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Abstract: Recently, the total variation (TV) algorithm has been used for noise reduction distribution
in degraded nuclear medicine images. To acquire positron emission tomography (PET) to correct
the attenuation region in the PET/magnetic resonance (MR) system, the MR Dixon pulse sequence,
which is based on controlled aliasing in parallel imaging, results from higher acceleration (CAIPI;
MR-ACDixon-CAIPI) and generalized autocalibrating partially parallel acquisition (GRAPPA; MR-
ACDixon-GRAPPA) algorithms are used. Therefore, this study aimed to evaluate the image performance
of the TV noise reduction algorithm for PET/MR images using the Jaszczak phantom by injecting 18F
radioisotopes with PET/MR, which is called mMR (Siemens, Germany), compared with conventional
noise-reduction techniques such as Wiener and median filters. The contrast-to-noise (CNR) and coef-
ficient of variation (COV) were used for quantitative analysis. Based on the results, PET images with
the TV algorithm were improved by approximately 7.6% for CNR and decreased by approximately
20.0% for COV compared with conventional noise-reduction techniques. In particular, the image
quality for the MR-ACDixon-CAIPI PET image was better than that of the MR-ACDixon-GRAPPA PET
image. In conclusion, the TV noise-reduction algorithm is efficient for improving the PET image
quality in PET/MR systems.

Keywords: positron emission tomography (PET)/magnetic resonance (MR); total variation (TV);
noise-reduction algorithm; attenuation correction; nuclear medicine

1. Introduction

Medical imaging in nuclear medicine plays an important role in acquiring functional
information about patients using positron emission tomography (PET) with various ra-
dioisotopes [1,2]. In addition, the development of hybrid scanners, that is, PET/computed
tomography (CT) or PET/magnetic resonance (MR), is helpful in obtaining functional and
anatomic information simultaneously. Integrated PET/MR images have advantages over
PET/CT images with respect to the reduction of radiation exposure and superior soft-tissue
imaging [3,4].

Originally, a PET/MR scanner was developed by separating PET and MR based on
sequential imaging because the magnetic fields use in MR distort the gamma signal [5].
Furthermore, the MR magnetic field can interrupt the normal operation of the photomulti-
plier tube (PMT) and cause artifacts related to eddy currents [6,7]. However, integrated
PET/MR, which combines both PET and MR scanners, has been achieved by replacing
the PMTs with avalanche photodiodes (APDs) [8,9]. In addition, PET and MR scans are
available simultaneously. Torigian et al. reported that integrated PET/MR imaging is more
powerful than PET, PET/CT, or MRI alone [10].

The principle of gamma-ray detection in PET is that two annihilation radiations
produced between positrons and electrons are detected by a scintillation detector [11].
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However, signal loss occurs during the process of gamma ray detection because of atten-
uation or scattering effects. To overcome this problem, attenuation correction (AC) for
PET/CT, which is called CT-based PET imaging, is performed by applying a suitable AC
coefficient using the Hounsfield unit value at 511 keV [12,13]. In PET/MR, AC is performed
by applying various MR pulse sequences. In general, the Dixon pulse sequence is applied
to the AC (MR-ACDixon) [14–20]. The MR-ACDixon pulse sequence assigns the attenuation
coefficient to soft tissue by dividing it into four categories: background, fat, lungs, and
soft tissue [14,15]. To improve the image quality of MR-based PET images based on the
MR-ACDixon pulse sequence, the generalized autocalibrating partially parallel acquisition
(GRAPPA) algorithm (MR-ACDixon-GRAPPA) is used as the acceleration factor [16]. The
MR-ACDixon-GRAPPA pulse sequence accelerates the acquisition of MR data by acquiring
several k-space values and compensating them to approximate values to achieve a short
acquisition time [17]. In addition, the MR-ACDixon-GRAPPA pulse sequence is expanded by
applying controlled aliasing in parallel imaging, resulting in a higher acceleration (CAIPIR-
INHA) algorithm (MR-ACDixon-GAIPI) [18]. The MR-ACDixon-GAIPI pulse sequence features
a high resolution for breath-hold MR imaging because of the shorter acquisition time
(9 s/bed) compared with the PET image-based MR-ACDixon-GRAPPA pulse sequence [19].
Consequently, the AC process using various MR-AC pulse sequences (MR-ACDixon-GRAPPA
and MR-ACDixon-GAIPI) is necessary to improve the PET image quality.

