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Low oxygen tension or hypoxia is a determining factor in the course of many different 
processes in animals, including when tissue expansion and cellular metabolism result in 
high oxygen demands that exceed its supply. This is mainly happening when cells actively 
proliferate and the proliferating mass becomes distant from the blood vessels, such as in 
growing tumors. Metabolic alterations in response to hypoxia can be triggered in a direct 
manner, such as the switch from oxidative phosphorylation to glycolysis or inhibition of 
fatty acid desaturation. However, as the modulated action of hypoxia-inducible factors 
or the oxygen sensors (prolyl hydroxylase domain-containing enzymes) can also lead to 
changes in enzyme expression, these metabolic changes can also be indirect. With this 
review, we want to summarize our current knowledge of the hypoxia-induced changes 
in metabolism during cancer development, how they are affected in the tumor cells and 
in the cells of the microenvironment, most prominently in immune cells.
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iNTRODUCTiON

Metabolism is the set of chemical processes by which energy homeostasis is maintained, allowing 
cells to adjust to the needs that the surrounding environment demands. By adjusting their metabolic 
pathway network, cells are able to adapt to nutrients and deprived oxygen availability, as well as 
to adequately respond to different cell signals. During the past few years, the importance of the 
metabolic state of a cell and how this exerts differentiation and functionality during physiological 
and pathological processes has become evident. Indeed, metabolic reprogramming is considered 
a hall-mark of cancer progression (1, 2). Recently, new progresses in molecular biology and high-
throughput molecular analyses revealed that many of the signaling pathways, which are altered by 
gene mutations can regulate cell metabolism. However, the oncogenic transformation process not 
only involves cancer cells, but it also alters their tumor microenvironment (TME), which includes 
stromal and infiltrating immune cells (3). Although in this context their metabolism has received 
less attention, they signify a rich cell population in many solid tumors. Moreover, the metabolic 
changes that these cells endure have been shown to have a great impact on their contribution dur-
ing tumor development. These metabolic changes not only translate in different cell functionality, 
but they are also important in establishing a pro-tumoral “metabolite crosstalk.” According to this 
idea, it has been shown that specific excreted metabolites, including lactate (4) are exploited or 
signal to particular cells. Also the connection between metabolism and signal transduction within 
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FigURe 1 | The hypoxia inducible factor (HIF) pathway. Under adequate oxygen pressure, prolyl-hydroxylase domain enzymes (PHDs) hydroxylate two prolyl 
residues on the α-subunit of the hypoxia-inducible transcription factors (HIF-α). The hydroxylated residues are recognized by the ubiquitin ligase Von Hippel–Lindau, 
leading to subsequent degradation of HIF-α via the proteasome (upper part of the figure). However, during hypoxia (deprived oxygen pressure), PHDs are inactive 
and HIF-α is able to translocate into the nucleus, interacts with the HIF-β subunit and P300/CBP enabling binding to hypoxia-responsive elements (HRE) in the 
promotor region of genes implicated in the hypoxia response (lower part of the figure).
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the neoplastic area is known. We will, therefore, summarize the 
most essential and relevant studies in the field of cancer-related 
metabolism, highlighting the regulating properties of hypoxia 
pathway proteins.

Hypoxia Pathway Proteins in Cancer
Solid tumors are characterized by rapid cell growth that is not 
equally compensated with a functionally effective and efficient 
vasculature. This poor vessel irrigation leads to a highly hetero-
geneous tumor mass with variable oxygen pressure and nutrient 
levels that cancer cells as well as TME cells need to overcome. 
Vaupel and colleagues recognized that the partial pressure of 
oxygen (pO2) within human cancers is significantly lower than in 
surrounding tissue. This so-called intra-tumoral hypoxia is asso-
ciated with increased risk of local spread, metastasis, and patient 
mortality (5). Indeed, a complex pathway exists that regulates 
the adaptive response to hypoxia. The master regulators of the 
cellular response to hypoxia constitute a heterodimeric complex 
formed by a constitutively expressed nuclear HIFβ, and a cyto-
plasmic oxygen-dependent HIFα (HIF-1α, HIF-2α, and HIF-3α) 
subunit. Stabilization of HIFα is regulated by a group of oxygen 
and iron dependent enzymes, known as hypoxia-inducible 

factor (HIF)-prolyl hydroxylase domain enzymes (PHD1–3). 
Therefore, under physiological oxygen concentrations PHDs 
hydroxylate two prolyl residues of HIFα, which allows binding 
of the Von Hippel–Lindau tumor-suppressor protein, leading to 
subsequent ubiquitination and proteasomal degradation of this 
alpha subunit. However, in hypoxia PHDs are much less active, 
allowing gene transcription regulation by the HIF isoforms, 
with overlapping, distinct or even opposite roles (6) (Figure 1). 
Since its discovery, regulation of the hypoxia pathway has 
been strongly related to cancer development. It cannot only 
modulate survival and proliferation of cancer cells, activation 
of this pathway can induce angiogenesis, escape from immune-
surveillance, epithelial-to-mesenchymal transition, and even 
distant metastasis (7, 8). Due to the central regulatory role of 
PHD2 (9) in the hypoxia pathway, several studies have focused 
on this isoform. In this regard, we were able to demonstrate that 
loss of PHD2 in tumor cells leads to decreased tumor growth, 
depending on an anti-proliferative effect of TGFβ activation 
through matrix metalloproteinases, but not HIF-1α (10, 11). 
More recently, using a spontaneous breast cancer mouse model, 
Kuchnio and colleagues showed that PHD2 haplo-deficiency 
in cancer cells reduce metastasis via two mechanisms: (1) by 
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decreasing cancer-associated fibroblasts (CAF) activation due to 
a reduced secretion of TGFβ by cancer cells, matrix production 
and contraction by CAFs and (2) by improving vessel nor-
malization (12). As mentioned earlier, newly formed vessels are 
often disorganized, immature, and leaky. Mice heterozygous for 
PHD2 are protected from distant metastasis due to endothelial 
normalization in a HIF2-α-dependent manner (13). Branco-
Price and colleagues described that deficiency of HIF-1α in the 
endothelium diminishes NO synthesis, resulting in retarded 
tumor cell migration and consequent tumor cell metastasis. 
However, loss of HIF-2α had a reversed effect (14).

