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Abstract: Respiratory protective equipment (RPE) is traditionally designed through anthropometric sizing to enable mass 
production. However, this can lead to long-standing problems of low-compliance, severe skin trauma, and higher fit test 
failure rates among certain demographic groups, particularly females and non-white ethnic groups. Additive manufacturing 
could be a viable solution to produce custom-fitted RPE, but the manual design process is time-consuming, cost-prohibitive 
and unscalable for mass customization. This paper proposes an automated design pipeline which generates the computer-aided 
design models of custom-fit RPE from unprocessed three-dimensional (3D) facial scans. The pipeline successfully processed 
197 of 205 facial scans with <2 min/scan. The average and maximum geometric error of the mask were 0.62 mm and 2.03 mm, 
respectively. No statistically significant differences in mask fit were found between male and female, Asian and White, White 
and Others, Healthy and Overweight, Overweight and Obese, Middle age, and Senior groups.
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1. Introduction
Respiratory protective equipment (RPE) is routinely 
mandated across a wide range of industries to protect 
millions of workers worldwide from inhaling harmful 
airborne particles, gases or vapors that are present in 
the environment. Some examples of respirator masks 
are disposable N95/FFP3 used in the healthcare sector, 
or re-usable elastomeric half-mask RPE commonly used 
in construction, mining, firefighting, and manufacturing. 
The performance of RPE depends on three factors: (i) 
compliance, (ii) comfort, and (iii) effective seal. The 
coronavirus (COVID-19) pandemic has brought the 

world’s attention to RPE’s long-standing but often 
neglected problem of poor fit and its associated issues 
such as device-related pressure ulcers. High incidence 
(97%) of skin damage over the nasal bridge and cheeks 
among frontline health-care personnel wearing standard-
sized RPE has been reported as a serious occupational 
hazard[1]. These skin damages are likely caused by 
excessive strap pressure applied on poorly fitted masks to 
improve seal at the skin/mask interface[2]. Excessive strap 
pressure can result in user discomfort, which is often cited 
as a major factor for non-compliance[3]. Thus, improving 
fit will improve the effectiveness of RPE across all three 
success factors.
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Users must pass a fit test to ensure an effect seal 
is achieved before they are deployed in high-risk 
environment. Despite its importance, there is clear 
evidence that current commercially available disposable 
RPE[4] or reusable elastomeric RPE[5] are inadequate at 
creating an effective seal for all demographic user groups. 
There are numerous reports of demographic bias in RPE 
fit test failure rates. It has been found that female users 
were nearly twice as likely to fail a fit test compared to 
male users[6-10]. Fit test failure rates were also found to 
be skewed across different ethnic groups. Asian users 
have failure rate as high as 54%[11] and African users at 
86%[12] as compared to about 5 – 10% among Caucasian 
users[7,8,13]. Other than gender and ethnicity, age has 
also been reported as another factor that affects fit test 
failure rate[14]. More importantly, it was found that certain 
combination of subdemographic groups will lead to a 
higher fit test failure rate. For example, McMahon et al.[7] 
reported statistical significant difference (P < 0.05) in 
fit test passing rates among age groups in women (19 
– 71  years old with an average 10  years increment for 
each age group), but not in men. Sandkovsky et al.[15] also 
found that only females with body mass index (BMI) >25 
are at higher risk of failing a fit test, but not males.