In addition, noise occurs in nuclear medicine images because of a poor photon
count [21]. To solve this problem, there is a technique to increase the number of pho-
tons by injecting high radioactivity, but the patient receives a lot of radiation exposure.
Therefore, many researchers have proposed noise-reduction algorithms without increasing
the radiation exposure [22–24]. Wiener and median filters are widely used as conventional
filters to reduce noise distribution in degraded images. The degree of noise reduction is
effective, but a blurring effect is caused by the loss of high-frequency and edge signals in
the images [25,26]. To overcome this drawback, a total variation (TV) algorithm that is
able to maintain the edge signal and reduce the noise distribution by setting the region
of interest for each pixel in the image has been suggested [27,28]. The TV noise reduction
algorithm has already been proven using radiologic images from X-rays [29]. In particular,
a study by Kang et al. reported that CNR and COV were significantly improved in all
three planes compared with the original image when the TV algorithm was applied to
a 4D small-animal CT image [27]. In addition, research by Seo K. et al. confirmed that
the TV algorithm greatly improved the image characteristics in the noise distribution in
the frequency domain in X-ray images [29]. Recently, a study on the applicability of the
TV algorithm to confocal laser scanning microscopy images was also conducted, and a
quantitative analysis method of noise level for two color channels was also proposed [30].
However, there is little research in the nuclear medicine field, especially PET/MR images,
that has been recently developed.

Therefore, the purpose of this study was to confirm the effectiveness of the TV noise-
reduction algorithm for PET/MR images. To evaluate the image performance, images
were acquired by applying various MR-AC pulse sequences (MR-ACDixon-GRAPPA and
MR-ACDixon-GAIPI) to PET images with a TV noise-reduction algorithm and compared with
conventional techniques such as Wiener and median filters.

2. Materials and Methods
2.1. Experimental Setup

The integrated PET/MR hybrid system, which is called mMR (Siemens, München,
Germany), was used for the phantom experiments. Figure 1 shows the PET/MR scanner
and Jaszczak phantom, which contains rods of various diameters.
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Figure 1. Experimental setup using a positron emission tomography (PET)/magnetic resonance (MR) scanner and a
Jaszczak phantom.

The detector used lutetium oxyorthosilicate material as a scintillator crystal in PET/MR
with an avalanche photodiode array system. To acquire various MR-based PET images,
MRDixon-CAIPI and MRDixon-GRAPPA pulse sequences were applied to non-AC PET images
using a phantom injected with NiSO4 + NaCl fluids to acquire more uniform MR-based
PET images than MR-based PET images using only water fluid. In general, the water is
used as phantom fluid when obtaining the phantom images in nuclear medicine because
the radioisotope 18F dissolves in water. However, water causes artifacts in MR imaging
above 1.5 T due to high relative permittivity [31]. Figure 2 shows a schematic diagram
of this study. In this study, the partial-volume effect, which is the loss of apparent activ-
ity in small spheres caused by a limited imaging system, is considered using the mMR
imaging system.
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Figure 2. Flowchart for acquisition of images applied to MRDixon-CAIPI and MRDixon-GRAPPA AC pulse sequences to final
images using the total variation (TV) algorithm, Wiener filter, and median filter for noise reduction.
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2.2. Modeling of the TV Noise-Reduction Algorithm

Gaussian noise, which is generated in various medical-imaging systems based on
gamma rays and X-rays, should be removed because it degrades the image quality and
affects the efficiency of post-processing. To resolve the noise problem, various denoising
methods have been proposed, such as local filters, wavelet transform-based techniques,
and machine learning. Among these techniques, the TV-based algorithm is known to
effectively remove Gaussian noise because it considers the correlation between the signal
intensity of the region of interest (ROI) and the overall image configuration variance. The
TV algorithm performs a gradient that calculates the difference between the pixel value of
the ROI and the surrounding pixel value as follows:

||f (m, n) ||TV =
M
∑

m=1

N
∑

n=1
|∇f(m, n)|

=
M
∑

m=1

N
∑

n=1

√
(f(m, n)− f(m− 1, n))2 + (f(m, n)− f(m, n− 1))2

(1)

where M and N are the numbers of rows and columns in the image f(m, n), respectively,
and ∇ is the gradient operator. The L2-norm has the risk of incorrect image processing,
which considers the noise to the edge signal, because it is sensitive to noise, although it
is known to be an effective gradient operator for extracting edge signals. For this reason,
we designed a gradient operator using the L1-norm. Based on Equation (1), an optimized
Rudin-Osher-Fatemi (ROF) model was presented by Rudin et al. [28].

ϕ[f(m, n)|I(m, n)] =
M

∑
m=1

N

∑
n=1
|∇f(m, n)|1 +

λ

2
||I(m, n)− f (m, n) ||2 (2)

where λ
2 ||I(m, n)− f (m, n) ||2 is the fidelity term indicating the accuracy of the image

information, and ∑M
m=1 ∑N

n=1|∇f(m, n)|1 is a regularization term that assists the object
function (= ϕ[f(m, n)|I(m, n)] ) in finding the correct solution. In addition, λ is a control
parameter that balances the two terms, and a value of 0.1 was applied in this study [32,33].
Based on Equation (2), a solution was obtained by iteratively calculating the weight for the
pixel of the ROI and its surroundings. To compare the MR-based PET images in PET/MR
with application of the TV algorithm, Wiener and median filters were used for correction
of noisy images.

