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Abstract: Within the Cactaceae family, Opuntia comprises the most widespread species, with a recog-
nized importance in human life, including feeding, domestic use as home natural barriers, and as
a traditional remedy for diverse diseases and conditions such asthma, edema, and burns. Indeed,
scientific reports have stated that these health benefits may be due to various active compounds,
particularly polyphenols, which are ubiquitously found in plants and have proven their pharmaco-
logical efficiency by displaying antimicrobial, anti-cancer, and anti-inflammatory activities, among
others. Opuntia species contain different classes of phenolic compounds that are recognized for their
anti-inflammatory potential. Among them, quercetin, isorhamnetin, and kaempferol derivates were
reported to greatly contribute to modulate cells’ infiltration and secretion of soluble inflammatory
mediators, with key implications in the inflammatory process. In this review, we make a summary
of the different classes of phenolic compounds reported in Opuntia species so far and explore their
implications in the inflammatory process, reported by in vitro and in vivo bioassays, supporting the
use of cactus in folk medicine and valorizing them from the socio-economic point of view.

Keywords: Opuntia sp.; prickly pear; phenolic compounds; flavonoids; inflammation

1. Introduction

Cacti belong to the plant family Cactaceae, which includes around 1500 species with
recognized and very high phenotypic variations. Although the taxonomical characteriza-
tion of the species is not always easy [1,2], the main subfamilies are currently well classified
(Figure 1). Among them, the genus Opuntia, from the Opuntioideae subfamily, is the most
recognized, being widely distributed across the globe [3,4]. Opuntia cacti (prickly pear) are
among the plants with greater recognition in quotidian life, with archeological evidence
encompassing the analysis of human coprolites dating back between 6500 to 10,000 years
ago and suggesting its use as foodstuff [5,6]. The first discovery of cacti dates back to
the times of the conquest of the new world by Spanish conquistadors who, besides being
amazed by its attractive and delicious fruits, also noticed its granted economic and cultural
importance in the daily life of the ancient Mesoamerican population [7,8] (Figure 2). After
this, the plant became widely spread worldwide through cultivation and trade, nowadays
being abundant in many arid and semi-arid regions of America, Africa, Asia, Europe, and
Oceania [9,10].
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Figure 1. Taxonomic classification of Opuntia species (photograph from the author (W.Z.): wild 
Opuntia sp., Bejaia, Algeria). 
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Figure 1. Taxonomic classification of Opuntia species (photograph from the author (W.Z.): wild
Opuntia sp., Bejaia, Algeria).
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Figure 2. Representation of the emblem of Tenochtitlan from the Codex Mendoza, with the prickly 
pear as the center of the universe. Photo: © Bodleian Libraries, University of Oxford; Shelfmark: 
Bodleian Library MS. Arch. Selden. A. 1; Holding Institution: Bodleian Libraries, University of 
Oxford; Terms of use: CC-BY-NC 4.0. 

The fast growth of cactus species and their good adaptation to poor soil make them 
very important plants for these populations, being part of their nourishment, livestock 
feed, and as a home natural barrier [11,12]. In addition, cacti became important in folk 
medicine for their capacity to alleviate diverse health conditions, such as diarrhea, asthma, 
hemorrhoids, ulcers, burns, and edema [2,13,14]. These beneficial properties to human 
health led to an increase in scientific research focused in cacti plants, particularly on 
species of the genus Opuntia, due to their recognized pharmacological properties [6]. 
Indeed, it was revealed that all parts of cacti (flowers, fruits, cladodes, and peels) 
constitute undeniable sources of valuable nutritional elements and biologically active 
primary and secondary metabolites, such as vitamins, carotenoids, betalains, 
polyunsaturated fatty acids, and polyphenols, leading people to consider them as 
important functional foods, with interesting nutraceutical and pharmacological 
properties [15–17].  

Phenolic compounds, including flavonoids and phenolic acids, are ubiquitous 
molecules found in nature, particularly in plants, with more than 8000 compounds 
described so far, and divided into different classes [18]. Among other factors, the 
phenolics’ qualitative and quantitative profiles vary with plants’ genus, species, ripeness, 
cultivar, growth region, and kind of plant tissue [19–21]. The literature has reported a 
multitude of phenolic compounds in all Opuntia species [6,22], with a particular 
prevalence of phenolic acids and flavonoids, such as dihydroquercetin, quercetin, 
isorhamnetin, and kaempferol, known for their efficient antioxidant activity and ability to 
protect human organisms from the deleterious effects of free radicals through diverse 
mechanisms of action. It is widely known that oxidative stress appears as a consequence 
of tilting the balance in favor of free radicals compared to the antioxidant system. This 
imbalance stands at the base of many diseases, including different types of cancer, 

