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Abstract Skeletal fragility often accompanies diabetes and
does not appear to correlate with low bone mass or trauma
severity in individuals with diabetes. Instead (and in contrast
to those with osteoporotic bone disease), bone remodelling
and bone turnover are compromised in both type 1 and type
2 diabetes, contributing to defective bone material quality.
This review is one of a pair discussing the relationship between
diabetes, bone and glucose-lowering agents; an accompanying
review is provided in this issue of Diabetologia by Ann Schwartz
(DOLI: 10.1007/s00125-017-4283-6). This review presents basic
science evidence that, alongside other organs, bone is affected in
diabetes via impairments in glucose metabolism, toxic effects of
glucose oxidative derivatives (advance glycation end-products
[AGEs]), and via impairments in bone microvascular function
and muscle endocrine function. The cellular and molecular basis
for the effects of diabetes on bone are discussed, as is the impact
of diabetes on the stem cell niche and fracture healing.
Furthermore, the safety of clinically approved glucose-
lowering therapies and the possibility of developing a single
therapy that would be beneficial for both insulin sensitisation
and diabetes bone syndrome are outlined.
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Abbreviations

AGEs Advanced glycation end-products

AMPK  AMP-activated protein kinase

BMD Bone mineral density

DIO Diet-induced obesity

DPP-4 Dipeptidyl peptidase 4

eNOS Endothelial nitric oxide synthase

GLP-1 Glucagon-like peptide 1

HSCs Haematopoietic stem cells

MSC Mesenchymal stem cell

PPAR Peroxisome proliferator activated receptor
RAGE Receptor for advanced glycation end-products
RANKL Receptor activator of nuclear factor kB ligand
RUNX2 Runt-related transcription factor 2

SGLT2  Sodium-glucose cotransporter 2

TZDs Thiazolidinediones

VSMC  Vascular smooth muscle cells

Introduction

Skeletal fragility often accompanies type 1 and type 2 diabetes
and is considered a pathological complication of this disease.
Although low bone mass in type 1 diabetes may significantly
contribute to an increase in fracture risk, an increase in fracture
incidence is also observed in individuals with type 2 diabetes
despite normal or even high bone mineral density (BMD) and
greater BMI (factors that are considered protective against
fractures in individuals without diabetes, as discussed further
in an accompanying review by Ann Schwartz, in this issue of
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Diabetologia [1]). Similarly, fractures that often result from
low or medium trauma cannot be explained by increased falls
as a result of diabetes-related comorbidities [2]. Instead, de-
spite high/normal BMD, in individuals with diabetes bone
shows a number of structural characteristics predisposing it
to fractures, including greater cortical porosity, smaller corti-
cal area and decreased bone material strength [3, 4]. These
features suggest that bone biomechanical quality is affected
in individuals with diabetes.

Bone material quality is maintained by the process of bone
remodelling, which is common for all mammals. Bone remodel-
ling relies on constant resorption and rebuilding of bone in order
to replace old tissue with new, more functional tissue. A balance
between osteoclast-dependent bone resorption and bone forma-
tion, the latter of which relies on osteoblast activity, is essential
for the maintenance of bone mass. Consequently, most metabolic
bone diseases, including senile and postmenopausal osteoporo-
sis, result from unbalanced bone remodelling. On the contrary,
bone in diabetes is characterised by attenuated (rather than un-
balanced) bone remodelling. Interestingly, decreased bone for-
mation, as measured in iliac bone biopsies, was found to correlate
with duration of diabetes [5] and circulating levels of biochemi-
cal markers of bone formation and resorption are shown to be
decreased in diabetes [6]. It is speculated that low turnover of
bone in diabetes may lead to defective microfracture repairs and,
hence, to their accumulation, contributing to decreased bone
quality. In contrast to postmenopausal and senile osteoporosis,
a deterioration of bone strength in diabetes is associated with
increased cortical porosity that is not accompanied by a loss of
trabecular bone mass [7, 8]. Thus, it can be concluded that
diabetes-specific bone characteristics may constitute a novel
syndrome that can be classified as a diabetes-associated bone
disease. This review addresses the skeletal consequences of
the major features that characterise diabetes, including impair-
ments in glucose/insulin metabolism, accumulation of ad-
vanced glycation end-products (AGEs), insufficiency of the
bone microvasculature and alterations in muscle endocrine
function. Alongside the pleiotropic effects of these factors
on bone degeneration, the impact of glycaemic control in
response to existing glucose-lowering therapies is discussed;
an overview of the clinical safety of glucose-lowering thera-
pies is provided in the accompanying review [1], whereas
this review focusses on the laboratory evidence of the effects
of these therapies on bone.