The HIF-pathway proteins not only regulate growth and 
dissemination of cancer cells, but they also control the tumor-
associated immune cells (15, 16). Therefore, many different 
groups have been focusing on what role the hypoxia pathway 
proteins play in the two major contrasting forces throughout 
tumor development: (1) anti-tumor defense and (2) suppression 
by the immune system. Concerning the latter, tumor-associated 
macrophages (TAMs) or pro-tumoral macrophages help the 
tumor to grow. Actually, most of the studies performed relate 
to the role of the HIF-pathway proteins in TAMs during cancer 
development. The first studies on this were focused on the role 
of the HIF transcription factors, revealing that loss of HIF-1α in 
TAMs increases M2 polarization and pro-angiogenic responses. 
Moreover, these TAMs overexpress HIF-2α, which correlates with 
poor patient prognosis (17). In line with this, HIF-2α deficiency 
in macrophages reduces TAM infiltration into hepatocellular 
carcinoma in mice (18). In addition, in a transgenic mouse model 
of breast carcinoma development (MMTV-PyMT), Doedens 
and colleagues demonstrated that targeted deletion of HIF-1α in 
macrophages leads to reduced breast tumor growth. Indeed, their 
work strongly proposes a HIF1-α-dependent macrophage-medi-
ated T  cell suppression (19). Furthermore, our research group 
demonstrated that PHD2 deficiency in myeloid and T cells is a 
pre-requisite to diminish tumor volume due to increased death 
of cancer cells (20). Nevertheless, Clever et al. recently reported 
for the first time a clear role for PHDs in regulating T cell anti-
tumoral response. In this study, wild-type and PHD1–3 T cell 
triple knock-out mice showed similar subcutaneous B16 tumor 
growth, while the triple PHD KO mice were significantly pro-
tected from tumor colonization in the lung (21).

Since hypoxia constitutes one of the hallmarks of solid 
tumors, and oxygen availability has a direct effect on cell 
metabolism, it is not surprising that numerous authors have 
described the reciprocal regulation that HIFs exert on meta-
bolic reprogramming of cancer cells and immune response in 
the TME and vice  versa (22–25). In this regard, oxygen not 
only regulates PHD activity directly (6), CO2 production dur-
ing mitochondrial respiration through the TCA cycle can also 
suppress HIF activity in high concentrations. The mechanism 
behind this process still needs to be clarified, but it seems that 
acidification inhibits protein synthesis (mTOR inhibition) 
and HIF1 α is extremely sensitive to protein synthesis (26). 
In addition, ROS production during oxidative metabolism 
influences HIF activity (27, 28), as well as accumulation of 
specific immunometabolites such as α-ketoglutarate (α-KG), 
fumarate, and succinate (29–32).

Cancer Cell Metabolism
The Warburg effect is found to be one of the most striking 
metabolic shifts that healthy normal cells undergo during 
tumorigenesis (33). This effect of aerobic glycolysis, described 
by Warburg already in 1920s still forms a hot-topic of tumor 
metabolism nowadays. This process defines that cancer cells 
predominantly obtain their energy (in terms of ATP production) 
through the glycolytic pathway rather than the TCA cycle, even 
in the presence of adequate oxygen levels (33). But why would 
cancer cells use glycolysis when energy production is inefficient? 
Despite the low amount of ATP produced by glycolysis (2 ATP 
molecules per glucose molecule in glycolysis versus 36 molecules 
of ATP in TCA), the efficiency of this process relies on faster 
kinetics of glycolysis, producing a comparable amount of ATP 
by either form of glucose metabolism during the same period 
of time (34). This also implies that nutrients are conserved for 
biosynthesis of nucleic acids, lipids, and amino acids to support 
cell growth, rather than oxidized in mitochondria for maximal 
ATP production (35–41). Moreover, this high glycolytic rate 
entails a great lactate excretion, leading to increased TME acido-
sis, which alters the tumor stroma interface allowing enhanced 
invasiveness (42, 43). The presence of variable levels of lactate 
and hypoxia constitutes one of the main reasons for tumor 
heterogeneity. Indeed, “metabolic symbiosis” among hypoxic 
and aerobic cells within the tumor mass has been demonstrated. 
Lisanti and coworkers described “the Reversed Warburg effect” in 
which CAFs perform aerobic glycolysis and provide cancer cells 
with metabolites for oxidative phosphorylation (OxPhos) (44, 
45) (Figure 2). In this pro-tumoral “metabolite crosstalk,” lactate 
produced by hypoxic cells is taken up by aerobic cells, which use 
it as their principal substrate for OxPhos. Lactate recycling is 
not new, and is well known from the Cori cycle in the liver (46). 
Sonveaux et al. showed that human cancer cells cultured under 
hypoxic conditions convert glucose to lactate and excrete it, while 
aerobic cancer cells take this lactate back up via monocarboxylate 
transporter 1 (MCT1) and utilize it for OxPhos (4). Another 
important glycolysis-related enzyme is pyruvate kinase (PK), 
which catalyzes the final glycolytic reaction. Therefore, reduction 
of PK activity causes a build-up of glycolytic intermediates that 
are redirected toward biosynthesis. Elevated expression of the 
isoform PKM2 has been demonstrated in several types of cancer, 
including colon, kidney, lung, and breast (47). Several studies 
have shown that PKM2 directly regulates the Warburg effect, 
since the knock-out of this enzyme reduces glucose uptake and 
lactate production, increasing oxygen consumption, and finally 
reducing tumorigenesis (48–50). In addition to this, Luo et  al. 
reported that hydroxylation of PKM2 by PHD3 allows its bind-
ing to HIF-1α, enhancing expression of HIF-1α targeted genes 
(51). In addition, HIF-1α restricts OXPHOS and regulates the 
expression of pyruvate dehydrogenase kinase (PDK), an enzyme 
that phosphorylates and inactivates pyruvate dehydrogenase. The 
latter limits pyruvate utilization for OxPhos (52). Furthermore, 
active Akt2 accumulates in the mitochondria during hypoxia 
and phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) 
on Thr346 to inactivate the pyruvate dehydrogenase complex 
(53). Regarding the HIF pathway, cancer cells present frequent 
activation of the PI3K–mTOR axis, which functions as a nutrient 
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FigURe 2 | Schematic representation of the glycolytic pathway in different cell types. Metabolic intermediates such as lactate inhibit the PHD function, leading  
to accumulation of hypoxia-inducible factor (HIF) which regulates expression of several glycolytic enzymes. Importantly, HIF balances glucose metabolism: (1) by 
inducing expression of LDH, leading to conversion of pyruvate to lactate, (2) as well as dampening the entry of pyruvate in the TCA cycle through inhibition of PDH 
by pyruvate dehydrogenase kinase (PDK) overexpression. Particularly, cancer cells (CC: orange) show increased expression of PKM2, the limiting rate enzyme of 
glycolysis, favoring glucose metabolism. CCs as well as endothelial cells (ECs: pink) show increase expression of MCT, facilitating lactate uptake for oxidative 
phosphorylation. Pro-tumoral M2 macrophages (light blue) present increased expression of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) 
isoform, enhancing glycolysis in these cells, whereas anti-tumoral M1 (dark blue) express the low activity isoform PFKFB1. Activation of T cells (green) via  
TCR-CD28 leads to enhanced glycolysis essential for their effector functions in an mTOR/HIF-dependent manner.
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sensor pathway. mTOR activation favors HIFα activity and pro-
motes tumor angiogenesis. Thus, it has been shown that loss of 
the mTOR inhibitor TSC2 (tuberous sclerosis complex 2 protein) 
results in the accumulation of HIF-1α and increased expression 
VEGF (54). Another study relates mTOR-mediated regulation 
of HIF-1α to the pathogenesis and increased angiogenesis in 
chronic myelogenous leukemia (55) (Figure 2).