Figure 2. Representation of the emblem of Tenochtitlan from the Codex Mendoza, with the prickly
pear as the center of the universe. Photo: © Bodleian Libraries, University of Oxford; Shelfmark:
Bodleian Library MS. Arch. Selden. A. 1; Holding Institution: Bodleian Libraries, University of
Oxford; Terms of use: CC-BY-NC 4.0.
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The fast growth of cactus species and their good adaptation to poor soil make them
very important plants for these populations, being part of their nourishment, livestock
feed, and as a home natural barrier [11,12]. In addition, cacti became important in folk
medicine for their capacity to alleviate diverse health conditions, such as diarrhea, asthma,
hemorrhoids, ulcers, burns, and edema [2,13,14]. These beneficial properties to human
health led to an increase in scientific research focused in cacti plants, particularly on
species of the genus Opuntia, due to their recognized pharmacological properties [6].
Indeed, it was revealed that all parts of cacti (flowers, fruits, cladodes, and peels) constitute
undeniable sources of valuable nutritional elements and biologically active primary and
secondary metabolites, such as vitamins, carotenoids, betalains, polyunsaturated fatty
acids, and polyphenols, leading people to consider them as important functional foods,
with interesting nutraceutical and pharmacological properties [15–17].

Phenolic compounds, including flavonoids and phenolic acids, are ubiquitous molecules
found in nature, particularly in plants, with more than 8000 compounds described so far,
and divided into different classes [18]. Among other factors, the phenolics’ qualitative and
quantitative profiles vary with plants’ genus, species, ripeness, cultivar, growth region, and
kind of plant tissue [19–21]. The literature has reported a multitude of phenolic compounds in
all Opuntia species [6,22], with a particular prevalence of phenolic acids and flavonoids, such
as dihydroquercetin, quercetin, isorhamnetin, and kaempferol, known for their efficient
antioxidant activity and ability to protect human organisms from the deleterious effects of
free radicals through diverse mechanisms of action. It is widely known that oxidative stress
appears as a consequence of tilting the balance in favor of free radicals compared to the
antioxidant system. This imbalance stands at the base of many diseases, including different
types of cancer, arteriosclerosis, myocardial infarction, diabetes, inflammatory diseases,
central nervous system disorders, and cells’ aging [23,24]. In addition to the antioxidant
power of polyphenols, recent investigations also recognized their antimicrobial, hepato-
protective, anti-carcinogenic, and anti-inflammatory properties [22,25]. As a matter of fact,
research devoted to phenolic compounds’ valorization is ever present in the majority of
natural matrices, from the optimization of the extraction processes to their biotechnological
exploitation in food and cosmetic industries and elucidation of mechanisms of action in
a wide array of pharmacological targets. Following the traditional use of cacti in acute
health conditions where inflammation plays a central role, inflammatory mediators and
enzymes appear among the main targets. Inflammation is a body’s natural response to
a pathogen invasion, toxin, or physical damage (chemical or traumatic), which involves
the generation of a wide array of inflammatory mediators, such as reactive oxygen species
(ROS), by inflammatory and immune cells. When the inflammatory process is uncontrolled
or when the endogenous defense systems fail to establish homeostasis, inflammation can
become chronic, leading to tissue damage and often preceding the establishment of chronic
diseases [26,27]. There are many pharmacological treatments for inflammation based on
steroidal and non-steroidal compounds; however, they present significant undesirable side
effects and resistances, leading to an increasing interest in the search for bioactive com-
pounds from natural sources as a potential effective and alternative non-pharmacological
approach [28]. In this regard, the present work provides a general review on the different
classes of phenolic compounds found in Opuntia sp. and on the anti-inflammatory activity
reported for the genus so far.

2. Phenolic Compounds
2.1. General Overview

After cellulose, phenolic compounds represent the most abundant group of secondary
metabolites of the plant kingdom. This large family ranges from simple compounds with
low molecular weight to large and complex polyphenols mainly found conjugated with
sugars and organic acids [29]. In plants, phenolic compounds are biosynthesized by the
shikimate pathway, which is localized in the chloroplasts. These aromatic molecules have
important roles in plants, being implicated in the regulation of their growth, signaling,
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defense, and in conferring color to their fruits, leaves, and flowers [24,30,31]. Their chemical
structure is characterized by the presence of at least one aromatic ring containing one or
more hydroxyl groups [32]. From the chemical point of view, phenolic compounds are
characterized by an acidic behavior, since the oxygen of the hydroxyl function is strongly
linked to the ring, while the connection to the hydrogen atom is weak, allowing the proton
dissociation into the medium and giving origin to a negatively charged phenolate ion [33].

