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Machine learning modeling of patient
health signals informs long-term survival
on immune checkpoint inhibitor therapy

Gerald J. Sun,1,5,* Gustavo Arango-Argoty,1 Gary J. Doherty,2 Damian E. Bikiel,1 Dejan Pavlovic,3 Allen C. Chen,2

Ross A. Stewart,4 Zhongwu Lai,1 and Etai Jacob1,*

SUMMARY

System-level patient health signals, as captured by treatment-emergent adverse events (TEAEs), might
contain correlates of immune checkpoint inhibitor (ICI) therapy response. Using all TEAEs and a novel ma-
chine learning modeling approach, we derived a composite signature predictive of, and potentially spe-
cific to, the response to the anti-PD-L1 ICI durvalumab in patients with non–small-cell lung cancer
(NSCLC). We trained on data from the durvalumab arm and chemotherapy arm in the MYSTIC clinical trial
and tested on data from four independent durvalumab-containing NSCLC trials using only the first
60 days’ TEAEs. We directly compared our signature performance against that of three different defini-
tions of immune-related adverse events. Only our signaturewas predictive and identified longer survivors
in patients treated with durvalumab but not in patients treated with chemotherapy or placebo. It also
identified durvalumab-treated long survivors with stable disease at their first RECIST evaluation and a
set of PD-L1-negative long survivors.

INTRODUCTION

The advent of immune checkpoint inhibitor (ICI) therapy has led to notable successes in the treatment of a number of cancer types. Neverthe-

less, we have yet to achieve a complete understanding of the factors contributing to favorable long-term prognosis in patients receiving ICI

therapy. This knowledge gap is partly due to the indirect nature of ICIs, which act through the immune system and so are subject to a much

broader range of response modifiers than, for example, a tumor cell–targeted therapy. Investigations into ICI response drivers to date have

focused primarily on molecular profiling and assessment of the tumor immune microenvironment. In this regard, the expression of pro-

grammed cell death 1 ligand (PD-L1) on tumors or in the tumor immunemicroenvironment has been found to at least partly predict response

to anti–PD-(L)1 therapies,1,2 as do molecular features associated with the increased presence of neoantigens2–5 (e.g., tumor mutational

burden ormicrosatellite instability). However, none of thesemarkers provide optimal predictive valuewith respect to response to ICI therapy.6

We hypothesized that system-level patient health signals, including those related to immune system function, might also contain correlates of

ICI response. Contemporaneous reporting of adverse events (AEs) provides a surrogate for on-treatment patient health in real time. Although

on-treatment patient health signals cannot inform decisions regarding the initiation of ICI treatment, they could provide added prognosti-

cation value. Further, they could potentially be integrated into future clinical trial designs to help clarify treatment decisions (e.g., switching

or intensifying therapy) in patients who are unlikely to benefit.

Previous work has examined a specific subset of TEAEs, immune-related AEs (irAEs), in the context of predicting ICI treatment outcomes,

but findings have been equivocal.7,8 Identifying bona fide irAEs is a complex and often subjective process, and irAE reporting practices lack

standardization.9,10 Clinicians must weigh imperfect evidence and exclude alternate etiologies. In particular, for open-label clinical studies,

clinicians must also guard against preferentially reporting irAEs in the ICI treatment arms. In addition, despite numerous published studies

finding that irAEs are associated with ICI efficacy, few correctly account for the critical confounder that longer-surviving individuals have a

greater risk of developing an irAE, i.e., survivorship or immortal time bias.11–14 Finally, few studies have examined whether irAE relation to

efficacy is specific to ICIs and not merely prognostic, irrespective of treatment.15–18

We hypothesized that a combination of AEs, which may include but is not limited to irAEs, can predict whether an individual patient will

survive longer on ICI treatment than on chemotherapy or placebo treatment, and in a manner that can be generalized, at least within an indi-

cation. Given the aforementioned limitations of prior work, we took an unbiased modeling approach, using all reported TEAEs in a
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representative late-stage randomized controlled phase 3 clinical trial of ICIs in first-line metastatic non-small-cell lung cancer (NSCLC), the