Previous studies have shown that specific metabolites are 
able to directly regulate the hypoxia pathway. Therefore, loss-
of-function mutations of the tumor suppressor genes encoding 

the succinate dehydrogenase complex and fumarate hydratase 
lead to the accumulation of succinate or fumarate, resulting in 
HIF stabilization through inhibition of PHDs (56). Also other 
intracellular metabolites, such as pyruvate, lactate and oxaloac-
etate block PHD-mediated inhibition of HIF-1α underlying 
its prominent basal activity, commonly seen in many highly 
glycolytic cancer cells. This suggests that enhancement of HIF-1 
by glucose metabolites may constitute a feed-forward signaling 
mechanism involved in malignant progression (57). In addi-
tion, isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are 
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FigURe 3 | Schematic representation of the fatty acid (FA) synthesis in different cell types. Cancer cells (CC: orange) show increased expression of ACCS2 favoring 
conversion of pyruvate to acetyl-coA as well as fatty acid synthase (FASN) for conversion of malonyl-coA to FA. The latter, is also overexpressed in M2 macrophages 
(blue). CCs can also obtain FA from exogenous sources via converting triglycerides (TG) into FA, which are taken up by the CD36 transporter. Overexpression of 
monoacylglycerol lipase (MAGL) in CC is related to synthesis of lipids involved in cell signaling. Increased expression of SCD1 in CC balances higher presence of 
unsaturated FA essential for maintenance of ER homeostasis. Enhanced expression of ACC1 shifts T cell differentiation toward T regulatory cells (Treg: dark green).
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frequently mutated in cancer. These enzymes function at the 
intersection of different processes, including oxygen-sensing 
signal transduction, cellular defense against oxidative stress, 
oxidative respiration, and cellular metabolism in lipid synthesis. 
The mutated forms of IDHs (58) produce 2-HG instead of α-KG 
essential for PHD function (59). Indeed, it has been shown that 
2-HG can either inhibit or activate PHD-driven hydroxylation 
of HIF in an enantiomer-specific way (60).

Since the discovery of the Warburg effect, mitochondrial dys-
function was designated as a metabolic hallmark of cancer cells. 
However, earlier studies provided genetic evidence that mito-
chondrial metabolism is essential for tumorigenesis (61–63). 
Indeed, cancer cells generate an abundant amount of NADPH 
in the mitochondria and the cytosol to sustain high antioxidant 
activity and prevent the build-up of potentially detrimental  
ROS (64, 65).

Although anaerobic glycolysis is an acclaimed feature of cancer 
cells, this is not the only metabolic alteration in the transformed 
cells. In fact, for tumor cells to proliferate, fatty acid (FA) syn-
thesis (for membrane biogenesis) as well as glutaminolysis (for 
amino acid precursors) has been reported to be affected during 
tumorigenesis (37, 66, 67). It has been shown that lipid produc-
tion is critical for cancer cell survival, while the expression of the 
central lipogenic enzyme fatty acid synthase (FASN) is strongly 
correlated with cancer progression (68, 69). FAs used for cancer 
cells during lipogenesis can be endogenously derived from citrate 
in the TCA cycle, but they can also be seized from exogenous 
sources. To obtain free FA from circulation, lipoprotein lipase 
(LPL) hydrolyzes circulating triglycerides. Then, free FAs are 
imported into the cell via the FA translocase CD36. Both proteins 
LPL and CD36 are widely expressed in breast, liposarcoma, and 
prostate tumor samples (70) (Figure 3). In addition to this, lipid 
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metabolism plays an important role in preventing ER stress, as 
it appears that balancing saturated and unsaturated lipid species 
are required, due to the lipotoxic effects of the former. Therefore, 
desaturation of de novo synthesized lipids by oxygen-dependent 
stearyl-Coenzyme A (CoA) desaturases (SCDs) plays a critical 
role for cancer cell survival. In this regard, SCD1-mediated lipid 
desaturation has been found to be a critical determinant of cancer 
cell survival downstream SREBP transcription factors (which 
are regulated by the mTORC1 pathway) (71). In fact, unsatu-
rated lipid deficiency of hypoxic cells has been shown to cause 
cell death by ER stress and activation of the unfolded protein 
response in an mTORC1-dependent manner (72, 73). Another 
important lipid-metabolism-related enzyme is acetyl-CoA syn-
thase 2 (ACSS2). ACSS2 converts acetate to acetyl-CoA, which 
is used as a nutritional source by cancer cells supporting biosyn-
thesis of membrane phospholipids. Moreover, it is an epigenetic 
regulator in histone acetylation. It was also shown that hypoxia 
enhances the expression of ACSS2, which has been related to 
poor prognosis in breast cancer patients (74). The importance of 
lipid metabolism alterations in cancer cells relays not only on the 
role of lipids for biogenesis but also on their capacity to signal. In 
this respect, it has been shown that in human cancer cells as well 
as primary tumors, monoacylglycerol lipase (MAGL) is vastly 
overexpressed. This enzyme regulates a FA network that drives 
oncogenic signaling lipids, which promotes migration, invasion, 
survival, and in vivo tumor growth (75).