Insulin signalling, glucose metabolism and bone
turnover

Energy metabolism and bone turnover are controlled by intri-
cate mechanisms that share many cues and outcomes. Because
of the size of the skeleton and the extent of energy consumed
during the process of bone remodelling, the skeleton is an
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organ of the body that heavily depends on glucose metabo-
lism. Therefore, it is not surprising that insulin signalling plays
an important role in the regulation of bone remodelling. More
specifically, osteoblasts require glucose for differentiation and
function [9], while glucose and insulin positively regulate the
expression of runt-related transcription factor 2 (RUNX2) and
bone-specific osteocalcin, the latter being a hormone that is
implicated in the regulation of insulin sensitivity in peripheral
tissues [10]. In addition, insulin increases support for osteo-
clastogenesis by decreasing the expression of osteoprotegerin,
a decoy receptor for the pro-osteoclastic cytokine receptor
activator of nuclear factor kB ligand (RANKL) [11].
Interestingly, the same system has recently been implicated
in the regulation of insulin production in pancreatic beta cells,
providing additional evidence that bone and energy me-
tabolism are regulated by closely related mechanisms
[12]. Taking into consideration that insulin signalling
and glucose metabolism correlate positively with bone
turnover and bone formation, a logical question arises
as to whether bone develops insulin resistance and, if
so, how it is manifested.

Some answers come from extensive studies in rodent models
where mimicking insulin resistance in bone by depleting insulin
receptor in cells of osteoblast lineage results in decreased bone
formation and bone resorption and, as a consequence, decreased
bone turnover [11, 13]. In turn, manipulation of insulin signal-
ling at the osteoblast level affects systemic energy metabolism.
The postulated mechanism implicates bone turnover as a factor
that controls energy balance through release of the bioactive
form of osteocalcin from the mineralised matrix, which in turn
stimulates insulin secretion [10]. Comparably, glucose intoler-
ance is associated with the attenuation of bone remodelling and
turnover in mouse models of diet-induced obesity (DIO)
[14-16]. Interestingly, analogous with adult onset of type 2
diabetes, the development of DIO in adult mice that have
achieved peak bone mass results in high bone mass and
attenuated bone turnover [16]. The increased bone mass that
accompanies DIO may reflect a protective mechanism, emu-
lating the cessation of bone turnover that provides protection
from bone loss that naturally occurs during ageing; however
this mechanism does not seem to protect from the loss of bone
material quality. Most importantly, osteoblasts in mice with
DIO exhibit characteristics of insulin resistance as they do not
respond to the stimulatory effect of insulin on the phosphory-
lation of IRS1/2. Saturated fatty acids and associated
lipotoxicity appear to be culprits for the dysfunctional insulin
signalling in bone from animals with DIO [14].