2.3. Quantitative Analysis

To evaluate image quality, the contrast-to-noise ratio (CNR) and coefficient of vari-
ation (COV) were used by drawing ROIs in images with noise, Wiener, median, and TV
algorithms. The CNR and COV values were calculated as follows.

CNR =
|Hs − HB|√
σ2

s + σ
2
B

(3)

COV =
σs

Hs
(4)

where Hs and σS are the mean count and standard deviation of the sphere ROI, respectively,
and HB and σB are the mean count and standard deviation for the background ROI,
respectively. The quantitative analysis method for COV is widely used to confirm noise
distribution. In addition, the CNR is used to compare contrast between the sphere and
background. For reproducibility analysis, we performed the experiment 10 times under
the same conditions.
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3. Results and Discussion

The PET images based on the MR pulse sequences were developed using an integrated
PET/MR system, and there have been many studies that attempted to improve PET image
quality [34,35]. In previous studies, we confirmed the usefulness of the TV algorithm for
noise reduction compared with conventional noise-reduction methods such as Wiener
and median filters in X-ray based images and MR images [36,37]. The results of previous
studies show that the TV algorithm not only resulted in efficient noise reduction, but also
improvement in signal and contrast in medical images. Based on our previous studies,
we evaluated the feasibility of the TV algorithm for noise reduction in MR-ACDixon-CAIPI-
and MR-ACDixon-GRAPPA-based PET images using phantom using 18F radioisotopes. First,
MR-AC PET images were acquired using MR-ACDixon-CAIPI and MR-ACDixon-GRAPPA pulse
sequences. Subsequently, Gaussian noise with a 0.001 variance parameter was applied to
acquire the PET images using MATLAB software. To evaluate the image performance for
noise reduction, the proposed TV algorithm was used for noise reduction and compared
with conventional noise reduction filters.

Figures 3 and 4 show the MR-ACDixon-CAIPI- and MR-ACDixon-GRAPPA-based PET im-
ages according to the noise, Wiener filter, median filter, and TV algorithm, respectively.
For the visual evaluation, the PET images with Wiener and median filters as conven-
tional noise-reduction methods assessed the blurring effect in the MR-ACDixon-CAIPI- and
MR-ACDixon-GRAPPA-based PET images. Although Wiener and median filters are simple
methods to reduce the noise distribution in the spatial domain, there are disadvantages
of removing detailed regions and loss of edge signals. However, PET images with a TV
algorithm based on a regularization term for noise reduction can distinguish each rod
better than conventional filters.
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Figure 3. MR-ACDixon-CAIPI-based PET phantom images with (a) noise, (b) Wiener filter, (c) median
filter, and (d) TV algorithm. The contrast-to-noise ratio (CNR) was calculated using the ROIA and
ROIB, and the coefficient of variation (COV) was calculated using the ROIA.
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Figure 4. MR-ACDixon-GRAPPA-based PET phantom images with (a) noise, (b) Wiener filter, (c) median
filter, and (d) TV algorithm. The contrast-to-noise ratio (CNR) was calculated using the ROIA and
ROIB, and the coefficient of variation (COV) was calculated using the ROIA.

The CNR and COV results are shown in Figures 5 and 6, respectively. When the MR-
ACDixon-CAIPI-based PET images were compared with the TV algorithm and noise, Wiener
filter, and median filter regarding the CNR, the PET images with the TV algorithm showed
values that were approximately 23.0%, 12.3%, and 9.1% higher than those with noise,
Wiener filter, and median filter, respectively. When the MR-ACDixon-GRAPPA-based PET
images were compared with the TV algorithm and noise, Wiener filter, and median filter
with respect to the CNR result, the PET image with the TV algorithm showed values that
were approximately 15.8% and 8.7% higher than images with noise and the Wiener filter,
respectively. When comparing the images with the TV algorithm and median filter, there
was no significant difference with respect to the CNR results in the MR-ACDixon-GRAPPA-
based PET images. In addition, when the CNR results of the MR-ACDixon-CAIPI-and MR-
ACDixon-GRAPPA-based PET images were compared, the MR-ACDixon-CAIPI-based PET im-
ages showed values that were approximately 8.2%, 3.1%, and 11.8% higher than that of PET
images with the Wiener filter, median filter, and TV algorithm, respectively. In summary,
the MR-ACDixon-CAIPI-based PET image had a value that was approximately 6.7% higher
than that of the MR-ACDixon-GRAPPA-based PET image with respect to the CNR result.
Concerning the COV result, the MR-ACDixon-CAIPI based PET images were approximately
27.9% and 23.8% lower than images with noise and Wiener filter, respectively. In addition,
the COV values for MR-ACDixon-GRAPPA-based PET images were approximately 22.2% and
16.7% lower than images with noise and Wiener filter, respectively. There was no signifi-
cant difference with respect to the MR-ACDixon-CAIPI-and MR-ACDixon-GRAPPA-based PET
images and the COV results between the median filter and TV algorithm. When the MR-
ACDixon-CAIPI-and MR-ACDixon-GRAPPA-based PET phantom images were compared for the
COV results, the MR-ACDixon-CAIPI based PET images had values that were approximately
50.6%, 50.0%, 54.3%, and 54.3% lower than images with noise, Wiener filter, median filter,
and TV algorithm, respectively. In summary, the COV value of the MR-ACDixon-CAIPI-based
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PET image was approximately 52.3% lower than that of the MR-ACDixon-GRAPPA-based
PET phantom image.
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Figure 6. Coefficient of variation (COV) according to noise-reduction techniques between MR-
ACDixon-CAIPI-based and MR-ACDixon-GRAPPA-based PET images.