As mention before, tumors are glutamine addicted. Cancer cells 
display high rates of glutaminolysis in order to obtain several precur-
sors needed for supporting robust proliferation. In this regard, c-Myc 
has been shown to directly upregulate glutamine-metabolizing 
enzymes, such as glutaminase, which leads to fast integration of 
nitrogens and carbons in the anabolic network (76–78). Interestingly, 
it has been reported that the c-Myc function is directly regulated 
by both HIF-1α and HIF-2α (79, 80). The reductive metabolism of 
glutamine, mediated by IDH1, adds extensively to lipogenesis in 
cancer cells (81) (Figure 4), and which is partially facilitated by an 
increase in PDK1 (53, 82) and c-Myc (76, 83) in a HIF1-dependent 
manner, but it is primarily determined by the relative abundance 
of citrate and α-KG (83, 84). In addition, Kynurenine is another 
oncometabolite, which was defined as a tryptophan metabolite 
made from indoleamine-2,3-dioxygenase (IDO) (85), and known 
for its robust immunosuppressive effects (86) (Figure 4).

In addition to this, metabolic fitness relates to an increased HIF 
signaling in tumor cells, which permits the cancer cells to strive 
better for crucial metabolites, such as glucose and glutamine, 
than the stromal cells (87). This competition for nutrients has 
been demonstrated in the exhaustion of tumor-associated lym-
phocytes, suggesting a metabolic associated immune suppression 
(88, 89).

Tumor Microenvironment
Although tumor cells have been the main subject of study in 
cancer research, stromal cells and infiltrating immune cells 
have gained great interest, over the past years. Furthermore, the 
intriguing crosstalk of tumor cells with the TME or even differ-
ent components of the TME among each other (as introduced 
in the previous section), regulate a vast amount of processes 

during tumor development (3). In this section, we will discuss 
several metabolic adaptations of different cell types of the TME 
(Figure 5).

Stromal Cells
Endothelial Cells (ECs)
Endothelial cells are the best characterized cells of the TME. 
Despite the fact that ECs dispose of immediate access to oxygen 
in the blood, ECs are highly glycolytic, generating up to 85% of 
their ATP via glycolysis. Indeed, their glycolytic rate is compara-
ble to that of cancer cells, and increases even during proliferation 
(90). Rather than acting as a bioenergetic power source, it has 
been reported that through the production of pro-angiogenic 
reactive oxygen species (ROS) mitochondria in ECs have a sign-
aling function (91). In this regard, also the important role of the 
pentose phosphate pathway (PPP) as a weight against oxidative 
stress is noteworthy, as it controls redox homeostasis through 
NADPH production, together with ribose-5-phosphate for 
synthesis of lipids nucleotides and amino acids (92). Although 
glutamine and FA metabolism for ATP production in ECs is still 
under debate, glutaminolysis has been described to be essential 
for EC proliferation, as inhibition of glutaminase induces their 
senescence (93, 94). Also cholesterol synthesis has been shown 
to be crucial for vessel sprouting, as it enables the development of 
lipid rafts required for proper membrane localization and sign-
aling of the VEGF receptors (95). At this point, it is important 
to note that VEGF creates a tip cell signal, required for vessel 
sprouting, a process during which ECs display exclusive patterns 
of cellular metabolism with high rates of glycolysis and reliant on 
FAO for nucleic acid synthesis and proliferation (94, 96). Since 
tip cells are located far from functional vessels, their activity is 
also regulated via the hypoxia pathway (97). In this regard, it 
has been shown that deletion of endothelial HIF-2α enhances 
angiogenesis, although the vessels were more disorganized and 
hypoxic (98, 99). In addition, PHD2+/− mice showed increased 
HIF-α stabilization, and normalization of the endothelium, 
increased oxygenation and reduced secondary metastasis (13). 
On top of this, it has been reported that the HIF subunits have 
opposing roles when it comes to the permeability of the endothe-
lium. HIF-1α deficiency in ECs hampers tumor cell migration 
through endothelial layers, while loss of HIF-2α enhances tumor 
cell migration and metastasis (14). These contrasting effects may 
be directly related to the dramatic differences in inducible nitric 
oxide synthase (iNOS) expression in both deficient lines. In addi-
tion to this, a pro-tumoral “metabolite crosstalk” between EC 
and cancer cells has been reported. In this regard, Boidot et al. 
identified a direct link between the function of p53 and MCT1 
expression, regulating the influx of lactate produced by cancer 
cells into EC (100). Later studies from the same group showed 
that internalized lactate through MCT1 by EC promote tumor 
angiogenesis through PHD2 inhibition, and activating HIF1 
(101, 102). The same mechanism has been reported to trigger 
IκBα degradation, stimulating an autocrine pro-angiogenic 
NFκB/IL-8 pathway, and finally driving cell migration and tube 
formation (103). Furthermore, the receptor tyrosine kinases 
AXL, TIE2, and VEGFR-2 is activated by lactate in order to 
promote angiogenesis (104).
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FigURe 4 | Schematic representation of amino acid metabolism in different cell types. Cancer cells (CCs: orange), cancer-associated fibroblasts (CAFs: brown), 
myeloid-derived suppressor cells (MDSCs: purple), as well as M2 macrophages (blue) show increased expression of arginase, depleting the surrounding 
environment of arginine, which is essential for TCR activation in T cells (green). Ornithine coming from arginase metabolism also dampens T cell activation. Moreover, 
increased expression of indoleamine-2,3-dioxygenase (IDO) in CC and MDSCs favors catabolism of tryptophan into kyneurine, with immune suppressive effects.  
In addition, overexpression of GLS via HIF/c-Myc regulation in CA, CAFs, MDSCs, and endothelial cells (ECs: pink) generates glutamate, which is used to replenish 
intermediates of the TCA cycle, favoring FA synthesis from citrate.
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Fibroblasts
Another important stromal cell of the TME is the CAF. 
The importance of CAFs relies not only on their ability to 
produce growth factors and chemokines regulating other 
stromal cells and cancer cells but also in their capacity to 
modify the extracellular matrix (ECM), facilitating tumor 
angiogenesis and invasiveness (105). CAFs is actually a mix 
of myofibroblast-like cells that ascend different types of cells, 
including fibroblasts, bone-marrow-derived stromal cells, ECs, 
and adipocytes (106–108). Despite their relevance in regulating 
tumor development, studies on the metabolism of CAFs have 
been limited. Interestingly, proliferating fibroblasts produce 
biomass for a next proliferation, while quiescent fibroblasts 
use biomass to replace oxidized lipids and degraded proteins, 
as well as synthesis of ECM proteins. Hypoxia pathway pro-
teins are an important stimulus of this process, since they 
increase the expression of remodeling enzymes leading to 