The medicinal properties reported for polyphenols over the years aroused scientists’
interest in improving their extraction methodologies by using different solvents and ex-
traction methods, the most widely explored being infusion, decoction, and maceration as
well as Soxhlet, ultrasound, and microwave-assisted extraction [34]. There are more than
8000 phenolic compounds described in plants, with a high structural variability [18,35]. Ac-
cording to the classification system followed by De la Rosa et al. [30], phenolic compounds
can be divided according to their chemical structure into two main classes: flavonoids and
non-flavonoids. The first category is characterized by its structure complexity and known
for its efficient bioactivity, accounting for nearly two-thirds of dietary polyphenols [30]. Its
basic structure consists of a 15-carbon structure with two phenyl rings (A and B) connected
by a three-carbon bridge, forming a heterocyclic pyran ring (ring C) skeleton (Figure 3a).
The differences in the pyran ring substituents and the extent of hydrogenation allows
defining six subcategories: flavones, flavonols, flavanols, isoflavones, flavanones, and
anthocyanidins [29,31].
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The non-flavonoids’ category includes smaller and simpler compounds. The principal
molecules in this category are phenolic acids, particularly present in fruits and vegetables,
accounting for one-third of dietary phenolic compounds. Phenolic acids are structurally
composed by a single benzene unit, substituted by one carboxylic group and at least one
hydroxyl group. Thus, many compounds can be considered simple phenols, and they
are generally classified according to the number of carbons they have, the most common
being hydroxybenzoic acids with a basic skeleton C6–C1 (Figure 3b) [30,33]. However, the
non-flavonoids’ category also includes other compounds with a complex structure and
with a high molecular weight, which are characteristic and major components of some
plants, such as lignans, chalcones, and stilbenes [30].

2.2. Phenolic Compounds’ Occurrence in Opuntia sp.

Different classes of phenolic compounds can be found in cactus plants, with different
qualitative and quantitative profiles, which mainly depends on environmental factors,
plant origin, species, developmental stage, and age [2]. From the literature, there are no
records about a specific extraction method or the most suitable solvent for polyphenols’
recovery from Opuntia sp. samples; hence, researchers tend to choose the procedure that
suits them according to their objectives and equipment availability. Accordingly, due to
the polarity of polyphenols, some high polar solvents have been generally used, such
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as methanol, acetone, ethanol, water, or even mixtures between them [36,37]; several
extraction methods have been followed, including conventional ones, such as maceration,
infusion, and decoction [10,38,39], and non-conventional ones, such as microwave-assisted
extraction and ultrasonic-assisted extraction [40,41].

The occurrence of phenolic compounds in cactus has been described in seeds, flowers,
cladodes, pulp, and peel, as detailed in Table 1. According to Santos-Díaz et al. [6], the
phenolic profile in Opuntia genera is complex, with more than 40 compounds described
in both pulp and cladodes and more than 20 in seeds of different species. It seems im-
portant to highlight that the majority of the available reports do not specify the phenolic
composition of each vegetative tissue of Opuntia sp., which makes it difficult to establish a
defined qualitative profile. However, some compounds such as delphinidin, petunidin, and
malvidin seem to be exclusively found in Opuntia sp. cladodes, while phloretin, psoralen,
pinoresinol, and epigallocatechin are found in seeds.

Furthermore, the significant differences between species reported in the literature
make it difficult to establish the qualitative and quantitative phenolic profiles of Opuntia sp.
These differences are mostly devoted to the different extraction methods followed by the
authors, which include both the use of solvents of different polarities, different extraction
times, temperatures, and equipment. Differences in the Opuntia raw material used for
extraction are also worth considering: phenolics’ extractions can be performed using dry
or fresh material, of different maturation states, and from different geographic locations,
which modifies the abiotic factors to which species are exposed and, consequently, their
phenolic profile. For instance, Chahdoura et al. [60] found that ferulic acid derivatives were
the most abundant compounds in Opuntia sp. seeds, reaching about 0.36 and 0.95 mg/g
for Opuntia microdasys (Lehm.) N.E. Pfeiffer and Opuntia macrorhiza Engelm., respectively,
while Amrane-Abider et al. [46] found a higher chlorogenic acid content, with 0.89 mg/g in
Opuntia ficus-indica L. (Mill) seeds. The most abundant phenolic acid from the pulp of differ-
ent varieties of O. ficus-indica found by the authors was piscidic acid, with 8.70–22.31 mg/g,
and quercetin was the most abundant flavonoid with 0.08–0.26 mg/g (dry weight, DW).
Contrarily, Zenteno-Ramírez et al. [17] reported gallic acid and epicatechin as the most
abundant compounds in the pulp of different Opuntia species. In the peel of different
O. ficus-indica varieties, García-Cayuela et al. [57] found that piscidic acid was the most
abundant phenolic acid with 27.53–44.62 mg/g DW and isorhamnetin derivates were
the most representative flavonoids (1.48–2.54 mg/g DW). For the cladodes, some reports
indicated that quinic acid and myricetin were the most common in Opuntia dillenii (Ker
Gawl.) Haw. cladodes [39,56], while Missaoui et al. [41] reported for O. ficus-indica a higher
abundance for piscidic acid and isorhamnetin derivates, with 9.67 mg/g and 3.93 mg/g,
respectively. Regarding the flowers, a study by Chahdoura et al. [59] on the flowering
stage of O. microdasys demonstrated that ferulic acid and isorhamnetin derivates were the
most frequent, ranging from 1.24–2.95 mg/g and 4.68–23.04 mg/g, respectively, while
Ammar et al. [65] found a higher content in quinic acid and quercetin derivates, with 1.32
and 8.50 mg/g, respectively, for O. ficus-indica flowers. Moreover, Ouerghemmi et al. [54]
reported that ferulic acid and quercetin were in higher amounts when compared to other
phenolic compounds in O. ficus-indica flowers. It seems evident, based on the available
studies, that besides the abiotic factors, the species-specific ones have a significant role in
phenolics’ concentration and distribution throughout the different plant tissues. It seems
difficult to establish a tissue fingerprint for Opuntia sp. since both flavonoids and phenolic
acids present a wide distribution throughout all the studied plant parts. Based on the
available studies, it seems that seeds present the widest variety of phenolic compounds,
while the lowest variability has been observed for flowers. It was also observed that
anthocyanidins and hydroxycinnamic acid were almost exclusive of cladodes; however,
the fact that this was reported in only one study is not enough to state it as a tissue fin-
gerprint or a species-specific characteristic. The same line of thought can be followed for
phloretin, psoralen, and pinoresinol, which were only reported in the seeds of Opuntia
stricta (Haw.) Haw.
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Table 1. Phenolic compounds reported in the different vegetative parts of the genus Opuntia 1.