These demographically biased fit test failure rates 
are potentially caused by the limitations associated with 
design methodologies employed for mass producing 
wearables. The conventional design method is based on 
anthropometric sizing, which are anthropometric surveys 
that collect body dimensions from a sample population 
and statistically analyze them to suggest a sizing system 
(e.g. three-size system that consists of small, medium, and 
large) to cover majority of the population[16,17]. For RPE 
masks, respirator fit test panels (two-Dimensional charts) 
are typically developed from analyzing 1-Dimensional 
facial dimensions collected from thousands of subjects to 
provide an objective tool for selecting a few representative 
human test subjects based on their facial characteristics 
for use in research, product development, testing, and 
certification[18]. The panel is built with the aim to cover 
about 95% facial variation of a population and can be 
segmented into a few broad categories to inform a sizing 
system to guide the design of RPE. One of the earliest and 
most referenced respirator fit test panels was developed 
based on bivariate distribution of face length and lip length 
(for half-face piece RPE) or face length and face width (for 
full-face piece RPE) data from an anthropometric survey 
of 4000 male subjects in the US Air Force by Los Alamos 
National Laboratory[19] in the early 1970s. Recently in 
2007, the National Institute for Occupational Safety and 
Health (NIOSH) recognized the unsuitability of using 
outdated military data for the design of civilian RPE, and 
developed a new fit test panel using data (3997 subjects) 
from a 2001 anthropometric survey of civilian respirator 

users[20]. Despite having a more updated dataset, several 
large-scale comparative anthropometric studies have 
reported statistically significant differences (P < 0.05) in 
key face dimensions (e.g.  face width, length, and nose 
protrusion) between males and females, different ethnic 
groups (Asian, White, African, Hispanic, etc.), and age 
groups (18 – 29 years old and above 45 years old)[21-24] in 
the updated panel. Respirator manufacturers may create 
different product sizes based on demographic-specific 
anthropometric sizing to accommodate such differences. 
However, each additional size will incur additional 
tooling costs for mass production, therefore making it 
economically undesirable. The anthropometric sizing-
based design methodology was developed decades ago to 
enable affordable mass customization (MC) of wearables 
through conventional mass production methods, such 
as injection molding, and it had been shown to result 
in design bias toward certain demographic groups and 
higher failure rates in protective equipment as mentioned 
above. With the maturation of advanced manufacturing 
techniques such as additive manufacturing (AM) which 
can create custom-fit product at near-zero tooling cost, 
it is time to re-think and develop new design methods to 
facilitate the use of such new manufacturing methods to 
provide well fitted masks for people from all backgrounds, 
regardless of their gender, ethnicity, age, or BMI.

AM has been identified as the next generation agile 
manufacturing system that enables the MC of custom-fit 
products[25-29]. A key strength of AM is its near-zero tooling 
cost associated with every new design, which greatly 
reduces the per part manufacturing cost as compared to 
mass production processes such as injection molding. AM 
has been widely adopted to produce custom-fit products 
including traditionally custom-made medical devices 
such as maxillofacial prosthetics[30-32], foot orthosis[33,34], 
removable partial denture[35], or mass-produced 
ergonomic products such as shoe insoles[36,37], and aircrew 
seats[25]. In recent years, AM has been explored to produce 
custom-fit specialty masks, such as Bi-level/Continuous 
Positive Airway Pressure (BiPAP/CPAP) masks[38-40], 
where they have been shown to have less leakage and 
better comfort as compared to conventional generically 
designed masks. For RPE, custom-fit face seals have been 
shown to distribute contact pressure more evenly across 
the contact area, reducing the occurrence of high pressure 
imposed by commercial mass-produced RPE masks on 
areas such as the nose bridge, upper cheek, middle cheek 
and lower cheek and chin[41]. There are also ongoing 
investigations on whether three-dimensional (3D) printed 
tailored RPE can improve fit test passing rate and provide 
better sustained comfort than conventional RPE[42,43]. AM 
can also serve as an agile supply chain solution during 
an emergent public health crisis[44-48]. During the earlier 
days of the COVID-19 pandemic, various government 



� Li, et al

	 International Journal of Bioprinting (2021)–Volume 7, Issue 4� 125

agencies, local communities, and individual makers have 
used AM as a supply chain response to de-centralize 
production and combat supply chain disruption for RPE 
and other protective equipment[48-57].