MYSTIC trial (NCT02453282).19 We leveraged our recently developed predictive biomarker modeling framework (PBMF)20 to find a signature

that specifically reports on favorable long-term prognosis for anti-PD-L1 therapy (durvalumab) but not chemotherapy. Based on these ana-

lyses, we show that patient health signals may indeed contain information related to overall survival (OS) in a manner specific to durvalumab

within the examined cohorts. Specifically, we provide proof of concept that a composite signature derived from early TEAEs can provide

added prognostication value for ICI therapy beyond that provided by PD-L1 status and that the signature may be assessable before first

on-treatment tumor imaging.

RESULTS

Unbiased modeling of adverse events to enrich for patients with non-small-cell lung cancer most likely to benefit from anti-

programmed cell death ligand 1 therapy over chemotherapy or placebo

To determinewhether system-level patient health signals contained correlates of ICI response, we leveraged the contemporaneous reporting

of AEs as a surrogate for on-treatment, real-time patient health. To avoid bias in our analysis, we used all on-treatment AE and OS data from

the durvalumabmonotherapy and chemotherapy arms of theMYSTIC trial to train amodel with our recently developed PBMF (Figure 1A).19,20

To evaluate themodel’s performance, we controlled for immortal time bias by performing a landmark analysis with a landmark time of 60 days.

Only AEs that occurredbefore 60 days were considered, and only patients who survived at least 60 days were included. A 60-day landmark was

chosen because we wanted a readout proximal to the first tumor imaging assessment.

We verified that our model enriched for longer survivors only for durvalumab treatment in 60-day–landmarked data from the MYSTIC trial

(Figures 1B and 1E). We then used our model to compute an AE signature on four durvalumab-treatedNSCLC patient cohorts landmarked at

60 days that were not seen by the model during training (Figures 1C–1E; Table S1). Although the trial-level AE signature association with sur-

vival varied, we observed a clear trend of longer survival times for patients receiving durvalumab treatment but not those receiving chemo-

therapy or placebo. This trend was also reflected in a patient-level meta-analysis across all test datasets (durvalumab meta-HR = 0.83, 95%

CI = 0.71–0.97; chemotherapy or placebo meta-HR = 1.02, 95% CI = 0.78–1.34; Figure 1F).

Given the extensive literature associating irAEs, a special subset of AEs, with ICI survival outcomes,7,8 we also examinedwhether having an

irAE conferred anOS benefit. Examination of these data without controlling for immortal time bias led to a strong association between having

an irAE and surviving longer (Figures 1A and S1A). In contrast, landmarked data showed no association between irAE status and survival (dur-

valumab trial-reported irAEmeta-HR= 1.06, 95%CI = 0.83–1.35; Figures 1F and S1B). An association was found only after landmarking at later

times (e.g., 6 months; Figure S1B). A similar lack of association or specificity to ICI treatment was observed with two alternative definitions of

irAEs (durvalumab investigator-reported irAE meta-HR = 1.00, 95% CI = 0.78–1.29; durvalumab adverse event of special interest meta-HR =

0.90, 95% CI = 0.77–1.06; chemotherapy or placebo adverse event of special interest meta-HR = 0.92, 95% CI = 0.68–1.25; Figure 1F).

The improved ability of the AE signature over irAE to identify longer survivors on durvalumab was not a result of enriching for a subset of

irAE-positive patients, as the numbers of patients with AE sig+ was more than double that of patients with irAE+ (66 sig+ vs. 22 irAE+ for the

MYSTIC trial; 159 sig+ vs. 75 irAE+ for the PACIFIC trial). Together, these results suggest that although irAEs are not robustly associated with

survival outcomes, unbiased modeling of all on-treatment AEs can be informative, albeit modestly, of survival outcomes specific to durvalu-

mab therapy.