increased tumor rigorousness and enhanced metastasis (109). 
In this respect, reduced PHD2 activity led to a diminished 
CAF-induced ECM remodeling and diminished metastasis  
(12, 110). Independent of their activation state, healthy 
fibroblasts incorporate glucose carbons in the TCA cycle at 
comparable rates (111). Fibroblasts have also been described 
to replenish intermediates of the TCA by a process known as 
anaplerosis. In particular, anaplerotic flux from pyruvate to 
oxaloacetate via pyruvate carboxylase in quiescent fibroblasts 
ensures continuity of the TCA cycle, whereas proliferating 
fibroblasts primarily use glutamine for anaplerosis. Like cancer 
cells, proliferating fibroblasts rely on PPP for biosynthesis. By 
contrast, quiescent fibroblasts generate NADPH via the PPP, 
which is essential for their survival (111). Moreover, CAFs also 
perform FA synthesis, essential for their proliferation (112). 
Production of ROS by cancer cells inhibits PHD2 (with subse-
quent gain of function of HIF-1α) and enhances NO production 
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FigURe 5 | The tumor microenvironment (TME). This overview summarizes the intricate interactions of the different cells types that constitute the tumor mass. 
Some cancer cells (CC: orange) use glycolysis as main source for energy production (independently of oxygen availability—Warburg effect), excreting lactate and 
leading to acidification of the surrounding area, which finally promotes invasiveness of CC. Other CCs as well as M2 macrophages (blue) and endothelial cells (ECs: 
pink) with access to adequate levels of oxygen use this lactate for oxidative phosphorylation (OxPhos). Lactate in ECs leads to inhibition of PHD and subsequent 
activation of HIF, enhancing expression of VEGF-Rs (among others) and promoting angiogenesis. Uptake of fatty acids (FA) as well as de novo synthesis is used  
for new biomass required for fast CC proliferation. Next to amino acid depletion in the tumor mass by M2 cells, cancer-associated fibroblasts (CAF: brown) and 
myeloid-derived suppressor cells (MDSCs: purple) establish a metabolic competition between pro- and anti-tumor forces present in the TME. The absence of 
nutrients needed for T effector cell activation (Teff: light green) leads to their anergy, with a differentiation shift toward T regulatory cells (Treg: dark green). The  
lack of nutrients leads to activation of the mTOR pathway in CCs and production of VEGF (among others) via HIF regulation, promoting angiogenesis.
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by CAFs. This finally leads to dysfunctional mitochondria that 
are mitophaged, forcing CAFs to rely on glycolysis for ATP 
production, with accompanied increase in lactate production 
(113). High lactate production together with amino acids and 
keton bodies supply cancer cells with high-energy nutrients for 
oxidative metabolism in tumor oxygenated areas (114, 115). 
In addition, loss of HIF-1α in fibroblasts leads to vascular 
normalization, decreases hypoxia but increases breast cancer 
development (116). HIF1α-driven aerobic glycolysis in stromal 
cells supports cancer cell growth via the paracrine production 
of nutrients (such as lactate), which cancer cells can recycle (4, 
102, 117, 118). As we will discuss in the following section, argi-
nases (ArgI and ArgII) are important for immune suppression 
in the tumor, converting l-arginine to ornithine, resulting in 
T cell anergy and reduced anti-tumor response (119). CAFs that 
are localized to hypoxic regions in pancreatic tumors express 
high levels of ArgII, suggesting for CAF-mediated immunosup-
pression (120).

Immune Cells
Although numerous studies have indicated the involvement of 
almost every immune cells type, macrophages have been by far 
the most studied immune cell type during cancer development. 
As mentioned before, the importance of metabolism in regulat-
ing immune cell phenotype and function and its impact during 
tumor development is well known (121). Indeed, during the past 
years, a new field of study has emerged, focusing on the metabo-
lism of the immune system also known as immunometabolism. 
This new area of research studies how changes in cell metabolism 
regulate the immune system during homeostasis as well as dur-
ing inflammatory processes, including tumor-associated inflam-
mation. Indeed, how metabolic changes in immune cells during 
tumor development regulate the contribution of these cells to 
disease progression has been the center of a great number of 
studies. As mentioned before, high levels of glycolysis but ham-
pered angiogenesis inside hypoxic tumor areas can result in near 
glucose depletion and accumulation of waste products such as 
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lactate. Hence, anti-tumoral immune cells infiltrating TME face 
significant metabolic challenges to mount and sustain against the 
tumor. In this regard, T cells have been extensively studied as the 
main force fighting tumor growth, characterized by particular 
metabolic shifts according to their activation state (Figure 5).

T Cells
Resting naïve T  cells require low amounts of glucose, amino 
acids, and FAs to sustain basic energetic and minimal replace-
ment demands. More than 90% of their ATP production comes 
from FAO and OxPhos, whereas glutaminolysis and PPP 
contribute to biosynthesis purposes. Upon activation, T  cells 
increase glucose and glutamine catabolism for nucleotide and 
lipid synthesis that are essential for cell growth, while OxPhos 
for ATP production is maintained (122–125) (Figure 5). Indeed, 
glycolysis has been described to be essential for T  cell effec-
tor functions, since its impairment suppresses proliferation.  
TCR–CD28 co-stimulation triggers the shift from naïve to effector 
T (Teff) cells through PI3K/Akt/mTOR pathway, and activation of 
cMyc and HIF-1α transcription factors. This promotes glycolytic 
gene expression and post-translational modification essential 
to drive aerobic glycolysis and amino acid metabolism in Teff 
cells, while suppressing catabolic FAO for ATP (122, 126–128). 
On the other hand, T regulatory (Treg) cells orchestrate a pro-
tumoral environment by inhibiting effector T cell responses in 
the tumor area. Contrary to Teff, Treg cells rely on both FAO and 
OxPhos for ATP upon activation (127, 129, 130). This metabolic 
state allows Treg cells to survive tumor conditions and exert 
their immunosuppressive effect, whereas anti-tumor effector 
T cells would face impair TCR signaling due to lack of glucose 
(122, 123, 129–131). Indeed, Treg expansion has been linked to 
activation of the nutrient stress sensor AMPK. Thus, when the 
AMP:ATP ratio increases due to the lack of nutrients, AMPK 
favors oxidative catabolic pathways (132). This metabolic shift 
implies that AMPK can immediately impact the balance of Teff 
and Treg cells via mTORC1 inhibition (133). Upon CD3/CD28 
activation, T cells accumulate metabolites involved in anabolic 
pathways increasing FAS (122). In addition, it has been shown 
that mTORC impairment compromise de novo lipid synthesis 
in T cells through induction of the transcription factor SREBP 
(134). The importance of lipid metabolism in T cell biology has 
been also reported at the level of the FAS limiting rate enzyme 
ACC1, which deletion interferes with differentiation of naïve to 
effector T cells (135). However, ACC1 deletion did not affect the 
ability of naïve T cells to proliferate and differentiate into Treg 
(135, 136), suggesting FAS as an important metabolic checkpoint 
during activation-induced differentiation into Teff cells. Similar 
to cancer cells, PI3K–mTOR axis stimulates HIFα activity, down-
stream of the TCR activation (137, 138). Also, IL6 stimulation of 
T cells leads to JAK–STAT pathway increased transcription of HIF 
mRNA (126, 139). As mentioned before, metabolites themselves 
can also act as signaling molecules. In this regard, decreased 
flux through the TCA cycle may lower succinate levels. It has 
indeed been shown that succinate can stabilize HIF-1α, inducing 
transcription of several inflammatory cytokines (32). Although 
there are not many studies on the role of the HIF-pathway in 
T  cells during tumorigenesis, previous studies have reported a 

