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A B S T R A C T   

The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput 
microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In 
particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization 
of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive 
overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for 
microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, 
imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of 
each technique to serve as a practical guide for researchers and identify areas needing further methodological 
development. Establishing robust, standardized preprocessing will be essential for drawing valid biological 
conclusions from microbiome studies.   

1. Introduction 

The human microbiome consists of diverse communities of bacteria, 
viruses, and fungi that inhabit various parts of the human body, 
including the gut, skin, and lungs. Owing to its profound impact on 
human health, the microbiome has been extensively studied in recent 
years [1,2]. Recent research suggests that microbial dysbiosis plays an 
important role in intestinal diseases, such as colorectal cancer (CRC) [3] 
and inflammatory bowel diseases (IBD) [4]. Nevertheless, our under-
standing of the human microbiome remains incomplete. Comprehen-
sively analyzing microbial composition and dynamics is essential for 
unraveling the effects of microbiome on human health. Comprehensive 
bioinformatic analyses of microbiome datasets can provide key insights 
into microbiota disturbances, enhancing knowledge of disease 

mechanisms and guiding therapeutic development. 
The complex nature of microbiome data necessitates effective pre-

processing to ensure robust downstream analyses. While numerous 
preprocessing methods exist, a comprehensive review of these tech-
niques is lacking. This paper aims to address this gap by providing an 
overview for current preprocessing methods of microbiome data anal-
ysis. We compare their strengths and limitations of these methods to 
offer practical guidelines for their application. 

Microbiome profiling involves bulk sequencing to identify microor-
ganisms in each sample. Common techniques include 16S ribosomal 
RNA (rRNA) gene sequencing for prokaryotic species, internal tran-
scribed spacer (ITS) sequencing for fungal species, or shotgun meta-
genomic sequencing. The 16S rRNA gene contains both conserved and 
nine hypervariable regions (V1-V9), enabling it to serve as a fingerprint 
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for microbial identification. Analysis of microbiome data can be per-
formed directly on the amplicon sequence variants (ASVs) obtained 
from high-throughput sequencing. Sequencing inaccuracies can occur at 
a rate of 0.1–1.5 % per nucleotide for Illumina sequencing [5,6]. Similar 
sequences are typically clustered into operational taxonomic units 
(OTUs) using a 97 % similarity cutoff through an OTU picking process 
[7]. This OTU table provides the basis for downstream analysis. In 
contrast, shotgun metagenomic sequencing profiles the full host and 
microbial community composition in a given sample [8]. It allows for a 
broader examination of the genetic material present. The data can be 
used to identify the microbial species present and elucidate the func-
tional genes and metabolic capabilities of the microbial community. For 
ITS sequencing, the ITS1 and ITS2 regions, are highly variable among 
different fungal species, thus serving as a reliable marker for fungal 
identification and phylogenetic analysis [9]. While this technique is 
mainly geared towards fungal taxonomy, it does not provide direct 
insight into the functional or metabolic aspects of the fungal community. 
Recent advances in long-read sequencing technologies, such as nano-
pore (Oxford Nanopore) and single-molecule real time (Pacific Biosci-
ence), allow for the generation of much longer reads, from tens to 
hundreds of thousands of bases. The combination of both shotgun and 
long-read sequencing technologies can improve resolution, accuracy, 
and completeness of functional profiling, metagenome binning, and 
assembly [10]. Despite the power of metagenomics, 16S rRNA gene 
sequencing remains popular, especially for profiling microbes in sam-
ples with low microbial biomass, like tissue biopsies. 

Regardless of the sequencing technologies or OTU picking strategies, 
microbiome data is commonly represented as a tabular abundance ma-
trix (such as an OTU/ASV table or functional feature table) where 
samples are organized as columns and microbial species, or features are 
arranged as rows. Microbiome datasets have several typical character-
istics. Typically, microbiome data are over-dispersed, meaning that the 
abundances of features are highly variable. The data is also high- 
dimensional, with potentially thousands of features being profiled. 
Finally, microbiome data exhibit high sparsity, with the abundance 
matrix filled with many zeros – often up to 90 % [11]. This sparsity 
occurs because many species are only present at low abundance or 
completely absent in each sample. For instance, the fecal microbiome 
consists of billions of microbes from thousands of distinct phylogenetic 
lineages [12], but only a subset of this diversity is present within each 
individual. The combination of over-dispersion, high dimensionality, 
and sparsity poses challenges for statistical analysis and subsequent 
interpretation. 

The compositional nature of microbial profiles poses challenges for 
detecting rare taxa. The measurement sensitivity for identifying low 
abundance microbes depends on the amplification method, sequencing 
technology, or sequencing depth. Taxa below detection threshold are 
assigned zero abundance in compositional data, even though they may 
actually be present at low levels. Thus, zeros can originate from two 
sources: technical zeros, which stem from limited measurement sensi-
tivity, and biological zeros, which represent true microbial absence. An 
overabundance of technical zeros can lead to inflated sparsity in the 
compositional data matrix. Without appropriate preprocessing, the 
excessive zeros can introduce biases and impair the performance of 
downstream statistical and machine learning methods on raw micro-
biome data [13,14]. 