Molecular mechanisms linking bone homeostasis with
glucose metabolism Atthe molecular level, skeletal homeo-
stasis is linked to insulin sensitivity through the nuclear recep-
tor peroxisome proliferator activated receptor (PPAR)y. Most
recently, it has been shown that the same post-translational
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modifications of the PPARY protein that regulate insulin sen-
sitivity and energy metabolism also regulate bone turnover,
providing an insight into the intricate relationship between
these processes [17]. PPARYy controls differentiation of cellu-
lar components of bone remodelling; it suppresses osteoblast
differentiation by diverting marrow mesenchymal stem cell
(MSC) commitment away from osteoblast and towards adipo-
cyte lineage. Simultaneously, it also promotes recruitment of
haematopoietic stem cells (HSCs), driving them towards the
osteoclast lineage [18]. In MSCs, the activity of pro-
adipocytic PPARYy and pro-osteoblastic RUNX2 is reciprocal-
ly regulated at the level of serine phosphorylation.
Phosphorylation of S112 in PPARYy and S319 in RUNX2 is
mediated by the same mitogen activated protein (MAP) ki-
nases and results in activation of RUNX2 and inhibition of
PPARYy, and subsequent differentiation of MSCs towards os-
teoblasts [19]. Conversely, activation of PPARYy and inhibi-
tion of RUNX2 activity requires activation of protein phos-
phatase 5 (PP5), resulting in dephosphorylation of S112 in
PPARYy and S319 in RUNX2, and promoting MSC differen-
tiation toward adipocytes, as opposed to osteoblasts [20]. With
respect to bone-resorbing osteoclasts, PPARYy supports their
differentiation through direct and indirect mechanisms. In
monocytes, PPARy stimulates osteoclast differentiation
through peroxisome proliferator-activated receptor gamma,
coactivator 1, beta (PGC-1f3)-dependent mechanism and acti-
vation of the c-Fos transcription factor, while, in MSCs,
PPARY increases support for osteoclastogenesis by stimulating
RANKL production [21, 22]. Using selective modulators and
genetic manipulation of PPARYy activity, it has been shown that
dephosphorylation of S273, which determines the insulin
sensitising activity of this protein, is required for PPARYy’s
pro-osteoclastic activity, whereas phosphorylation of S112,
which is known to prevent adipose tissue expansion, also cor-
relates with increased bone formation [17]. Thus, these two
PPARYy functions are necessary for balanced energy metabolism
and insulin sensitivity, while also being inherently tied to pro-
cesses regulating bone turnover through stimulation of bone
formation and bone resorption. On the other hand, insulin resis-
tance and obesity, which at the PPARYy level are associated with
the phosphorylation of S273 and dephosphorylation of S112,
correlate with decreased bone resorption and bone formation,
providing a plausible explanation for attenuated bone turnover
in type 2 diabetes.

The stem cell niche in diabetes Poor fracture healing and
high infection rates constitute a significant clinical issue for
individuals with diabetes. The factors discussed above may
contribute to poor healing at the cellular level via their effect
on the stem cell niche. Delta-like non-canonical Notch ligand
1 (DLK1) represents a common negative regulator of both
skeletal stem cell differentiation and glucose metabolism via
negative regulation of the osteocalcin—insulin loop [23].

Another strong indication of the link between skeletal stem
cell differentiation and glucose metabolism has been provided
by a recent study showing that low-grade inflammation in
diabetes negatively affects the marrow stem cell niche,
resulting in impaired fracture healing [24].

The skeletal consequences of common diabetic
characteristics

AGEs and bone quality Type I collagen is a major constituent
of bone and provides a structural framework that, upon
mineralisation, facilitates the skeleton’s strength. Type I colla-
gen is a fibrillary protein that is organised around a triple-helix
motif, causing self-assembly into highly organised fibrils
stabilised by enzymatic cross-linking. Besides the natural enzy-
matic cross-linking, type I collagen may undergo chemical
cross-linking, which can occur between ‘free-floating’ sugars
in the serum and exposed amino acid residues, leading to post-
translational modifications of collagen and, as a result,
the production of AGEs. Diabetes predisposes individuals to the
accumulation of AGEs in many organs, including bone. With
respect to structural properties, the accumulation of AGEs in
bone and the formation of intra- and inter-cross-links in collagen
fibres decrease bone biomechanical properties by increasing
material stiffness. Studies on Zucker diabetic Sprague-Dawley
(ZDSD) rats, a rodent model of type 2 diabetes, demonstrated
that bone toughness significantly decreased with duration of
diabetes despite normal mineralisation [25]. AGEs may also
affect bone quality by activating signalling downstream of their
receptor (the receptor for advanced glycation end-products
[RAGE)). This signalling drives marrow MSC differentiation
towards functional osteoblasts, promoting bone formation [26],
and positively regulates HSC differentiation into osteoclasts,
promoting bone resorption [27]. RAGE may also be produced
as a soluble ‘decoy’ receptor that, by binding AGEs, may inhibit
AGE-RAGE signalling axes. In type 2 diabetes, it has been
shown that low serum levels of soluble RAGE and high serum
levels of the AGE pentosidine are indicative of risk for fractures
independent of BMD [28].