Despite the promises of AM in producing custom 
fit RPE, major cost barriers exist in adopting AM for 
large-scale production. One key cost contributor stems 
from a highly manual and time-consuming customization 
process, which can add up to 20 – 30% of the overall 
AM production cost[25,34,37,58]. Sporadic efforts have been 
made over the past few decades to simplify and shorten 
the AM design process. The most utilized method has 
been parametric geometric modeling, where a generic 
parametric computer-aided design (CAD) model is 
created with control points that can be automatically 
updated based on the shape of an input scan. Such 
approach has been applied to customizable medical 
devices, such as protective face masks, wrist splits, 
ankle-foot orthotics[59-61], and recently to BIPAP/CPAP 
masks[38,40]. However, these are semi-automated modeling 
processes where a technician with CAD modeling 
knowledge is needed to perform manual operations such 
as aligning the generic model to a raw scan. Studies 
demonstrating a fully automated customization process 
for traditionally mass-produced body-fitted products 
are rare. Ellena et  al.[62] proposed a design process for 
customizing bicycle helmets, where a statistical shape 
model was utilized to classify a head scan into one out of 
four helmet sizes before cropping away the inner lining of 
the helmet with a generic B-Spline head surface adapted 
to the shape of the head scan using an iterative genetic 
algorithm[63]. While it is a fully automated process, 
it essentially uses a sizing-based approach where the 
statistical shape model was built by analyzing 222 head 
scans that may be representative of the Australian cyclist 
population, but not other demographic groups. For RPE 
designs, the sample size required could be much larger 
(e.g.  the US NIOSH panel used almost 4000 subjects) 
for a particular demographic group. The amount of 
resources and time needed to collect a large-scale 3D 
anthropometric database and to build a statistical shape 
model for each applicable demographic group defeats the 
purpose of lowering design cost for tailor-fit products. 
Sela et  al.[64] proposed a fully automated pipeline to 
generate customized CPAP masks based on a 3D scan or 
depth image of a person’s face. The shape of the mask 
model was customized by updating 256 control points on a 
generic mask model made up with Non-uniform Rational 
Basis Spline (NURBS) surfaces. However, automatically 
deforming a generic NURBS-based geometric model 
with organic shape can be problematic, particularly given 
the complexity and high variability of facial shapes. The 
pipeline was only validated against one subject; therefore, 
its robustness against a larger dataset remains unknown. 

To the best of authors’ knowledge, there has not been a 
study demonstrating a completely automated process for 
customizing respirator masks and validated against a 3D 
face dataset.

Recently, the authors[65] proposed a new automated 
respirator mask customization process which reduced 
design time from hours to minutes. While it is a promising 
pipeline, the pipeline has yet to be seamlessly integrated, 
neither has it been validated against a reasonable dataset. 
This study builds upon this previous work[65] and 
integrates a CAD Application Programming Interface 
(API) with the rest of the pipeline to present a seamless 
and automated design pipeline for generating custom-
fitted respirator masks ready to be manufactured using 
AM techniques.

To investigate whether this pipeline can be 
universally applied to people from different demographic 
backgrounds, an online portal was created to recruit 
participants during the COVID-19 lockdown periods 
in the UK, where their facial scans and demographic 
information were collected. Success rate, computational 
run time, and fit (how well a mask fits to a face) were 
evaluated. Furthermore, fit results were compared across 
subcategories of demographics to investigate whether 
the pipeline can produce respirator mask models that fit 
equally well to people across different age (young, middle 
aged, senior), gender (male or female), ethnic (Asian, 
White, and Others), or BMI groups (healthy, overweight, 
and obese).