Adverse event signature identifies long surviving patients that are programmed cell death ligand 1 negative or have stable

disease at first tumor imaging assessment

The encouraging trend for longer OS specific to durvalumab treatment led us to explore how the signature associates with other established

predictors andmeasures of response. Multiple clinical studies have demonstrated an association of PD-L1 status with outcome after ICI treat-

ment,21 consistent with PD-L1 being a known predictive biomarker for anti-PD-1 and anti-PD-L1 therapy. Interestingly, the AE signature

tended to enrich for longer OS in patients with tumors with PD-L1 tumor cell expression <1% (PD-L1 <1%) who were treated with durvalumab

(meta-HR = 0.82, 95% CI = 0.58–1.15), but not those treated with chemotherapy or placebo (meta-HR = 1.37, 95% CI = 0.73–2.60; Figures 2A

and 2C). In contrast, within the cohort of patients with tumors with PD-L1 tumor cell expression R1% (PD-L1 R1%), AE signature status

appeared to be prognostic for OS (Figures 2B and 2D).

Figure 1. Generation and evaluation of a machine learning-derived adverse event signature (AE signature)

(A) Analysis workflow diagram contrasting the use of irAEs versus the AE signature derived with our machine learning framework, the PBMF.

(B) Kaplan-Meier plots for OS, per treatment arm and signature class, for MYSTIC trial data landmarked at 60 days.

(C) Kaplan-Meier plots for OS, per treatment arm and signature class, for PACIFIC trial data landmarked at 60 days.

(D) Kaplan-Meier plots for OS, per treatment arm and signature class, for ARCTIC trial data landmarked at 60 days.

(E) Point estimates and 95% confidence intervals for hazard ratios (Cox proportional hazards regression model) with machine learning (ML) AE signature class as

the only covariate, computed per treatment arm, per trial, after AE and OS data were landmarked at 60 days.

(F) Point estimates and 95% confidence intervals for hazard ratios (patient-level meta-analysis; Cox proportional hazards regressionmodel with random effects for

trial, indication, and treatment; fixed effects for signature class, age, sex, race, geographical region, tumor stage, and histology), after AE and OS data were

landmarked at 60 days (excluding training data), and by signature or one of the three different definitions of an irAE. Chemo, chemotherapy; HR, hazard

ratio; sig, ML AE signature.
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Examination of progression-free survival (PFS) in the context of PD-L1 expression revealed that the AE signature did not affect survival

outcomes in any PD-L1 subgroup (Figures S2A and S2B). In general, despite its association with longer OS, we observed no clear enrichment

of longer PFS with the AE signature (Figure S2C). To understand the difference between OS and PFS within AE signature groups and in rela-

tion to PD-L1 status, we examined the disease control rate. We observed a slight trend for improved disease control rate in the PD-L1 <1%

patient groups who were AE sig+ compared with AE sig– (Figure S3).

During treatment, patients undergo longitudinal tumor imaging to determine whether lesions have changed over time, according to stan-

dard schedules and ad hoc as required, often using RECIST (version 1.1) to assess treatment efficacy.22 However, many patients may have

stable disease (SD) per RECIST 1.1, including during early treatment cycles. Therefore, we next asked whether the AE signature could provide

added value over tumor imaging alone. Across all cohorts, most patients were assessed as having SD (according to RECIST v1.1) at their first

tumor imaging assessment, which was scheduled for 6 or 8 weeks after treatment start, depending on the trial. We examined our 60-day–

landmarked AE signatures for their association with OS, segregated by first RECIST evaluation (SD, complete response [CR]/partial response

[PR], and progressive disease [PD]). Across each clinical trial and only within the cohorts with SD, we observed a modest association with sur-

vival outcomes specific to durvalumab; a patient-level meta-analysis confirmed this association with OS, consistent with that observed in our

original 60-day landmark analysis (durvalumabmeta-HR= 0.81, 95%CI = 0.65–1.02; chemotherapy or placebometa-HR= 1.37, 95%CI = 0.94–

1.98; Figure 2E). No association between AE signature status and OS was observed in patients with CR or PR (durvalumab meta-HR = 0.84,

95% CI = 0.46–1.54; Figure 2F). Taken together, our data suggest that the AE signature could potentially help inform prognosis for patients

with PD-L1 <1% tumors and SD after initial radiographic evaluations.