Bone vasculature in diabetes Bone vasculature is critical for
bone growth, remodelling and injury healing. It provides a
sustained supply of oxygen, nutrients and regulatory factors,
and removal of metabolic waste. Up to 10% of cardiac output
is distributed to the bone mineral compartment and bone mar-
row by a complex system of sinusoid and classic capillaries. It
is conceivable that the same pathological changes that develop
in diabetes in the peripheral vasculature also develop in bone.
Thus, diabetic complications, including impairment in
endothelium-dependent vasodilation, vascular calcification
and defective angiogenesis, may affect the development
of osteoblast progenitors from the haematopoietic niche
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and delivery of osteoblasts (pericytes) and osteoclasts to
the bone remodelling unit by capillaries present in
Harvesian canals [29]. The reduction in blood flow
and impairment in new vessel formation may lead to a
decrease in osteoblast formation, decrease in bone re-
modelling activity and, consequently, a decrease in bone
quality and delayed fracture healing.

It has been recently reported that microvascular disease cor-
relates with increased fractures in type 1 diabetes and deficits in
the cortical bone in individuals with type 2 diabetes, as com-
pared with individuals without microvascular disease [30, 31].
AGE/RAGE signalling heavily influences vascular calcifica-
tion, as shown in a number of animal and human studies.
Activation of RAGE by AGE:s in vascular smooth muscle cells
(VSMC) of the peripheral vascular system triggers a signalling
cascade involving p38 mitogen activated protein kinase
(MAPK), TGF-3 and NFkB. Subsequent downregulation of
VSMC markers and activation of an osteoblast-like programme,
including expression of Runx2 and osteocalcin and increased
enzymatic activity of alkaline phosphatase, result in VSMC cal-
cification [32]. Thus, it is possible that vessel calcification in bone
may occur by the same mechanism and contribute to decreased
blood flow and delivery of progenitors to the bone remodelling
unit. Although there is a paucity of animal studies on
blood flow and its role in the maintenance of bone
homeostasis and impairments in diabetes, it has been
demonstrated that the anabolic effect of intermittent
parathyroid hormone (PTH) therapy is associated with
increased blood flow in bone, suggesting a supportive
role of microvasculature during bone formation [33].

Muscle contribution to skeletal impairment in diabetes
The interaction between bone and skeletal muscle occurs at
a biomechanical and physiological level. Muscle action ex-
poses bone to a variety of stimuli, including those generated
in exercise. This stimulation can be conveyed in the form of
direct force applied to the bone or in the form of released
endocrine factors. In effect, both forms of muscle-generated
signalling reach cellular components that regulate bone re-
modelling. Diabetes is often associated with limited regular
exercise and a sedentary lifestyle, both of which contribute to
metabolic impairment and systemic low-grade inflammation.
During exercise, skeletal muscle produces myokines, which
are released into the circulation and participate in the regula-
tion of glucose and fatty acid metabolism in an autocrine and
endocrine fashion. Among them, IL-6 and irisin have been
strongly implicated in coupling energy metabolism with bone
metabolism.

The dual effect of the IL-6 cytokine on glucose and bone
metabolism has been well documented [34]. Metabolic im-
pairment is accompanied by chronically increased levels of
IL-6 in the circulation, which contribute to the develop-
ment of insulin resistance. In contrast, IL-6 that is released from
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the muscle in response to exercise has an opposite effect, in-
cluding reduction in systemic inflammation and increased glu-
cose uptake by the muscle. In bone, IL-6 has a comparable dual
effect. Chronically increased levels of IL-6 increase RANKL
production and osteoclastic bone resorption. However, mice
deficient in IL-6 have low bone mass, reduced osteoblast num-
ber and delayed fracture healing [35] suggesting an important
role for this cytokine in the maintenance of bone homeostasis.
Most recently, it has been demonstrated that IL-6 production in
murine exercising muscle is under the control of osteocalcin
and that IL-6, through a feed-forward mechanism, increases
circulating levels of bioactive osteocalcin [36].