2. Methods

2.1. RPE design pipeline
An automated MC design pipeline, shown in Figure 1, 
was employed for this study. This pipeline is based on our 
previous study which employs a series of alignment and 
template fitting processes[65] to represent user-submitted 
3D facial scans using a universal 3D face template 
mesh. This removes heterogeneity across different raw 
facial meshes in terms of orientation, location, and 
mesh structure (vertex indexing and triangulation), 
thereby enabling the subsequent automatic extraction of 
topographical data from a large facial dataset. Using a set 
of predefined vertices on the template mesh as landmarks, 
200 points on two egg-shaped loops based on those 
landmark locations were projected onto the fitted template 

Figure  1. Pipeline overview, the computer-aided design model 
generation step (highlighted) is now integrated into the design 
pipeline.
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mesh, forming the contact region between the mask and 
the user’s face, greater details can be found in Li et al.[65]. 
These points together with the set of landmarks act as the 
reference geometry in the CAD model generation step.

In the previous study[65], Autodesk Fusion 360 
API was employed. However, as it cannot be readily 
integrated with the rest of the pipeline which was 
written in MATLAB, a Python based Blender script is 
now utilized to seamlessly interface the CAD API into 
the pipeline such that the whole pipeline can run in a 
headless mode. Blender builds polygonal 3D models 
from successive addition of vertices, edges, and faces 
through functions with defined rules and constraints. This 
polygon-based generative geometric modeling approach 
can robustly handle the complexity and high variation 
of facial topographies, particularly around the nasal 
regions, making it well suited to the requirements of a 
MC pipeline for RPE. The design of the respirator mask 
(Figure  2) remained the same[65] with three standard 
components (grey) and a modifiable component (blue) 
that will be updated geometrically in blender to achieve 
custom-fit.

2.2. Participants
Participants were recruited from mid-July 2020 to mid-
October 2020. Due to travel restrictions during the 
COVID-19 pandemic, a dedicated online portal[66] was 
created to collect 3D facial scans remotely. This way 
of data collection transcends geographical boundaries, 
thereby enabling us to reach a wider demographics. 
Recruitment was advertised on mainstream media 
platforms such as the BBC[67], as well as on various 
social media platforms. As a token of appreciation to 
each participant, a custom-fitted mask model generated 
from the pipeline was emailed to the participant with 

assembly and manufacturing instructions so that he/she 
can manufacture the mask at home (if a 3D printer is 
available) or through commercial 3D printing services. 
This also served as a supply chain response to the global 
mask shortage at that time, as the 3D printed mask could 
be used as a face covering or face shield.

As facial scans are sensitive biometric data, 
Data Protection Impact Assessment has been carefully 
conducted and approved by Imperial College London to 
ensure all data-associated activities, including online data 
collection, transfer, storage, and analyses, are secure and 
compliant with relevant data protection regulations. The 
study protocol (19IC5167) was approved by the Science 
Engineering Technology Research Ethics Committee, 
Imperial College London.

Eligible participants were adults (≥18  years) 
regardless of gender, ethnicity, or BMI. Before scanning, 
participants were asked to read through a Participant 
Information Sheet to understand the project, how 
their data will be utilized and to clarify any questions. 
Written instructions[68] were also provided on the online 
portal to instruct participants to prepare for scanning 
by doing the followings: clean shave their face, remove 
any glasses, and pin/tie all hair if it is obstructing the 
face. Video instructions[68] were provided to ensure that 
facial data were acquired under the same conditions. 
Participants were recommended to use an iPhone X or 
newer versions (Apple Inc., Cupertino, California, USA) 
with a TrueDepth camera to acquire their facial scans. 
However, facial scans obtained from other acquisition 
devices were also accepted. If an iPhone was used, 
software applications recommended for creating and 
exporting 3D facial scans were ScandyPro (Scandy, 
New Orleans, USA) and Bellus3D (Bellus3D, Campbell, 
California, USA). Participants were also instructed to 
remain in a neutral expression during the data acquisition 
process. Once a scan had been acquired, participants 
were instructed to upload their scans through the online 
portal. Demographic information including age, gender, 
ethnicity, weight, and height were collected through a 
short survey in the submission process. Before the final 
submission, permission was sought from each participant 
to use their data anonymously through an Adult Consent 
Form. Details of the survey and consent form can be 
found in the online portal[69].