Efficacy signal of the adverse event signature is driven by highly prevalent and quantifiable events

Having established how the AE signature was related to, but distinct from, known correlates of ICI efficacy or prognosis, we sought to under-

stand the features thatmade up the signature and how the signature used the features to score and stratify patients.We hypothesized that AE

prevalence in the MYSTIC training dataset may contribute significantly to the biomarker. Indeed, when a new model was trained using only

AEs with a prevalence of at least �1% (n = 132), the model performed similarly to or better than the model trained on all AEs (Figure 3A;

Table S2). Further examination of these AEs revealed that most could be quantitatively measured (i.e., ‘‘high diagnostic certainty’’; 54/132;

e.g., lipase increased), followed by those diagnosed by a medical professional (i.e., ‘‘medium diagnostic certainty’’; 41/132; e.g., colitis),

and finally, those often qualitatively reported (i.e., ‘‘low diagnostic certainty’’; 37/132; e.g., confusion). When further stratified by these three

categories of diagnostic certainty (high, medium, and low) via training a model exclusively on features from a given category, patients were

most robustly stratified by AEs that had high diagnostic certainty (durvalumabmeta-HR = 0.79, 95% CI = 0.67–0.92; chemotherapy or placebo

meta-HR = 0.95, 95% CI = 0.72–1.24; Figure 3A; Table S2).

Using gradient-based neural network interpretability methods, we next examined the set of AE features that contributed most to model

predictions (Figure 3B). By examining the sign of the gradient for eachAE, wewere able to determine howeach eventmay have contributed to

AE signature positivity (positive gradient) or negativity (negative gradient). Many of the highest-magnitude, positive-gradient, highest-prev-

alence AEs are known irAEs, such as hypothyroidism and adrenal insufficiency; others may potentially be related to underlying irAEs, such as

hyperglycemia and its relation to the irAE type 1 diabetes. AEs with negative gradients are those that may be manifestations of an overex-

tended immune system (leukocytosis, delirium, C-reactive protein) or poor health, including poor hepatic function (edema, pleural effusion,

increased gamma-glutamyltransferase). The model and AE signature may therefore capture two unique aspects not accounted for by con-

ventional irAE classification: (1) AEs thatmay be symptoms of or precede an irAE (e.g., hyperglycemia in type 1 diabetes) and (2) an individual’s

overall health status.

To further explore this notion, we examined a representative neural network from our model’s ensemble of two hidden-layer neural net-

works. Specifically, we directly examined the learned weights among the input feature space, the hidden units, and the output prediction

layer. Filtering to only the highest-magnitude weights (|weight| > 0.1), i.e., those that most probably influence the output prediction, we found

that the network was dominated by a single unit at each hidden layer (Figure 3C). These units made use of a combination of AEs, some of

which are known or related to irAEs, to push toward a higher signature score. These units simultaneously used a different set of AEs,

some of which appear to be related to overall patient well-being, to drive toward a lower signature score.

Adverse event signature may generalize to immune checkpoint inhibitor combinations

To understand the potential applicability of our signature and modeling approach to ICI therapies beyond anti–PD-L1, we examined the

durvalumab + tremelimumab combination arm of the MYSTIC trial. This combination arm was not seen by the model during training, and

Figure 2. Evaluation of AE signature in the context of PD-L1 status and tumor response to therapy

(A and B) Kaplan-Meier plots for OS, per treatment arm and sig class, for ARCTIC trial data landmarked at 60 days for (A) PD-L1 <1% and (B) PD-L1 R1%.