Phenolic Compounds Plant Tissue Concentration (µg/g) Opuntia Species References

Flavonoids

Flavones

Apigenin
Seeds

Cladodes
Flowers

NS
0.19–0.65

NS

O. stricta
O. ficus-indica

O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[38,42–44]

Luteolin Pulp
Peel

NS
NS

O. ficus-barbarica
O. robusta [45]

Flavonols

Myricetin

Seeds
Pulp
Peel

Cladodes

198.19–428.14
NS
NS
8.52

O. ficus-indica
O. ficus-barbarica

O. robusta
[45–47]

Rutin

Seeds
Pulp
Peel

Cladodes

8.00–100.00
9.70–12.50

65.70–103.40
2.11–4.95

O. ficus-indica
O. ficus-barbarica
O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[42,44,45,48,49]

Quercetin and derivates

Seeds
Pulp
Peel

Cladodes
Flowers

4.37–18.77
84.20–599.20

715.70–1316.20
8.97–75.13

NS

O. ficus-indica
O. ficus-barbarica

O. robusta
O. engelmannii
O. streptacantha
O. hyptiacantha
O. megacantha

O. albicarpa

[12,38,42,44,45,47,49–58]

Kaempferol and derivates

Pulp
Peel

Cladodes
Flowers

207.10–529.10
52.90–675.50
72.97–241.68
321.00–708.00

O. ficus-indica
O. engelmannii
O. streptacantha
O. hyptiacantha
O. megacantha

O. albicarpa
O. microdasys

[38,47–50,52–55,57,59]

Isorhamnetin and
derivates

Seeds
Pulp
Peel

Cladodes
Flowers

67.14–288.58
29.30–58.40

1484.70–2213.70
1250.00–4140.00

NS

O. ficus-indica
O. microdasys

O. stricta
O. streptacantha
O. hyptiacantha
O. megacantha

O. albicarpa

[12,19,38,44,46–48,50–57,59,60]

Flavanones

Naringenin Pulp
Peel

210.00
20.00–180.00

O. ficus-indica
O. ficus-barbarica

O. robusta
[45,56]

Flavanols

Catechin

Seeds
Pulp
Peel

Cladodes
Flowers

NS
14.44–27.89

NS
180.00

NS

O. stricta
O. ficus-indica
O. megacantha

O. streptacantha
O. robusta

[17,38,43,49,52,54,61]

Epicatechin
Seeds
Pulp
Peel

NS
19.16–90.81

NS

O. ficus-indica
O. albicarpa

O. megacantha
O. streptacantha

O. robusta

[17,42,61]

Gallocatechin
Seeds
Pulp
Peel

NS
116.60–178.20
120.40–334.70

O. stricta
O. ficus-indica [43,49]

Epigallocatechin Seeds NS O. stricta
O. ficus-indica [42,43]

Anthocyanidins

Pelargonidin Seeds
Cladodes

NS
187.97

O. stricta
O. ficus-indica [43,47]
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Table 1. Cont.

Phenolic Compounds Plant Tissue Concentration (µg/g) Opuntia Species References

Flavonoids

Flavones

Cyanidin Seeds
Cladodes

NS
1058.57

O. stricta
O. ficus-indica [43,47]

Delphinidin Cladodes 2.81 O. ficus-indica [47]