2.3. Scan exclusion
Facial data acquisition is not a trivial task and will 
require the user to have a good level of understanding 
of the acquisition device and software to obtain 3D 
facial data with minimal noise and obstruction. While 
written and video instructions were provided to guide the 
participants on data acquisition, it cannot be assumed that 
all participants have followed the instructions diligently 

Figure 2. Custom-fitted mask body generated using Blender with 
standard FFP3 filter components.
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and were able to produce good quality scans. Therefore, 
each scan was manually checked against the following 
set of exclusion criteria to ensure that all scans were of 
similar quality before submitted to the pipeline:
i.	 Being duplicates, that is, having two or more 

submissions containing the same face
ii.	 Having any obstruction on the face that may interfere 

with the mask, including beard, moustache, glasses, 
and piercing.

iii.	 Having poor quality, including poor reconstruction 
of facial geometry, corrupted file, scan resolution at 
>0.5 mm

iv.	 Having been modified by the participant to remove 
any holes/defects

v.	 Having non-neutral facial expression
vi.	 Not human faces, that is, scans of other objects
vii.	 Being manifold, that is, enclosed to form a solid volume, 

instead of being an open surface

A total of 322 submissions were received at the 
end of recruitment, of which 117 were excluded based 
on the above criteria. Figure 3 shows a summary of the 
excluded scans.

2.4. Computational time evaluation
All 205 included scans were processed through the 
pipeline on a remote Linux workstation (Intel® XEON® 

4114 2.2 2400MHz 10-Core CPU, 256 GB DDR4 2666 
DIMM Memory, Nvidia Quadro P1000 4GB GFX). For 
each input scan, a solid respirator mask CAD model was 
generated by the pipeline described in Section 2.1. The 
total run time for processing a scan and generating a CAD 
model was recorded.

2.5. Fit evaluation
Euclidean distance was used to computationally evaluate 
fit between the mask surface and the aligned face mesh 
(Figure 4). A nearest neighbor search[70] was performed 
through a space-partitioning method called K-dimensional 
tree[71] to pair each vertex on the mask surface with its 
nearest neighboring vertex on the aligned mesh. The 
nearest neighbor search was defined as: given a set of 
points u ∈ U (the aligned mesh), and a set of query points 
v ∈ V (the mask surface), for all v, find the closest points 
to U. The Euclidean distance was computed for each 
closest pair. Subsequently, the maximum and root mean 
square error (RMSE) of the Euclidean distances of were 
computed. The Maximum Euclidean distance indicates the 
maximum gap between a mask and its corresponding face 
mesh, whereas the RMSE Euclidean distance indicates the 
average gap between the mask and the face.

Maximum and RMSE Euclidean distance results 
were grouped into age, gender, ethnicity, and BMI 
subcategories according to demographic data reported by 
participants. For age, results have been grouped into three 
subcategories: Young (18 – 39  years old), Middle aged 
(40 – 54 years old), and Seniors (55 years old and above). 
There is not an international standard on age classification 
according to craniofacial shape change; however, various 
studies have shown evidence of craniofacial change as a 
result of aging[72-75]. Therefore, it is important to investigate 
whether the current pipeline can deliver similar fit results 
across different age groups. Age has generally been 
grouped into three categories (young, middle aged, and 
senior), and the cutoff points are approximately 15 – 25, 
35 – 45, and 55 – 65 years old. In this study, the author, 
therefore, used 18 – 39 years old for young adults, 40 – 
54 years old for middle aged adults, and 55 years and above 
for seniors. For gender, results were grouped into male 
and female categories. BMI grouping was based on the 

Figure 4. Euclidean distance between mask surface and a aligned face scan.

