestations.

Discussion

The COVID-19-related complications and decompression illness
strikingly bear shared features. We have revealed an astounding
amount of similarities regarding the clinical but also radiological, bio-
logical, immunological and finally humoral features. We believe that

the vascular abnormalities and the hyper-inflammatory parameters
measured in various COVID-19 organs may be related to the systemic
toxic effects of bubbles in the bloodstream elicited by SARS-CoV2 in-
fection. Hereafter, we shall provide a possible mechanism in order to
explain how bubbling could occur in COVID-19 as it is obvious that no
decompression arises.

Methemoglobinemia occurs when the redox balance of the iron in
the heme group is disturbed. In this condition, the patient might ex-
perience a “refractory hypoxemia” and COVID-19 critical cases also
experience refractory hypoxemia [28]. The analogy with methe-
moglobinemia suggests that the complication stage of COVID-19 would
be secondary to a disturbance in hemoglobin. We shall consequently
put forward the hypothesis of a deregulation in the affinity of COVID-19
patient hemoglobin.

Firstly, there is evidence that red cells express Angiotensin II re-
ceptors (AT1 and AT2) [29]. This little-kown information should be
deemed as crucial as the SARS-CoV-2 relationships with oxygen sa-
turation and the Renine Angiotensin System [23] but it currently re-
mains unexploited. Thus and according to Nobre et al. in 2019, there
are no studies deciphering the effect of Angiotensin II and its receptors
on the red blood cell membrane [30].

SARS-CoV and SARS-CoV-2 bind to ACE2, a metalloenzyme nor-
mally responsible for the degradation of Angiotensin II, which down-
regulates ACE2 expression and therefore disturbs Angiotensin II clear-
ance. In an animal study, spike protein of former SARS-CoV in mice led
to a significant increase in Angiotensin II levels in the lung tissue [1]
and recent findings indicate that it is also true in SARS-CoV-2 human
infection. Red cells might therefore carry out the clearance of Angio-
tensin II during the course of the illness.

Body temperature, 2,3-BPG level, and PCO2 are well-known para-
meters that modulate hemoglobin affinity. We propose that a high level
of Angiotensin II suddenly shifts the dissociation curve of hemoglobin
to the right during the red cell transit in the lungs, through an unknown
molecular mechanism. In lungs, the oxygen load would be normal but
the Angiotensin-II-mediated shift would lead to an early (and patho-
logical) oxygen release. For a limited fraction of blood volume, the
release would therefore occur in the arterial tree (lungs, heart, brain,
liver, kidneys) and not in the capillary beds. The blood would be locally
supersaturated and would eventually bubble.

The median time from first symptom to hospital admission (7·0
days) and to ARDS (8·0 days) [31] is consistent with a time-dependent
accumulation of foam in the vasculature and onto the endothelium
areas.

In other tissues that exhibit ACE2 receptors, the sudden shift in the
dissociation curve would produce a surge in free O2, giving rise to DCI-
like symptoms. The same effect could result in a foaming process in any
ACE2-containing tissue (see picture) Fig. 1.

Last, COVID-19 patients with hypertension comorbidity who are
taking Angiotensin II Receptor Blockers (ARBs) as anti-hypertension
drugs may be less likely to develop severe lung disease compared to
patients who take no anti-hypertension drugs [32]. This observation is
consistent with the suggested mechanism.

A case study [33] recently reported successful applications of hy-
perbaric oxygen treatments (HBOTs) in COVID-19, HBOT being the
standard treatment in DCI. We suggest that future controlled-clinical
trials explore the potential usefulness of HBOT among COVID-19 pa-
tients with respiratory conditions.

Conclusion

This paper deals with the theoretical potential possibility of a cri-
tical biophysical event during COVID-19, namely bubble nucleation or
foaming.

Doppler ultrasonography and echocardiography are valuable tools
for researching into venous gas emboli and are urgently needed to as-
sess the previous assumptions. At the end, spectrophotometry assays of
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Angiotensin II-binding red cells are needed to assert the above as-
sumptions.

We would like to thank the editor for putting this hypothesis for-
ward in publishing this paper. It is the authors’ sincere hope and intent
that this novel and original theoretical point of view be largely shared.
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