Irisin, a myokine implicated in the ‘beiging’ of fat tissue
and in improvements in insulin sensitivity, has been recently
shown to have a positive effect on cortical bone [37].
Interestingly, this effect is autonomous in the bone and occurs
independent of the effects of irisin on fat tissue metabolism.
As demonstrated in vitro, irisin directly signals to MSCs
through a specific, not as yet identified receptor and increases
the expression of osteoblast gene markers. Together these
studies provide a paradigm of the intricate mechanisms for
reciprocal regulation of muscle, bone and energy metabolism.
Moreover, they provide a plausible scenario for how
impairments in energy metabolism may trigger a cascade of
signalling events that may affect both bone and muscle.

Fig. 1 summarises the contribution of glucose metabolism,
muscle, AGEs and vasculature impairment to decreased bone
quality in diabetes.

Evidence for the effect of glucose-lowering
medications for bone health

Glucose-lowering therapies target different aspects of glucose
metabolism, including insulin sensitivity (metformin and
thiazolidinediones [TZDs]), insulin secretion and bioactivity
(sulfonylureas, glucagon-like peptide 1 [GLP-1] analogues,
dipeptidyl peptidase 4 [DPP-4] inhibitors and insulin ana-
logues), and modulation of blood glucose levels by either
increased excretion (sodium—glucose cotransporter 2
[SGLT2] inhibitors) or delaying its appearance following
nutrient digestion (x-glucosidase inhibitors and amylin
[amylin is not currently approved for use in the UK]).

Therapies with either positive or neutral effects on bone
The effects of metformin and sulfonylureas, which account
for more than 70% of prescriptions for diabetes [38], are
considered as neutral for human bone because there is no
correlation between the use of these therapeutic agents and
incidence of fractures. However, strong experimental evidence
suggests that metformin may be beneficial for bone; in mesen-
chymal cells, metformin activates a pro-osteoblastic regulatory
cascade via RUNX2 and AMP-activated protein kinase
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Fig. 1 Graphical summation of the effects of diabetes on bone.
Impairments in glucose and insulin metabolism have indirect and direct
effects on bone quality in individuals with diabetes. Impaired glucose/
insulin metabolism may indirectly affect bone by altering skeletal muscle
signalling. Furthermore, in metabolic disease, the accumulation of AGEs
may trigger pathways that promote collagen cross-linking (altering bone
biomechanics) and impact on bone remodelling. Furthermore, the bone
vasculature is disturbed with dysregulation in glucose and insulin
metabolism, so that the delivery of nutrients and signalling factors

(AMPK)/upstream transcription factor 1 (USF1)/small heterodi-
mer partner (SHP) signalling, and inhibits adipogenesis through
both AMPK and mechanistic target of rapamycin (mTOR)/p70
S6 kinase (p705%%) signalling [39, 40]. Further, in haematopoietic
cells, metformin decreases osteoclast development and prevents
macrophage proinflammatory responses to AGEs by decreasing
RAGE signalling, potentially decreasing bone marrow support
for resorption and proatherosclerotic effects on bone vascula-
ture [39, 41]. To this end, in mice with streptozotocin-induced
type 1 diabetes, metformin improved the angiogenic functions
of endothelial cells via activation of the AMPK/endothelial
nitric oxide synthase (eNOS) pathway [42]. It has also been
shown that metformin has a protective effect on bone mass in
conditions of oestrogen deficiency [43]. Similarly, some
research suggests that glimepiride, a second generation sul-
fonylurea, may enhance osteoblastic differentiation in high
glucose conditions via the phosphoinositide 3-kinase
(PI3K)/Akt/eNOS pathway [44] and bone formation in
ovariectomised rats [45]. Experimental evidence may differ
from clinical observations because the beneficial effects of
metformin and sulfonylureas on human bone may be too
subtle to be detected in the existing clinical trials, which were
not designed to study the effects of these drugs on bone.