Figure 3. Facial scans exclusion.
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standard adult BMI classification[76]: underweight (BMI 
< 18.5), healthy (18.5 < BMI ≤ 24.9), overweight (25.0 
< BMI < 29.9), and obese (BMI > 30.0). For ethnicity, 
participants were grouped into the broad categories of 
Asian, White, and Others (including Black, Arabs, and 
any other ethnicity) as reported by participants.

3. Results and discussion
Using our pipeline, 197 of the 205 included scans 
returned a valid CAD model and 8 scans were rejected 
by the alignment checking algorithms in the pipeline 
(misalignment between input scan and template mesh), 
which gives an overall processing success rate of 96.1%. 
Table  1 shows the respective average run time for the 
processed 197 scans obtained from Bellus3D, ScandyPro 
and Lightstage. Compared to a manual process the pipeline 
has achieved significant time-savings. The average run 
time for processing a single scan was <2  min (104.4) 
that a significant portion of which time was consumed by 
the template fitting sub-process. The underlying code for 
this sub-process has not been optimized for the graphics 
processing unit (GPU) computation; hence, further 
time savings may be attained through GPU rather than 
CPU computation. This is a significant improvement 
from earlier manual process studies. This time saving is 
crucial to scale up the production for mass-customizing 
respirator masks, which has a much higher demand than 
conventionally customized orthotics or prosthetics. In 
addition, the customisation process is now completely 
automated which eliminates labor cost. Cazon et al.[61] 
have reported that labor cost can take up to 80% of 
the entire AM design cost; therefore, such savings is 
significant for making AM a more viable production 
method for the MC of respirator masks. Notably, the 
average run time per scan for ScandyPro scans was the 
longest (at almost 4  min/scan) compared to Bellus3D 
(<1  min/scan) and Light stage scans (<1.5  min/scan). 
This extended runtime is owed to the fact that ScandyPro 
scans contained significantly greater number of vertices 
than the other two. In addition, the ScandyPro scans 
included noisier data, including large neck/shoulder parts 
and many disconnected regions scattered around the face. 
Collectively, these resulted in longer time to perform the 
template fitting process.

Table  2 shows participants’ profiles grouped into 
the demographic categories, and their corresponding 
Maximum and RMSE Euclidean distances. The majority 

of the participants were male (80.7%), or White (76.1%), 
or having BMI more than 25 (85.8%). The average RMSE 
Euclidean distance between a mask surface and a face is 
0.62 ± 0.20 mm (mean ± sd) for all 197 scans. This means 
that the mask model was able to achieve an average sub-
millimeter accuracy. The Maximum Euclidean distance is 
2.03 ± 0.75 mm (mean ± sd), located on nasal sidewalls. 
Lee et al.[77] used a virtual fit testing method on 3D facial 
data of 336 Korean Air Force men and found that the 
gap between a pilot oxygen mask (similar to a reusable 
elastomeric half-face respirator) at the nasal bridge is 
approximately 6 mm when pressing the mask tightly onto 
a face (10 mm into the cheek). A maximum 2 mm gap 
at the nasal sidewalls instead of the nasal bridge, which 
has been reported as the most commonly injured site for 
respirator users[1], is a significant improvement from the 
mass-produced RPE. In addition, contrary to the design 
bias in current commercially available RPE, where fit 
was poorer among females and Asians, the Maximum 
Euclidean distance was slightly lower for females 
(1.82 mm) as compared to males (2.08 mm), and Asians 
(1.80 mm) as compared to the others (White: 2.05 mm 
and others: 2.33 mm).