In clinical PET/MR, the time for image acquisition is related to image quality. The
narrow bore size (~60 cm) compared with that of PET/CT (~70 cm) leads to motion artifacts
and is uncomfortable for patients. In general, PET/MR acquisition time is longer than that
of PET/CT due to a scan procedure of only a PET image, MR-AC pulse sequences, and
then only an MR image. Among these procedures, the MR-AC pulse sequence can control
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the acquisition time using various sequences. The MR-ACDixon-CAIPI pulse sequence which
takes a short time for acquisition, is an important factor, because a long acquisition time
can affect artifacts in a PET/MR breath-hold scan. Therefore, the MR-ACDixon-CAIPI pulse
sequence is more useful than the MR-ACDixon-GRAPPA pulse sequence in terms of time reso-
lution. In addition, the fusion images from PET and MR were used to evaluate functional
and anatomy information using various MR pulse sequences for patients. Compared with
MR CAIPI and GRAPPA pulse sequences in the clinical images, when the MR CAIPI pulse
sequence was used, the image quality was improved, according to Wright K. L. et al. [38].

Research on the improvement of image quality in PET/MR has been previously per-
formed for attenuation correction based on MR pulse sequences. Grafe et al. indicated that
an improved MR-AC pulse sequence that is divided into five compartments (background,
fat, lungs, soft tissue, and bone) can improve image quality by adding bone segmentation,
compared with the conventional attenuation correction method [39]. In addition, we need
to apply the noise-reduction algorithm, which is broadly applied to reduce noise in medical
images. In this study, we confirmed the efficiency of the TV algorithm for noise reduction
in PET/MR images. The application of the noise-reduction algorithm can offer accurate
diagnostic information, except for unnecessary radiation exposure. Therefore, the noise-
reduction algorithm and MR-AC pulse sequence are essential processes for improving the
PET/MR image quality. Based on our results, the application of the noise-reduction algo-
rithm can offer accurate diagnostic information while preventing unnecessary radiation
exposure and patient discomfort.

In addition, we plan to follow up on two aspects in future studies. First, we plan to
compare the image quality using various noise-reduction algorithms such as the median
modified Wiener filter, the fast nonlocal means algorithm, and deep-learning techniques
in nuclear medicine images. Second, we will attempt to evaluate image performance in
PET/MR according to fluid material in the Jaszczak phantom, such as NiSO4 + NaCl and
only NiSO4, instead of water, which is widely used to perform the phantom experiment
using the Jaszczak phantom with the gamma camera or PET/computed tomography.
Because water interferes with the generation of MR-AC PET images, the new fluid material
should be used for the acquisition of MR-AC PET images. For this reason, Ziegler et al.
reported that the use of an alternative fluid material, such as NiSO4 + NaCl or only NiSO4,
can lead to obtaining MR-AC PET images [40]. In addition, Park et al. suggested that NaCl
fluid is as effective as NiSO4 + NaCl fluid, without obstructing MR-AC PET images [41].

4. Conclusions

In this study, we confirmed the effectiveness of the TV algorithm for noise reduction
using MR-ACDixon-CAIPI- and MR-ACDixon-GRAPPA-based PET images compared with con-
ventional noise-reduction methods in PET/MR using the Jaszczak phantom with the 18F
radioisotope in an integrated PET/MR scanner. The CNR and COV results demonstrated
that the application of the TV algorithm was capable of improving the PET image quality.
In conclusion, the TV algorithm is applicable to MR pulse sequence-based PET images in
PET/MR with respect to noise reduction, especially MR-ACDixon-CAIPI-based PET images,
which are acceptable using the TV noise-reduction algorithm.
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