(e.g. that regulate vasodilation) to the bone is impaired. The
changes in bone vasculature in diabetes results in decreased re-
modelling activity in the bone. Impairments in glucose and insulin
metabolism also directly impact on osteoblast and osteoclast activity,
resulting in decreased bone formation and bone resorption. Ultimately,
the indirect and direct effects of impaired glucose/insulin metabolism
on bone lead to decreased bone remodelling/turnover, decreased bone
quality and increased risk of fractures

Similarly, the skeletal effects of incretin-based therapies,
such as GLP-1 analogues, in humans are not clear despite
several in vitro and in vivo studies suggesting their beneficial
effect. Both osteoblasts and osteoclasts express GLP-1 recep-
tors and treatment of normoglycaemic ovariectomised mice
with the receptor agonists, exenatide and liraglutide, increased
trabecular, but not cortical bone mass through a combined
effect on osteoblast and osteoclast activity [46].

Animal studies on the effect of DPP-4 inhibitors on bone
have not shown consistent results.

Therapies with negative effects on bone SGLT?2 inhibitors
form a new class of glucose-lowering medications that have
recently been scrutinised for their skeletal effects. There is a
paucity of basic research studies on the effect of SGLT2 inhibi-
tors on bone, however one study showed that canagliflozin may
exacerbate trabecular bone loss in a streptozotocin-induced mu-
rine model of type 1 diabetes [47]. The effects may include
increased bone resorption; however the exact mechanism for this
outcome has not been demonstrated, raising a question as to
whether canagliflozin affects bone directly or systemically [47].

The most notorious drugs that show a negative effect on
bone are TZDs, which act as high affinity ligands and
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activators of PPARy. It is well documented that clinically
approved TZDs, rosiglitazone and pioglitazone, decrease
bone mass and increase incidence of fractures, especially in
women. As full PPARYy agonists, dephosphorylating both
S273 and S112 in the PPARYy protein, TZDs activate pro-
adipocytic pathways and suppress pro-osteoblastic
programmes in MSCs, while activating pro-osteoclastic
programmes in HSCs both directly and via increased
RANKL production in mesenchymal cells [22]. In mice,
TZDs alter bone remodelling by suppressing bone formation
and increasing bone resorption, resulting in decreased trabec-
ular and cortical bone mass. Furthermore, TZD use in mice is
associated with massive accumulation of adipocytes in the
bone marrow cavity (reviewed in [48]). Recently, it has been
shown that TZDs also affect osteocytes, the most abundant
cells in bone, which orchestrate the bone remodelling process.
In osteocytes, rosiglitazone increases production of pro-
osteoblastic Wnt pathway inhibitors (sclerostin and
dickkopf-related protein 1 [DKKI1]) and of the pro-
osteoclastic cytokine RANKL [17, 49].

In conclusion, the most common therapies, metformin and
sulfonylurea, are safe for use in relation to their effect on bone,
whereas less frequent therapies, such as TZDs and possibly
SGLT2, may increase risk of fractures. Yet, with respect to
bone disease in diabetes, the ideal glucose-lowering therapy
would prevent fractures by supporting bone remodelling and,
hence, increasing bone quality. There is no evidence that any
existing glucose-lowering therapies provide such benefits to
bone. However, new research offers a paradigm of glucose-
lowering drugs that may increase bone quality in individuals
with diabetes by increasing bone turnover. In mice, a novel
insulin sensitising agent, SR10171, which is an optimised
derivative of 2-phenoxypropanoic acid and acts as an inverse
agonist for PPARy and a weak agonist for PPAR «, increases
bone mass and bone turnover by modulating the activity of
osteoblasts, osteoclasts and osteocytes [17]. Thus, SR10171
may be considered a prototype drug that may target both in-
sulin resistance and bone disease in diabetes.

Perspectives and future directions

In diabetes, bone disease has a complex pathology, hallmarked
by increased fractures independent of BMD. This complexity
results from the contribution of multiple physiological processes
that are impaired in diabetes and contribute simultaneously to
the negative effect of diabetes on bone and energy metabolism.
There is an array of aspects of bone disease in diabetes that
future studies must address, including the presence of bio-
markers for the prediction of fracture risk and improvements
in fracture healing, and multi-level pharmacological effects of
glucose-lowering therapies on bone. There is also a need to
develop a comprehensive animal model that would accurately
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reflect human bone disease in diabetes, including the intricacies
of inter-organ communication.
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