(C–F) Point estimates and 95% confidence intervals for hazard ratios (Cox proportional hazards regressionmodel) withMLAE signature class as the only covariate,

computed per treatment arm, per trial, after AE and OS data were landmarked at 60 days. Boxed in purple is a patient-level meta-analysis (NSCLC only and

excluding MYSTIC training data) Cox proportional hazards regression model with random effects for trial, indication, treatment, and fixed effects for

signature class, age, sex, race, geographical region, tumor stage, and histology. (C) Patients with <1% PD-L1 tumor cells. (D) Patients with R1% PD-L1 tumor

cells. (E) Patients with SD at their first RECIST evaluation. (F) Patients with CR or PR at their first RECIST evaluation. Chemo, chemotherapy; HR, hazard ratio;

sig, ML AE signature.
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our signature still enriched for longer survivors within it (HR = 0.76, 95%CI = 0.57–1.0; Figure 4). This result further supports the notion that our

signature captures a bona fide signal.

DISCUSSION

We conducted a retrospective analysis across three late-stage randomized, controlled, prospective clinical trials (MYSTIC [NCT02453282],

PACIFIC [NCT02125461], and ARCTIC [NCT02453282]) and two additional early-phase trials (ATLANTIC [NCT02087423] and CD1108

[NCT01693562]) to determine whether system-level patient health signals correlate with ICI response. An AE signature was derived that en-

riched for longerOS outcomes with durvalumabmonotherapy over chemotherapy in patients with late-stagemetastatic NSCLC from a single

trial, MYSTIC. We examined the generalizability of the signature across test datasets that our model was not trained on: four independent

NSCLC studies (two phase 3 randomized controlled trials) for durvalumab monotherapy, as well as a durvalumab + tremelimumab combina-

tion arm (from MYSTIC). The results of our work suggest that a set of early (within 60 days) TEAEs could be predictive of improved survival

outcomes for ICI therapy only, while not being merely prognostic across all treatments within the same cohorts.

Contrary to many published reports,13,23–25 our results demonstrate that irAEs are not likely to be predictive of ICI therapy, at least within

time scales likely to be relevant to inform clinical practice or future clinical trials. This is probably due in large part to insufficient appreciation of

A

C

B

Figure 3. Examination of what features are important for scoring the AE signature

(A) Point estimates and 95% confidence intervals for hazard ratios (patient-levelmeta-analysis; Cox proportional hazards regressionmodel with randomeffects for

trial, indication, treatment; fixed effects for signature class, age, sex, race, geographical region, tumor stage, and histology) after AE and OS data were

landmarked at 60 days (excluding training data). Meta-analysis was run based on predictions from a model trained with only high-prevalence AEs or a subset

of high-prevalence AEs based on their diagnostic certainty.

(B) Top 20 positive and negative gradients, ordered by magnitude; gradients are shown only from high-prevalence AEs.

(C) Representative neural network model from the PBMF ensemble. A sub-network is shown as follows: only the input features with associated |weight| > 0.1| are

shown; only the hidden layer neurons with |weight| > 0.1| fanning in and out are shown. Chemo, chemotherapy; HR, hazard ratio; sig, ML AE signature.
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immortal time bias. We found that a 180-day landmark was required for irAEs to be predictive of durvalumab efficacy, whereas efficacy would

likely be known sooner via othermeans, such as radiological examination.Most published literature has examined irAEs only in the absence of

a comparator, non-ICI arm, and thus it is uncertain as to whether irAEs aremerely prognostic. In this work, we included analyses from random-

ized controlled trials and determined that irAEs are either poorly associated with survival outcomes or not specific to ICI therapy, at least

within the disease scenarios investigated. In contrast, our unbiased modeling approach searched for signal amongst all TEAEs rather than

the subset of signal captured by various irAE definitions. With this approach, we successfully isolated an AE signature that may be predictive,

at least for NSCLC. The efficacy signal of the AE signature is modest and may therefore highlight the limits of signal that can reasonably be

extracted from AE data.