Petunidin Cladodes 186.55 O. ficus-indica [47]

Malvidin Cladodes 4.31 O. ficus-indica [47]

Phenolic Acids

Gallic acid and derivates

Seeds
Pulp
Peel

Cladodes
Flowers

NS
32.60–81.20

NS
20.53–38.96

NS

O. ficus-indica
O. stricta

O. ficus-barbarica
O. robusta

O. albicarpa
O. megacantha

O. streptacantha
O. hyptiacantha

[17,42–45,49,54,61–63]

Ferulic acid and derivates

Seeds
Pulp
Peel

Cladodes
Flowers

96.33–1366.24
80.00

150.00–390.00
130.00–370.00
291.00–786.00

O. ficus-indica
O. stricta

O. ficus-barbarica
O. microdasys

O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[12,43–
46,48,49,51,52,55,56,59,61,64]

Caffeic acid and derivates

Seeds
Pulp
Peels

Cladodes
Flowers

NS
NS
NS
NS

255.00–469.00

O. ficus-indica
O. ficus-barbarica

O. robusta
O. microdasys

O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[12,38,42,44,45,48,49,51,54,59,
61]

Sinapic acid

Seeds
Pulp
Peel

Cladodes

NS
100.00–4100.00
820.00–2350.00
40.00–750.00

O. stricta
O. ficus-indica [43,49,56]

p-Coumaric acid

Seeds
Pulp
Peel

Cladodes
Flowers

NS
NS
NS

20.91
65.00–178.00

O. ficus-indica
O. ficus-barbarica

O. robusta
O. microdasys

O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[42,44,45,48,49,52,59]

Hydroxycinnamic acid Cladodes 8.45–1248.24

O. ficus-indica
O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[44,47]

Chlorogenic acid Seeds
Cladodes

885.31–1148.41
5.00–26.49

O. ficus-indica
O. streptacantha
O. hyptiacantha
O. megacantha

O. albicarpa

[42,44,46,50,52]

Ellagic acid
Seeds
Pulp
Peel

73.74–74.38
25.00–73.20

NS

O. ficus-indica
O. megacantha

O. streptacantha
O. robusta

O. ficus-indica

[17,46,61]

Vanillic acid

Seeds
Pulp
Peel

Cladodes
Flowers

NS
NS
NS

0.11–24.30
NS

O. stricta
O. ficus-barbarica

O. robusta
O. ficus-indica

O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[43–45,49,54,61]
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Table 1. Cont.

Phenolic Compounds Plant Tissue Concentration (µg/g) Opuntia Species References

Syringic acid

Seeds
Pulp
Peel

Cladodes
Flowers

NS
13.60–66.50

NS
2.34–13.99

NS

O. ficus-indica
O. robusta

O. albicarpa
O. megacantha

O. streptacantha
O. hyptiacantha

O. stricta

[12,17,42–45,54,61]

Protocatechuic acid
Seeds
Pulp
Peel

4.57–22.36
NS
NS

O. ficus-indica
O. ficus-barbarica

O. robusta
O. stricta

[45,46,49,58,61–63]

Hydroxybenzoic acid
Pulp
Peel

Cladodes

200.90–816.80
964.00–1718.20

114.01

O. ficus-indica
O. hyptiacantha
O. streptacantha
O. megacantha

O. albicarpa

[44,47,49,57,62]

Piscidic acid

Seeds
Pulp
Peel

Cladodes

NS
NS
NS
NS

O. ficus-indica
O. stricta [48,51,53,55,57,58,63]

Eucomic acid

Seeds
Pulp
Peel

Cladodes

NS
NS
NS
NS

O. ficus-indica
O. streptacantha
O. hyptiacantha
O. megacantha

O. albicarpa
O. stricta

[48,50,51,53,55,58,63]

Gentisic acid Pulp
Peel

NS
NS

O. ficus-barbarica
O. robusta [45]

Rosmarinic acid Peel
Flowers

NS
NS O. ficus-indica [49,54]

Catechol
Seeds
Pulp
Peel

NS
NS
NS

O. stricta
O. ficus-barbarica

O. robusta
O. ficus-indica

[43,45,61]

Other Phenolics

Phloretin
Psoralen

Pinoresinol
Seeds NS O. stricta [43]

1 NS, not specified.

3. Opuntia sp. in Inflammation

Inflammation is a physiological, self-limiting process occurring in mammalian tissues
as a response to harmful situations such as microorganism invasion, physical damage, or
exposition to toxic chemicals. The inflammatory process tends to eliminate primary triggers
and contributes to initiating the regeneration of injured tissues by mediating an organized
immune response, involving particularly macrophages and mast cells [66,67]. However, in
some situations, the mechanisms involved in restoring tissues’ homeostasis fail, generating
a deregulated response that often results in a chronic inflammatory response, which is ever
present in a wide variety of diseases and metabolic disorders such as diabetes, obesity,
cancer, arthritis, and neurodegenerative and cardiovascular diseases [66,68].