To investigate if the proposed pipeline could 
produce respirator masks that fit equally well to people 
with different demographic backgrounds, the following 
hypothesis was tested: there will be no difference between 
the maximum or RMSE Euclidean distance across each 
subcategory under age, gender, ethnicity or BMI. Choice 
of an appropriate statistical test is dependent on the nature 
of the Euclidean distance results. Before deciding on 
an appropriate statistical test, Shapiro–Wilk tests were 
conducted to check for normality of the distributions 
for each grouped RMSE and maximum Euclidean 
distances. Most of the demographic groups rejected 
the null hypothesis (P < 0.05) that the data is normally 
distributed with unspecified mean and variance, except 
for the Maximum Euclidean Distance in Female group 
(P = 0.12), RMSE Euclidean distance in Other Ethnicity 
group (P = 0.31), and RMSE Euclidean distance in 
Healthy BMI group (P = 0.23). Nonetheless, for these 
groups, the sample size is small (≤30). Therefore, the 
nonparametric Wilcoxon Rank Sum Test (confidence 
level at 95%) was used to compare outcomes between 
each pair of subcategories in age, gender, ethnicity and 
BMI. The underweight group was excluded as the sample 
size is too small (n = 1).

Wilcoxon Rank Sum test results (Table 3) showed 
that there is no statistically significant difference for 
RMSE and maximum Euclidean distances between Male 
and Female, Asian and White, White and others, healthy 
and overweight, overweight and obese, Middle age, and 
senior groups. This suggests that the pipeline produced 
mask models that fit equally well across these groups. This 

Table 1. Average run time.

Acquisition method Average run time, mean (sd)
All 104.4 (95.2)
Bellus3D 52.5 (25.7)
ScandyPro 235.5 (89.9)
Lightstage 133.3 (56.8)
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is a significant improvement compared to conventional 
anthropometric sized RPE where failure rates were found 
to be as high as double among females compared to male 
colleagues[6-8], or 16% – 54% among Asians[11,13]. The 
same analyses have been conducted for just the Bellus3D 

scans and just the ScandyPro scans respectively (Light 
stage scans were not used due to its small sample size), 
and similar results were found. This shows that the 
pipeline can produce demographically non-biased mask 
models regardless of acquisition methods.

Table 2. Participants’ profile and Euclidean distance results.

 Total (n=197) RMSE Euclidean 
distance (mm), mean (sd) 

Maximum Euclidean 
distance (mm), mean (sd) 

Overall 0.62 (0.20) 2.03 (0.75)
Gender, n (%)

Male 159 (80.7) 0.62 (0.20) 2.08 (0.77)
Female 30 (15.2) 0.64 (0.21) 1.82 (0.61)
No response 8 (3.1) ‑ ‑

Ethnicity, n (%)
Asian 27 (13.7) 0.59 (0.18) 1.80 (0.62)
White 150 (76.1) 0.62 (0.20) 2.05 (0.75)
Others 14 (7.1) 0.63 (0.24) 2.33 (0.86)
No response 6 (3.1) ‑ ‑

BMI, mean (sd)
Underweight (<18.5) −(0.5) ‑ ‑
Healthy (18.5 – 24.9) 23.1±1.8 (10.7) 0.59 (0.17) 1.76 (0.67)
Overweight (25.0 – 29.9) 27.4±1.3 (42.1) 0.61 (0.19) 2.02 (0.70)
Obese (>30.0) 36.6±9.3 (43.7) 0.64 (0.21) 2.12 (0.79)
No response −(3.0) ‑ ‑

Age, mean (sd)
Young (18 – 39) 29.3±6.3 (30.5) 0.56 (0.20) 1.71 (0.64)
Middle aged (40 – 54) 48.5±4.1 (33.5) 0.62 (0.18) 2.06 (0.72)
Senior (55 and above) 61.3±5.3 (32.5) 0.68 (0.20) 2.32 (0.75)
No response −(3.6) ‑ ‑

BMI; Body mass index, sd; Standard deviation 

Table 3. Wilcoxon Rank Sum test results.