Althoughpre-treatment expression of PD-L1 on tumor cells has been validated as a predictor of response to anti-PD-(L)1 ICIs, patients with

PD-L1–negative tumors can still respond to such treatments.26 Our AE signature tended to enrich for longer OS in patients with PD-L1 <1%

tumors in a manner that was specific to durvalumab therapy, whereas it was mostly prognostic in patients with PD-L1 R1% tumors. Further

work is required to validate our observation, especially given that only a subset of patients was evaluated for PD-L1 status in our cohorts.

Nonetheless, together with recent findings that anti-CTLA-4 combinations with anti–PD-(L)1 therapy may improve survival outcomes in pa-

tients with PD-L1 <1% disease,27,28 our results could help inform decisions for patients on whether to receive ICI therapy.

Our AE signature tended to enrich for longer survivors among those with SD at their first RECIST evaluation. Although we cannot rule out

that some patients may have been undetected responders, our analysis showed no added value of our AE signature in patients with CR or PR.

This result suggests that such patients are not likely to bias results in favor of the AE signature. Further, our examination of how the AE signa-

ture enriches for OS but not PFS outcomes highlights the notion that we may be finding a set of long-surviving yet non-responding patients.

Our AE signature relies on the most prevalent, quantifiably measurable AEs within the training data. This is reassuring, as it suggests that

commonly observed,mostly objective dimensions of patient health (i.e., those less biased by human interpretation) do contain correlates of ICI

response, rather than rare or qualitatively assessed events. Fromour examination of features contributing to theAE signature score, we see how

different AEsmay reflectmultiple dimensions of patient health topush towardor pull away from sig+ status. This observation highlights howour

modeling approach found not only what AEs are related to ICI response, but also how they should be combined. This might explain in part why

irAE definitions did not robustly correlate with ICI responses since they only captured AEs along narrower dimensions of patient health.

Future work will be needed to validate whether our modeling approach can be generalized to other ICI therapies, such as anti-PD-1, anti-

CTLA-4, combinations, and bispecifics, as well as to other indications. Our finding that the AE signature generalized to the anti-PD-L1 and

anti-CTLA-4 combination arm in the MYSTIC trial is therefore promising. Interestingly, although our signature was trained on first-line durva-

lumab data from theMYSTIC trial, it appeared to generalize to the post-chemoradiation therapy setting of the PACIFIC trial, as well as to the

later-line setting of the ARCTIC trial.29 In sum, the findings of our study highlight the potential future utility of studying signatures of patient

health to guide ICI treatment decision-making for patients facing uncertainty in prognosis, and the results warrant prospective validation.

Figure 4. Evaluation of AE signature on ICI combination therapy not seen by the model during training

Kaplan-Meier plots for OS, per treatment arm (durvalumab + tremelimumab vs. chemotherapy) and signature class, for MYSTIC trial data landmarked at 60 days.

sig, ML AE signature.
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Limitations of the study

In the context of patient safety, our list of AEs contributing to the signature score should be interpreted with care. The list only serves to un-

derstand the biological signal. The gradients shown here are averages across all datasets and subjects and are not meant to suggest that a

given patient will have all the listed AEs, or that a patient should desire to have some AEs over others, or AEs in general. Similarly, the repre-

sentative model in our ensemble should not be interpreted as a list of AEs that were observed in a single patient or a list that is representative

of the types of safety signals for durvalumab.

Different indications may have different safety signals; the AE profile characterized in the present study might be relevant only to specific

stages of NSCLC. Our analyses were performed exclusively in patients with locally advanced/advanced-stage NSCLC. There may also be

biases or omissions in TEAE reporting, such as those due to the open-label nature of most of the examined trials. Finally, a limitation of

our landmarking approach is that patients surviving less than 60 days were not considered.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Gerald Sun (gerald.sun@

astrazeneca.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The AstraZeneca group of companies allows researchers to submit a request to access anonymized patient-level clinical data, aggregated

clinical or genomics data (when available), and/or anonymized clinical study documents through the Vivli (https://vivli.org) web-based

data request platform, in accordance with AstraZeneca’s clinical data access policy: https://www.astrazenecaclinicaltrials.com/our-

transparency-commitments.