The inflammatory framework involves a complex cascade of events with a coor-
dinated action between pro- and anti-inflammatory mediators and biological systems
including different cell lines (macrophages, neutrophils) and signaling molecules [69,70].
The NF-κB transcription factors have been long recognized for constituting a prototypical
pro-inflammatory signaling pathway. In fact, these proteins are normally retained in the
cytoplasm, being bound to a class of inhibitory proteins known as the IκB family. How-
ever, after stimulation, the activation of specific enzymes, known as IκB kinases (IKK),
may phosphorylate the inhibitory protein, leading to the dissociation of the IκB/NF-κB
complex. This results in a proteasomal degradation of IκB protein, while NF-κB can then
translocate to the nucleus, binding DNA and activating the transcription of some targeted
genes for cytokines, such as tumor necrosis factor-α (TNF-α) and interleukins (IL) (IL-1β
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and IL-6), as well as the production of several enzymes including cyclooxygenase (COX)
and lipoxygenase (LOX) (Figure 4) [71–73]. These latter enzymes have a key role in the
inflammatory process through the transformation of the arachidonic acid released from the
phospholipid membrane into a spectrum of pro-inflammatory bioactive mediators includ-
ing prostanoids and leukotrienes, which act by enhancing edema formation, increasing
vascular permeability and leukocytes’ infiltration into the injured tissue [74–76].
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Figure 4. The implication of NF-κB signaling pathway in inflammation. The inflammatory stim-
ulation of a cell may lead to IKK phosphorylation and activation which, in turn, may lead to the
phosphorylation of the IκB/NF-κB complex retained in the cytoplasm. The IκB is degraded by the
proteasome, while the NF-κB transcription factor can enter into the nucleus and bind DNA to initiate
the transcription of some targeted genes implicated in the inflammatory response.

Over the years, many studies have been conducted in order to explore the potential
targets of Opuntia sp. extracts and isolated phenols regarding the inflammatory process.
From the anti-inflammatory investigations of Opuntia sp. reported in the literature, some
species were the subject of greater scrutiny: O. stricta, Opuntia humifusa (Raf.) Raf., Opuntia
elatior Mill., O. dillenii, and, mostly, O. ficus-indica [65,77–81]. Different parts of the plant
(flowers, cladodes, seeds, and fruits) were explored, and different extraction methods
and solvents were used according to the desired purpose. However, most of the works
exploring the anti-inflammatory potential of Opuntia sp. were conducted using crude
extracts, and only a few of them provided information on the anti-inflammatory potential
of isolated phenolic molecules, especially flavonoids from Opuntia sp., such as isorhamnetin
and kaempferol derivates [77,82,83].

3.1. Modulation of Inflammatory Mediators and Enzymes

Most of the available studies exploring the anti-inflammatory activity of Opuntia sp.
extracts and isolated compounds were undertaken in vitro and explored specific mediators
and enzymes involved in the inflammatory process (Table 2). Among them, nitric oxide
(NO), produced by the inducible nitric oxide synthase (iNOS) upon inflammatory stimuli, is
among the most explored. Gómez-Maqueo and co-workers [84] reported that the pulps and
peels of two varieties of prickly pears presented anti-inflammatory potential by scavenging
NO radicals. Indeed, besides being implicated in many physiological processes, the high
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levels of NO also play a key role in the pathogenesis of inflammation, by upregulating
iNOS and pro-inflammatory cytokines’ production (TNF-α and IL-8), leading at the end to
serious tissue damage [78,85]. Following this train of thought, the reduction in the inflam-
matory response can benefit from the well-known free radical scavenging ability of phenolic
compounds. The same authors followed their study and found that the different prickly
pears’ parts were also able to inhibit hyaluronidase activity. This enzyme is implicated in
both physiological and pathological processes by hydrolyzing hyaluronic acid (HA), one
of the most important compounds in the extracellular matrix, with more than 50% found
in human skin [86]. The degradation of HA leads to the breakdown of tissues’ structural
integrity and, consequently, to an increase in their permeability, favoring the progression
of inflammatory mediators. Thus, a balanced regulation of hyaluronic acid metabolism is
important to maintain normal tissue organization and structure of the extracellular matrix.
On the other hand, an over-activation of hyaluronidase may contribute to degenerative
changes in connective tissues; therefore, enzyme inhibitors may play a beneficial role
during the inflammatory process, presenting potential beneficial health effects such as hin-
dering the exacerbation of the inflammatory response [86–88]. Similarly, another study of
Gómez-Maqueo et al. [89], using other varieties of prickly pears, explored the same bioactivi-
ties in vitro, with a notably higher efficiency for peels when compared to pulps. The authors
attributed this behavior to some compounds found in the species under study, particularly
to indicaxanthin and to the phenolic compounds isorhamnetin glycosides, kaempferol
glycoside, and quercetin, which mainly contributed to the observed anti-inflammatory
potential by presenting a higher hyaluronidase inhibitory activity when compared to other
purified standards.