role for this pathway during T cell-mediated inflammation and 
differentiation (Th17 and Treg balance). Dang et al. reported that 
HIF-1α enhances Th17 differentiation by direct transcriptional 
activation of RORγt, while inducing FoxP3 proteasomal degrada-
tion and dampening Treg differentiation (126). During Th17 cell 
development, glycolysis rate is increased through mTOR–HIF-1α 
signaling induction (127). The tumor protecting or promoting 
role of Th17 is still controversial due to its differently described 
phenotypes [for review, see Ref. (140)].

Moreover, it has been reported that T cell activation is blocked 
due to disruption of the electron transport chain leading to 
impaired mitochondrial ROS production (141). Apart from this, 
the hypoxic environment within the tumor area may protect 
tumor cells from anti-tumor immunity by HIF-1α-dependent 
upregulation of PD-L1 on cancer cells, which inhibits PD-1 
expressing T effector cells (142). Moreover, high lactate levels 
in the tumor area have been shown to suppress the PI3K/Akt/
mTOR pathway inhibiting glycolysis, finally leading to impaired 
T cells (128, 143, 144). Glycolysis inhibition can lead to increase 
expression of PD-1, which is associated with T cell exhaustion 
and non-responsiveness through inhibition of TCR and CD28-
mediated co-stimulation, helping the tumor to escape immune 
surveillance (145). Also tryptophan has gotten attention as a 
limiting amino acid in T cell activation. Tryptophan metabolism 
is mainly regulated by IDO, highly expressed by cancers, and in 
fact correlated with poor prognosis (146) (Figure  4). Using a 
mouse sarcoma model, Chang et al. showed that glucose restricts 
T cells, leading to hampered mTOR activity, glycolytic capacity, 
and INFγ production. The result is enhanced tumor progression. 
Checkpoint blockade using antibodies against CTLA4 PD1 and 
PDL1 restore all previous changes (88). Recent work supports the 
hypothesis that lactic acid blunts the immune response mediated 
by T and NK cells (147).

Macrophages
Historically, macrophages have been classified as M1 (classically 
activated) and M2 (alternatively activated) according to their 
pro- or anti-inflammatory state, respectively. However, more 
recently, the idea of a multidimensional spectrum rather than 
dual macrophage activated states has emerged (148, 149). Since 
specific stimuli induce specific functional outcomes, it is expected 
that different states of polarization present a particular metabo-
lism. M1-phenotyped macrophages are highly glycolytic and 
characterized by an increased induction of the strong glycolytic 
enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 
3 isoform (PFKFB3) (150), conferring them an energetic advan-
tage in hypoxic regions (151). This glycolytic state is mediated 
by the Akt/mTOR/HIF-1α pathway (32) and has been shown to 
induce TNF expression (152). The latter suggests a direct regula-
tion of the inflammatory phenotype of macrophages depending 
on the glycolytic pathway. In relation to their anti-inflammatory 
role, M1 macrophages also use PPP and malic enzyme in order 
to produce high amounts of NO and ROS for killing pathogens, 
as well as NADPH to protect themselves from this high oxidative 
burst (153). On the other hand, M2 macrophages present high 
rates of FAO and OxPhos, with low glycolytic activity due to 
the expression of the weak glycolytic activator PFKFB1 isoform 
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(154, 155) (Figure 2). O’Neill et al. showed that M2 polarization 
upon IL-4 signaling stimulates mitobiogenesis by upregulating 
PGCβ, enhancing the metabolic switch to FAO (155). Also, 
M2 macrophages reduce PPP flux and GSH via induction of 
carbohydrate kinase-like protein (CARKL) (156). Traditionally, 
TAMs have been related to a more M2 anti-inflammatory and 
pro-tumor phenotype. However, the fluctuating levels of lactate 
and oxygen in the heterogeneous tumor mass induce differential 
macrophage responses depending on their functional plasticity 
in tumor. In general, a lactic acid-induced polarization to M2 
has been reported, inducing an immunosuppressive and tissue 
remodeling phenotype. This is characterized by the production 
of VEGF and arginase in a HIF-1α dependent manner (43, 121). 
Also, TAMs respond and adapt to different oxygen levels through 
activation of the HIF pathway. In this regard, it has been shown 
that expression of HIF-1α has a protective role in hypoxic areas, 
since loss of this transcription factor leads to decrease expres-
sion of IL-6, TNF, and iNOS, as well as increased CD206, all of 
them characteristic markers of the M2 phenotype (15, 17). TAMs 
are also characterized by high expression of arginase enzyme 
(induced by the high lactate levels in the TME). This has been 
shown to impair anti-tumor T cell function due to depletion of 
the arginine pool required for NO and protein synthesis leading 
to TCR function impairment (19, 43, 157, 158). Apart from this, 
recent studies have described the importance of iron metabolism 
in macrophage polarization. M1 macrophages express reduced 
levels of ferroportin, the iron transporter, but high levels of 
H-ferritin involved in iron storage, whereas M2 macrophages 
present the opposite profile. Therefore, iron sequestration in M1 
macrophages is believed to restrict both bacterial and tumor 
growth, while M2 macrophages release iron, which promotes 
tissue repair and tumor cell proliferation (159, 160). In addition, 
iron constitutes a cofactor of the PHD enzymes in the hypoxia 
pathway. Therefore, intracellular iron levels directly regulate 
HIF-1α stability crucial for the survival and pro-tumor function 
of TAMs (161). In a tumor setting, TAMs also undergo changes 
in their lipid profile. It has been shown that M-CSF secreted 
from tumor cells leads to enhanced expression of FASN in 
macrophages, which polarize to an IL-10 expressing pro-tumoral 
phenotype (162).