All original code is available in this paper’s supplemental information.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clinical trial cohorts

Trial-specific study designs, including age, sex, gender, ancestry, race, ethnicity, and socioeconomic status, can be found in the publications

listed in Table S3. We examined data from three randomized controlled phase 3 trials (MYSTIC, NCT02453282; PACIFIC, NCT02125461;

ARCTIC, NCT02453282) and two phase 1/2 trials (ATLANTIC, NCT02087423; CD1108, NCT01693562). Total sample numbers may differ

from those officially reported in trials because we conducted our analysis in the actual arm assigned, not in the intent-to-treat population

(where applicable). All protocols and amendments for all studies were approved by the Institutional Review Boards or Ethics Committees

of the participating centers, and all patients provided written informed consent.

METHOD DETAILS

Immune-related adverse event reporting

Trial-specific study designs can be found in the publications listed in Table S3. Trials examined in the present study had irAEs reported in two

ways: directly by a given trial investigator (‘investigator-reported irAE’), and via independent centralized adjudication (‘trial-reported irAE’).

Only the latter represents the official set of irAEs reported for each trial (e.g., for regulatory authorities). Treatment emergent adverse events

can also be manually triaged into putative irAEs using a proprietary list of curated ‘adverse events of special interest’.

Predictive biomarker modeling framework: Model specification and training

The complete formulation of the PBMF is described in Arango et al.20 Briefly, the PBMF utilizes a neural network model ensemble with a

custom loss function that seeks to maximize the difference in target outcome between subgroups with different treatments. The PBMF

uses as input time-to-event data with censoring, a treatment label, and a feature matrix (n patients by f features). Through model training,

the PBMF learns to use a potentially nonlinear combination of input features to output a signature score, whereby signature-positive patients

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Lifelines https://lifelines.readthedocs.io/ Version 0.26.0

RRID:SCR_024899

coxme: Mixed Effects Cox Models https://CRAN.R-project.org/package=coxme Version 2.2–16

https://doi.org/10.32614/CRAN.package.coxme

Tensorflow Keras https://www.tensorflow.org/ Version 2.6.0

RRID:SCR_016345

Predictive biomarker modeling

framework (PBMF)

https://www.medrxiv.org/content/

10.1101/2024.01.31.24302104v1

https://doi.org/10.1101/2024.01.31.24302104
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(sig+; defined as a score of >0.5) survive longer for only one treatment (e.g., durvalumab) but not the other (e.g., chemotherapy). The PBMF

model for the AE signature was trained using OS and only on data from the MYSTIC clinical trial and from patients treated with durvalumab

monotherapy or chemotherapy. The feature matrix consisted exclusively of unique adverse events observed in the training data, where each

value in the matrix was 1 or 0, corresponding to whether the AE was observed for the patient at any point after the start of treatment.

Unless otherwise specified, each model (n = 100) in the reported PBMF ensemble for the AE signature used a neural network with two

hidden layers, each with 32 units. Hidden layers were initialized with ‘‘glorot_uniform’’ weights and ‘‘zeros’’ for bias and utilized ‘‘relu’’ activa-

tion and L1 regularization set to 0.0001. Models were specified, trained, and evaluated with Tensorflow Keras. Models were trained for 2000

epochs with batch gradient descent and the ‘‘adam’’ optimizer with a learning rate of 0.01.

Contrary to what is reported in the original trial design, we usedOS data from theMYSTIC trial relative to the treatment start date, not the

randomization date. The samewas done for all other randomized controlled trials used in the present study. The treatment label used was the

actual treatment given, rather than the assigned treatment, and thus we did not perform our analysis in the intent-to-treat population. AEs

were also subsetted only to those that occurred after treatment start. For training the PBMF model with MYSTIC data, the AE feature matrix

consisted of the 1036 unique AEs reported on-treatment. Patients who did not experience at least one AE were excluded. This yielded a final

training matrix of 721 patients for 1036 AE features.