A study conducted by Chaalal et al. [90] demonstrated that polyphenols extracted
from different parts of O. ficus-indica fruits (seeds, pulp, and entire fruit) presented an anti-
inflammatory potential and could exert a neuroprotective effect by decreasing the tran-
scriptional expression of pro-inflammatory mediators such as TNF-α, IL-1β, and iNOS in
N13-microglial cells after lipopolysaccharide (LPS) stimulation, pointing out the potential
health benefit of these compounds in case of neuronal damage. In another study, Cho et al. [78]
reported that chloroform and ethyl acetate fractions of O. humifusa cladodes were able to
decrease NO production in LPS-stimulated RAW 264.7 macrophages, pointing to quercetin as
one of the main compounds responsible for this behavior. Moreover, they also noticed that
both fractions differently modulated cytokines’ gene expression, especially for iNOS, IL-6,
and IL-1β, suggesting the implication of other bioactive components from the species in the
anti-inflammatory potential, while Yeo et al. [91] showed that methanolic extracts obtained
from the seeds of the same species reduced NO production from LPS-stimulated macrophages’
RAW 264.7. The isolated compound americanin A was found to be responsible for reducing
iNOS and pro-inflammatory cytokines’ (TNF-α and IL-6) expression levels, which resulted
principally by preventing NF-κB translocation into the nucleus.
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Table 2. Anti-inflammatory potential and mechanism of action of phenolic compounds extracted from Opuntia species 1.

Species (Tissue) Compounds Dose Model Mechanism of Action Ref.

In Vitro Studies

Opuntia ficus-indica
(seeds, pulp, fruits)

Phenolic compounds from
crude extracts 10 mg/mL LPS-stimulated murine

N13 microglial cells - Downregulation of TNF-α, IL-1β, and iNOS expression [90]

Opuntia humifusa
(cladodes)

Phenolic compound
from crude extracts

0.05/0.1
mg/mL

LPS-stimulated
Macrophages’ RAW 264.7

- ↓ NO production
- Downregulation of iNOS, IL-1β, and IL-6 genes’ expression [78]

Opuntia humifusa
(seeds) Isoamericanin A 1.0–4.0

µg/mL
LPS-stimulated
Macrophages’ RAW 264.7

- ↓ TNF-α, IL-6, and iNOS expression levels
- ↓ NF-Kb levels in the nucleus by inhibition of IκB

phosphorylation
[91]

Opuntia ficus-indica
(cladodes) Crude extract 10 mg/mL Human intestinal

Caco-2/TC7 cells

- ↓ NO, TNF-α, and IL-8 production
- Intracellular reduction in reactive species
- ↓ Prostaglandin synthesis

[92]

Opuntia ficus-indica
(fruits)

Polyphenols from
crude extract 0.05 mg/mL Human colon

carcinoma Caco-2 cells

- ↓ H2O2-induced reactive species
- Prevention of H2O2–induced protein oxidation
- Cell protection from barrier dysfunction
- ↓ NO, TNF-α, and IL-8 secretion
- ↓ IκBα depletion

[82]

In Vivo Studies

Opuntia dillenii
(stems, flowers, fruits)

Kaempferol
3-O-α-arabinoside
Isorhamnetin-3-O-β-D-
glucopyranoside
Isorhamnetin-3-O-β-D-
rutinoside

50 mg/kg
BW

Carrageenan-induced
paw edema in Albino rats - ↓ Edema formation [77]

Opuntia ficus-indica
(flowers)

Phenolic compounds from
crude extract

400 mg/kg
BW

Carrageenan-induced
paw edema in Wistar rats

- ↓ Edema formation
- ↓ Amount of immune cells
- Neutralization of lipid peroxidation induced by reactive

species
- ↑ CAT, SOD, and GSH activities

[65]

Opuntia ficus-indica
(cladodes)

Isorhamnetin-3-O-
glucosyl-rhamnoside
Isorhamnetin-3-O-
glucosyl-rhamnosyl-
rhamnoside

5 mg/kg
BW

Carrageenan-induced
air-pouch inflammation
in Wistar rats

- ↓ Edema formation
- ↓ Total leukocytes’ amount
- Inhibition of COX-2 activity
- ↓ NO, TNF-α, and IL-6 production

[83]