Myeloid-Derived Suppressor Cells (MDSCs)
Another important immune cell type that has recently gained 
great attention is the MDSCs that, as its name indicates, is 
functionally defined by its potent immunosuppressive activity 
in both innate and adaptive immunity. This cell population 
comprises two major subsets: monocytic MDSCs (M-MDSCs) 
and polymorphonuclear MDSCs (PMN-MDSCs) (163). G-CSF 
has been described to play a critical role in differentiating and 
mobilizing bone marrow granulocytic precursors within tumors 
(164); whereas depending on the magnitude and context of the 
stimulus, GM-CSF can induce accumulation of these suppressor 
subsets thereby inhibiting proliferation as well as anti-tumor 
ability of neu-specific T cells (165, 166). In addition, it has been 
shown that IL-4Rα activation through IL-4 and IL-13 exposure 
evokes MDSCs suppressive mechanism in a STAT6-dependent 
manner (167, 168). MDSCs promote immune dysfunction by 

using different mechanisms, either directly via impairment of 
T cell amino acid metabolism or through regulation of oxidative 
stress, which finally interferes with T  cell viability, migration, 
and activation. Also, MDSC are able to indirectly induce other 
immune regulatory cells, such as Treg cells and TAMs (169–171). 
The same as macrophages, MDSCs show high expression of argi-
nase, depleting arginine from the TME essential for TCR activa-
tion and T cell proliferation (172, 173). MDSCs also sequester the 
amino acid cysteine, which is indispensable for T-cell activation 
(174) and expresses IDO enzyme for tryptophan catabolism 
(175, 176). Deprivation of the later has been shown to induce 
expansion of the Treg cell population (177). Combined expres-
sion of nitric oxide synthase, arginase, and NADPH oxidase 
confers MDSC important regulators of oxidative stress in TME 
(178–181). Therefore, presence of RNI (mainly derived from 
M-MDSC), and ROI (mainly from PMN-MDSC) downregulates 
TCR and IL2 receptor signaling, inhibiting T cell activation and 
proliferation (170). In addition to this, MDSCs show enhanced 
FA uptake and high expression of FAO enzymes, accompanied by 
an increased mitochondrial mass and oxygen consumption rate 
(182). Corzo et al. described the role of the hypoxia pathway in 
MDSCs, with HIF-1α as main responsible for MDSC differentia-
tion and function in TME (183). In addition, HIF-1α-mediated 
expression of PD-L1 is essential for mediating MDSC immune 
suppression (as discussed in the previous sections) (184). Also 
hypoxia can enhance MDSC migration to the tumor site via 
HIF-1α-mediated production of chemokines (185, 186). Hypoxia 
also influences seeding of MDSCs in the pre-metastatic niche by 
stimulating increased secretion of lysyl oxidase (187–189). This 
process drives ECM remodeling in the metastatic niche and sup-
presses NK anti-tumor response (188).

Neutrophils
During the past few years, the presence of tumor-associated 
neutrophils (TANs) has gained attention due to their piv-
otal role in tumor development. Indeed, a dual effect has 
been proposed for TANs during onset (190). In this regard, 
Fridlender et al. showed that in the absence of TGFβ, TANs 
encourage Teff response and anti-tumor activity, whereas in 
the presence of TGFβ they exhibit tumor promoting activity 
(191). Neutrophils comprise a significant proportion of the 
inflammatory infiltrate in cancerous lesions and high levels 
of blood neutrophils were observed in patients suffering from 
advanced stage tumors (192). In many cancer types, such as 
bronchoalveolar carcinoma (193), metastatic melanoma (192), 
and andrenal carcinoma (194), neutrophil accumulation was 
associated with increased aggressiveness and poor prognosis 
(195). By contrast, high neutrophil counts in gastric tumors 
correlate with favorable prognosis (196). Since neutrophils 
constitute an already mature population that does not pro-
liferate, possible changes in their metabolism have not been 
studied in depth. Regarding their metabolism, neutrophils are 
strongly committed to glycolysis and PPP, whereas their few 
mitochondria are used for maintenance of the redox balance.  
It has been shown that their high rates of glycolysis are 
necessary for the generation of ATP, in which HIF-1α is criti-
cally involved by regulating the expression of key glycolytic 
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enzymes (197). Apart from its main role in energy metabolism, 
glycolysis has been shown to be essential for some neutrophil 
functions such as oxidative burst and chemotaxis (198). 
Indeed, Thompson et  al. reported that murine HIF-2α defi-
cient inflammatory neutrophils displayed no impairment of 
chemotaxis, phagocytosis, or respiratory burst but elevated 
sensitivity to apoptosis leading to reduced neutrophilic 
inflammation (199). It has also been shown that hypoxia can 
promote neutrophil recruitment by modifying the adherence 
properties of ECs to neutrophils (200). In addition, FAS has 
been reported to have some relevance in neutrophil biology. In 
this regard, Lodhi et al. showed that peroxisomal lipid synthe-
sis drives inflammation by supporting neutrophil membrane 
phospholipid composition as well as viability (201). Another 
important feature of neutrophils is the formation of neutrophil 
extracellular traps (NETs). Brinkmann et al. described for the 
first time that activated neutrophils are able to release their 
chromatin (DNA and histones) loaded with granule enzymes 
forming an extracellular mesh-like structure that can both trap 
and kill extracellular organisms (202). Glucose uptake, glyco-
lysis, and a shift toward PPP have been shown to be essential 
for NETs formation (203, 204). Beyond their bactericidal role, 
NETs has been described to sequester tumor cells and promote 
metastasis (205). Also, association of adhesion molecule and 
cytokines to NETs has been related to cancer-induced organ 
failure (206).

Therapy Perspectives
Regarding tumor therapy, there are different approaches that 
can be used, including targeting of the cancer cells, or switch-
ing the nature of the immune cell to a more anti-tumoral state. 
During the past decade, a lot of attention has been given to try 
and selectively kill the tumor based on their metabolic alterations 
(207, 208). Indeed, increasing evidence supports the idea that 
dysregulated cellular metabolism is connected to drug resistance 
during cancer therapy. Therefore, combining cellular metabolism 
inhibitors with chemotherapeutic drugs constitutes a promising 
strategy to overcome this.

It has also become clear that there is much more the only 
Warburg effect when it comes to the metabolic rearrangements 
associated with malignant transformations. Indeed, there is also 
an increased flux through the PPP, higher rates of glutamine 
consumption and lipid biosynthesis, maintenance of redox 
homeostasis and limited levels of autophagy, at least in the first 
steps of oncogenesis (209–211).