RMSE Euclidean 
Distance (mm)

Maximum Euclidean 
distance (mm)

H P value H P value
Category 1 Category 2
Gender

Male Female 0 0.814 0 0.061
Ethnicity

Asian White 0 0.375 0 0.061
Asian Others 0 0.711 1 0.035
White Others 0 0.941 0 0.120

BMI
Healthy Overweight 0 0.740 0 0.100
Healthy Obese 0 0.580 1 0.035
Overweight Obese 0 0.673 0 0.394

Age
Young Middle age 0 0.078 1 0.002
Young Senior 1 0.005 1 0.000
Middle age Senior 0 0.165 0 0.051



Mass Customization of Respiratory Protective Equipment

130	 International Journal of Bioprinting (2021)–Volume 7, Issue 4�

There are statistically significant differences between 
the Young and the Senior groups for RMSE Euclidean 
distance, and between the Asian and Others, Healthy 
and Obese, Young and Middle-age, and Young and 
Senior for Maximum Euclidean distance. Nonetheless, 
all differences in their absolute values (Table  2) were 
<1 mm. The Maximum Euclidean distance is 1.7 mm – 
2.3 mm for each of these groups, which are significantly 
smaller than the 6 mm gap reported in similar commercial 
masks[78]. With a much smaller gap to fill, users can 
potentially apply less strap pressure onto the mask to 
create a good seal, reducing chances of skin trauma.

This study may be under-powered as the current 
sample is skewed towards male, White, and high BMI 
populations, whereas the sample size for female, non-
White and normal BMI populations were small. Future 
studies should look to collect a more evenly distributed 
gender, BMI and ethnicity sample with a larger sample 
size to further validate the universality of this pipeline. 
Nonetheless, initial results show great potential to 
produce customized RPE products that can fit equally 
well across different demographic and demographic 
subgroups. This contrasts current anthropometric sizing 
methodologies which contain inherent biases due to the 
sample populations they were cased on.

The proposed pipeline was deployed as an online 
application which promoted decentralized manufacturing 
during the period when there was a global shortage of RPE. 
However, the pipeline’s main contribution is to quickly 
create custom-fitted RPE models that offer superior fit 
to commercial masks, making it a viable tool to produce 
RPE products in the healthcare and construction industry 
where good fit and comfort are required. This pipeline can 
be deployed quickly in the extent of future pandemics.

The pipeline was validated computationally to 
demonstrate that it is possible to rapidly produce RPE 
design models that fit well to a user’s face. The pipeline 
offers a route to lower product unit costs by automating 
the design phase, thus removing that barrier for mass 
customizing wearables. It also shows a novel and 
promising design methodology that is not inherently 
biased towards specific demographic group as it is in the 
traditional anthropometric sizing approach. The mask 
model presented in this pipeline had been shown to be 
successfully fabricated through the stereolithography 
(SLA) process in our previous study[65], taking an average 
of 8  h and using 40  mL of resin to fabricate the mask 
body. A  fit test study is currently being conducted to 
evaluate the performance of the 3D printed custom-fitted 
masks against commercial masks. Future studies can 
build upon our previous and current work to investigate 
other factors affecting the manufacturing of the mask, 
including the impact of different AM build processes, 
such as SLA, fused deposition modeling and selective 

laser sintering, and post-processing techniques on the 
surface finish of the mask/face contact area, and Young’s 
Modulus, biocompatibility and sterilizability of the print 
materials. Different filter materials with different levels 
of particle filtration capabilities can also be evaluated to 
Filter materials, with different levels of particle filtration 
capabilities, can also be investigated to determine their 
performance and impact on custom fitted masks.

4. Conclusions
This study presented a fully automated design pipeline 
to enable MC of RPE via AM. The pipeline was 
validated against 205 facial scans to generate custom 
fit respirator mask CAD models. The pipeline achieved 
96% processing success rate with <2 min/scan processing 
time. When virtually fitted, the mean RMSE and 
Maximum Euclidean distance between the masks and 
faces were 0.62 mm and 2.03 mm, respectively. It was 
found that there was no statistically significant difference 
in goodness of fit between different age, gender, ethnicity, 
and BMI subgroups. When combined with appropriate 
AM processes and materials, it could be a promising 
route towards the true MC of RPE or even other body-
fitted products.
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