Because different clinical trials may report slightly different sets of AEs, all test data AEs were aligned to the 1036 training data AEs by a

‘‘left join.’’ That is, for a given test dataset, we discarded the AEs that did not overlap with the 1036 training set AEs and only added nonzero

feature values for those AEs for which there were data in the test dataset.

Landmark analysis and model evaluation

To control for immortal time bias, we performed landmark analysis.11 For each cohort, we chose the same landmark day (day 60), assessed

survival after that landmark day, and, importantly, considered only AEs up to but not beyond the landmark day. Subsetting to only those pa-

tients who were still alive at the landmark day would have been insufficient to control for immortal time bias.

Landmarking resulted in much fewer AEs being available to assess but was critical to the validity of the landmark analysis. For this reason,

although we evaluated the performance (of the trained PBMF model, or any of the three irAE definitions) only on landmarked data, we fit the

PBMFmodel to all on-treatment AEs, without landmarking.We reasoned that AEs can present either randomly or, in the case of those already

implicated as putative irAEs, across a known, large window of time.30 In this case, we wanted our model to have the maximum information to

learn a predictive signature against a background of potential noise and prognostic signatures.

First Response Evaluation Criteria in Solid Tumors (RECIST) evaluations were taken as themost recent evaluations between treatment start

and halfway between the scheduled time for first and second evaluations. For instance, evaluations were scheduled every 8 weeks for the

PACIFIC clinical trial [NCT02125461], and the most recent evaluation occurring before 12 weeks was taken as the first RECIST evaluation.

The model was still landmarked to 60 days, irrespective of when the RECIST evaluation occurred. This allowed for a fair comparison

across trials.

Model interpretation: Ablation experiments and feature importance

Ablation experiments were carried out to assess how subsets of features affect the score outputted from the model. We trained a new PBMF

model with training data subsetted only to those features that passed specified criteria. After training a new PBMF model with training data

subsetted only to those features that passed specified criteria, we evaluated the new PBMF model on test datasets that were aligned to the

subsetted training data. Test dataset AEs were aligned to the subsetted training AEs by a ‘‘left join.’’

Wemanually annotated the AEs with >1% prevalence into one of three classes—low, medium, and high—corresponding to how well they

could be objectively and quantifiably measured (Table S2). This assessment was made in collaboration with internal experts specializing in

patient safety and AE reporting for durvalumab. The threshold of 1% prevalence (among the MYSTIC trial training data) for the prevalence

ablation experiments was determined semi-empirically by balancing the stratification performance degradation with the number of excluded

AEs as evaluated on our training data landmarked at 60 days. We chose 1% because it led to almost no change in stratification performance

but allowed removal of �85% of the AE features. Stratification would still degrade minimally with further filtering, although with diminishing

returns on the number of low-prevalence AEs excluded (data not shown).

AE feature importance was derived by computing neural network gradients for each AE feature across all the 60-day landmarked NSCLC

durvalumab monotherapy versus chemotherapy/placebo datasets and reported as the average across all samples. Computing these gradi-

ents for each model in the ensemble then generated an empirical distribution. To rank AE features by importance, we computed the neural

network gradients as

GradientðxÞ =
vS

vx

where x is the input feature vector of AEs from a given sample and S is the output prediction score.
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QUANTIFICATION AND STATISTICAL ANALYSIS

To obtain hazard ratios and 95% confidence intervals that were computed separately for each dataset, we fit a Cox proportional hazards

regression model (lifelines Python package, https://lifelines.readthedocs.io/) to the time-to-event data, with only the binarized AE signature

groupmembership (1 or 0) as a feature. For meta-analyses, we fit a mixed-effects Cox proportional hazards regressionmodel (Coxme R pack-

age, https://CRAN.R-project.org/package=coxme) with random effects for trial, indication, and treatment and fixed effects for age, sex, race,

geographical region, tumor stage, and histology. C-index was computed, per treatment arm, using the AE signature score or the binary class

for irAE status (lifelines Python package).
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