Glycose Metabolism
Due to the high glycolic rate in developing tumors, regulation 
of this pathway in cancer cells has been considerately studied. 
Starting by targeting glucose intake, the GLUT1 inhibitor 
WZb117 has been shown to reduce ATP production and ER 
stress induction in cancer cells, with a synergistic anticancer 
effect in combination with cisplatin or paclitaxel (212). Also, 
under hypoxia conditions, Cao et al. reported that the GLUT1 
inhibitor phloretin significantly enhances anticancer effects of 
the antibiotic daunorubicin, overcoming hypoxia-conferred 
drug resistance (213). In the same line, inhibition of glycolysis 

with 2-DG (glucose analog for hexokinase) in combination with 
radiation or chemotherapy treatments, enhance clinical efficacy 
of the latter (214). A great number of studies have focused on 
the importance that the highly expressed PKM2 enzyme in 
cancer cells has in conferring resistance to therapy (48, 215–217) 
(Figure  2). Inhibition of this last rate-limiting enzyme in the 
glycolytic pathway, increases apoptosis and inhibits proliferation 
during cisplatin (218), and docetaxel (219) treatment. In the last 
step of the glycolytic pathway, LDHA expression and activity has 
been reported to be higher in Taxol-resistant breast cancer cells. 
Inhibition of LDHA by oxamate (a pyruvate analog) in combina-
tion with paclitaxel treatment has shown synergistic effect on 
taxol-resistant cells by promoting apoptosis (220). Regulating 
the shift between glycolysis and TCA, PDK inhibits PDH conver-
sion of pyruvate to acetyl-CoA. Inhibition of PDK3 (functional 
of pyruvate isoform even in high concentration) has shown to 
diminish hypoxia-induced resistance in cervical and colon cancer 
(221, 222).

Recent evidence also indicates that modulation of immu-
nometabolism plays an important role in controlling immune 
responses against cancer progression. Indeed, several studies 
have focused on targeting metabolic pathways to enhance T cell 
function and persistence. One of the most promising is the use of 
PD-1 blocking antibodies to rescue T cell glycolysis and enhance 
Teff functions (223). By contrast, inhibition of mTOR (224, 225) 
or AMPK (226, 227) has been shown to lead to controversial 
results.

Lipid Metabolism
Since proliferation of cells requires the generation of novel 
phospholipid membranes, targeting de novo lipogenesis or 
steroidogenesis would also be a potential anticancer therapy 
approach (68). Several enzymes involved in these synthesis 
pathways, including FASN (228, 229), ACLY (230), ACCs 
(231), choline kinase (232, 233), monoglyceride lipase (75), and 
HMGCR (234) have been ascribed critical roles in oncogenesis 
or tumor progression in vivo, yet have not been tested in clinical 
settings. Indeed, FAS is significantly upregulated and correlates 
with poor prognosis in many types of cancer. Therefore, it is not 
surprising that several FAS inhibitors, such as cerulenin, C75, 
orlistat, C93, or GSL 837149a, have shown anti-tumor activity 
(Figure 3). In addition, the combination of FAS inhibition with 
docetaxel (235), trastuzumab (236), or adriamycin (237) treat-
ment increases therapy sensitivity in breast cancer. Cancer cell 
metabolism is also highly dependent on glutaminolysis. It has 
been shown that glutamine in combination with leucine activates 
mTORC1 by enhancing glutaminolysis and α-ketoglutarate pro-
duction (238). Targeting glutaminolysis by using the mTORC1 
inhibitor rapamycin has been reported to enhance cisplatin treat-
ment in gastric cancer (239). Pharmacological inhibition of FAO 
functions in MDSC, averts immune inhibitory pathways and 
decreases the production of inhibitory cytokines. Consequently, 
blocking FAO postponed tumor growth in a T-cell-dependent 
way, and increased the anti-tumor effect after adoptive T  cell 
treatment (182). COX-2 inhibitors or reducing COX-2 expres-
sion in 3LL cells, obstructed their capacity to induce arginase I 
in MDSC (240).
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Amino Acid Metabolism
Inhibitors of folate metabolism, thymidine and deoxynucleotide 
synthesis and elongation of nucleic acid are the so-called anti-
metabolites and serve as standard chemotherapeutic regimens 
against many human neoplasms (241). Unfortunately, these 
agents are linked to toxicity in bone marrow and intestinal 
epithelium, as these are highly proliferating tissues. Compound 
968 (242) and bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)
ethyl sulfide, two specific GLS inhibitors (243), diminish 
glutamine catabolism and delay tumor growth in models of 
cancer. Targeting glutamate conversion to α-ketoglutarate by 
aminotransferases also diminishes tumor growth (244, 245). 
Replenishing the TCA cycle intermediates by providing sub-
strates, such as glutamine, sustains mitochondrial metabolism 
in tumor cells (63) (Figure 4).

Mitochondria Respiration
Many types of tumor are highly dependent on OxPhos for 
their ATP (246–248). Therefore, these cells are probably sensi-
tive to treatments that reduce mitochondrial ATP production. 
Moreover, inhibiting this mitochondrial ATP production would 
synergize together with approaches that diminish glycolysis, 
including inhibitors of the PI3K signaling pathway (249). It has 
been shown that phenformin (biguanide) inhibits mitochondrial 
complex I and in that way exerts its anti-tumor effects in experi-
mental cancer models (250). Metformin has also antineoplastic 
activity (251). This appears to be independent of glycemia (252) 
and might reflect the ability to preferentially kill cancer stem cells, 
block mitochondrial respiration, intensify glutamine addiction, 
or limit inflammatory responses driving tumor growth (253–
256). Indeed, its action is to specifically inhibit Mitochondrial 

complex 1, which in turn activates AMPK as a consequence of 
ATP decrease (257).

CONCLUSiON

Our understanding of metabolic changes in cancer development 
has improved significantly over the past years. However, the influ-
ence of the hypoxia pathway proteins on the metabolic pathways in 
tumor cells and the TME is still not entirely known. In a vast amount 
of physiological as well as pathological situations, hypoxia-induced 
rewiring permits survival during metabolic stress. Conversely, this 
drives cancer progression, causing enhanced lethality due to resist-
ance to therapy and greater metastatic potential. Therefore, more 
research is necessary to better understand hypoxia-induced altera-
tions in cellular metabolism and eventually target these pathways, 
thereby eliminating malignant cells.
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