1 BW, body weight; CAT, catalase; COX, cyclooxygenase; GSH, glutathione; H2O2, hydrogen peroxide; IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide;
NO, nitric oxide; SOD, superoxide dismutase; TNF, tumor necrosis factor.
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In a study conducted with the intestinal Caco-2/TC7 cell line, Filannino and co-
workers [92] reported that raw material and fermented extracts from O. ficus-indica clado-
des presented an anti-inflammatory effect by significantly reducing NO and chemokines’
(IL-8 and TNF-α) production, which are important effectors in the inflammatory process
contributing to the recruitment and activation of different inflammatory cells. In addition
to decreasing the intracellular ROS generated during cells’ stimulation, flavonoids (espe-
cially kaempferol and isorhamnetin), were considered to be the main responsible for this
anti-inflammatory modulation. They displayed a significant decrease in prostaglandin
E2 accumulation, which is a pro-inflammatory product from COX-2 and prostaglandin
synthase metabolism, generally implicated in promoting local vasodilatation, and attrac-
tion and regulation of different immune cells’ functions. Similarly, a study conducted by
Matias et al. [82] found that flavonoid-rich concentrate from O. ficus-indica fruits prevented
oxidative stress through the neutralization of H2O2-induced free radicals and also pre-
vented protein oxidation in inflamed Caco-2 cells. Otherwise, the extract allowed protecting
the intestinal barrier dysfunction, which was correlated with the ability of some flavonoids
to decrease TNF-α secretion. They also found that the incubation of inflamed Caco-2 cells
with the extract significantly modulated cytokines’ secretion, leading particularly to a
decrease in IL-8 and NO production, which are linked to the activation of the NF-κB path-
way. Indeed, it was proven that the extract reduced the degradation of IκBα, an important
inhibitor of NF-κB, preventing its migration from cytosol to the nucleus, where it could
promote the transcription of pro-inflammatory genes.

3.2. Anti-Inflammatory Activity In Vivo

Most of the in vivo works exploring the anti-inflammatory activity of Opuntia species
were conducted using rats as animal models, following the carrageenan-induced inflam-
mation method, which is frequently used to evaluate the anti-edematous effect of natural
products (Table 2) [79].

A study by Ahmed et al. [77] reported the in vivo anti-inflammatory potential of
different parts of O. dillenii with a high efficiency verified for the flowers, from which
three isolated compounds, namely, kaempferol 3-O-α-arabinoside, isorhamnetin-3-O-β-D-
glucopyranoside, and isorhamnetin-3-O-β-D-rutinoside, were characterized as the active
principles contributing significantly to reducing paw edema in albino rats. Ammar et al. [65]
also reported the anti-inflammatory potential for Opuntia sp. flowers; the authors found that
the methanolic extracts of O. ficus-indica flowers exhibited an anti-inflammatory potential
by reducing the paw edema size in Wistar rats, with the same efficiency as the non-steroidal
anti-inflammatory drug indomethacin. This effect was confirmed by a significant decrease
in the number of inflammatory cells, including leukocytes and lymphocytes, a decrease
in malondialdehyde (MDA) levels, which is correlated with the decrease in the lipid
peroxidation process occurring at inflammatory sites, and a restoration of some antioxidant
enzymes’ activities, including superoxide dismutase (SOD), catalase (CAT), and glutathione
(GSH), which contribute to neutralize free radicals’ overproduction. According to the
phytochemical analysis, the authors suggested the implication of phenolic compounds,
particularly quercetin, isorhamnetin, and kaempferol, which could scavenge free radicals
and decrease inflammation. Moreover, Antunes-Ricardo et al. [83] found that O. ficus-indica
cladodes’ extract and its isolated isorhamnetin derivatives (isorhamnetin-3-O-glucosyl-
rhamnosyl-rhamnoside and isorhamnetin-3-O-glucosyl-rhamnoside) decreased the amount
of neutrophils’ infiltration into the inflammatory site (carrageenan-induced air-pouch
inflammation in rats) with a decrease in NO production more efficient than that obtained
with the standard drug used, indomethacin. The authors also found that cladodes’ extract
and isolated compounds were able to inhibit COX-2 activity and cytokines’ production,
particularly TNF-α and IL-6, with a better efficiency for the crude sample, probably due to
a synergistic effect of its different phytochemicals.
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4. Conclusions

The present review shows the richness of Opuntia species as producers of a wide variety
of phenolic compounds, with an important role in the inflammatory process. The anti-
inflammatory studies conducted until now demonstrated the benefit of different species
to reduce the oxidative stress occurring at the site of an injury, decreasing the amount of
neutrophils’ infiltration, as well as pro-inflammatory mediators’ production, such as NO,
TNF-α, and interleukins. These effects were correlated with the presence of flavonoids in the
different tissues of cactus, namely, quercetin, isorhamnetin, and kaempferol derivates, as the
important bioactive components. Even though the Opuntia genus regroups a lot of species
throughout the world, the available studies are limited to a few of them, with O. ficus-indica
being by far the most explored. Nevertheless, reports on cactus plants reveal their potential
anti-inflammatory application in the pharmaceutical industry, supporting the traditional use
of these species in folk medicine and enhancing their economic value worldwide and for
local communities.
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