Data preprocessing techniques involving filtering and trans-
formation, are important [15]. Raw data often contain inconsistencies 
and errors that can bias conclusions. For instance, batch effects arise 
when different groups of samples are processed at different times or 
under different conditions. In addition, microbiome data might be 
incomplete due to technical constraints, as limitations in sequencing 
depth or detection sensitivity mean some microbes are not fully 
captured. To mitigate these issues, data preprocessing is applied to 
improve data quality before analysis. Preprocessing helps address 
missing data, reduce technical noise and biases, and filter out 

uninformative features. We focus on typical data preprocessing work-
flows (Fig. 1) for microbiome sequencing data. Key steps include quality 
filtering, batch effect correction, imputation of missing values, data 
normalization, and transformation (Fig. 2). The strengths and limita-
tions of these steps are summarized in Table 1, whereas the comparison 
between characteristics of transcriptomic data and microbiome data is 
in Table 2. While microbiome data analysis is the primary focus of this 
review, many of the preprocessing methods can be applied to other data 
types such as transcriptomic [16] and proteomic [17]. Metatran-
scriptomics focuses on analyzing the collective set of RNA transcripts to 
understand which genes are being actively expressed, and meta-
proteomics examines the profile of expressed proteins. They are gaining 
attention to decipher the active biological processes occurring within 
microbiome communities [18–20]. As these technologies mature, robust 
preprocessing will be crucial to derive significant biological insights. 
Careful data curation before analysis can enhance the reliability, inter-
pretability, and comparability of the results. 

2. Pre-processing methods 

Pre-processing of raw sequencing data is essential before generating 
the abundance matrices. Preprocessed, denoising, dereplication, and 
taxonomic assignment of 16S rRNA gene sequences are often performed 
using two widely used packages, QIIME2 [42] or Mothur [43]. They 
generate abundance tables and taxonomies in standard formats such as 
the BIological Observation Matrix (BIOM) format or tabular plain text 
format. In contrast, diverse workflows exist for processing shotgun 
metagenomic data. Packages such as MetaPhlAn [44] and MEGAN [45] 
were developed to taxonomically profile metagenomic reads after 
quality control and host filtering.  

1) Filtering  

Microbiome data analysis typically begins with raw sequences in 
plain text format such as FASTQ or FASTA. The FASTQ format is used to 
store both the raw sequence data and its associated base quality scores, 
whereas FASTA files are usually lack quality scores. The initial pre-
processing step usually involves quality control of raw sequencing reads, 
during which all platform-specific sequencing adapters and bases with a 
low base calling score (Phred score) are trimmed from the sequencing 
reads. Read pairs with a low average Phred score are also discarded prior 
to downstream analysis. Tools such as FastQC [21], Trimmomatic [22] 
or Cutadapt [23] are widely used for this step.  

Abundance matrices and taxonomic assignments for amplicon data 
and metagenomics data can be generated by 16S rRNA analytic pipe-
lines such as QIIME2 [42] or Mothur [43], or packages such as Meta-
PhlAn [44], MEGAN [45], Kraken [46], or Kaiju [47]. For 16S rRNA 
data, QIIME2 and Mothur are commonly used for tasks like filtering, 
denoising, dereplication, and taxonomic assignment. The resulting 
abundance matrix and taxonomic assignment are typically in BIOM 
format or tabular plain text format. Metagenomic data, on the other 
hand, are processed using different workflows and pipelines such as 
MetaPhlAn [44] and MEGAN [45]. Before utilizing these tools, quality 
filtering and the removal of host-derived reads are usually performed. 
The abundance matrix undergoes two filtering methods: sample filtering 
and OTU/feature filtering.  

Sample filtering involves removing samples with significantly lower 
library sizes (total number of reads) compared to other samples in the 
dataset. These low-quality samples may be affected by poor sample or 
DNA quality, or technical errors, which could introduce biases or inac-
curacies in downstream analysis [48]. It is important to conduct sample 
filtering to ensure a reliable representation of the microbial community 
without sacrificing too much statistical power.  

OTU or feature filtering, on the other hand, focuses on dropping 
OTUs or features with low abundance or prevalence. This step is crucial 
to improve the reliability of analysis and can have a significant impact 
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on the outcomes. Filtering can be based on count values or their relative 
abundance. Prevalence filtering, also known as singleton filtering, in-
volves discarding features observed in fewer than a specific number of 
samples. This is often determined by a threshold value, typically set 
between 0.01 % and 0.1 %, to determine whether a feature is considered 
present in a sample (Table 6). The rationale behind this filtering is to 
remove non-informative OTUs or features that are present only in a few 
samples and may not contribute significantly to the biological or path-
ological process of interest. Similar techniques are used in microarray 
data analysis, such as those implemented in the R package genefilter 
[24]. In addition to quantitative OTU filtering, filtering can also be 
applied using qualitative criteria. For example, samples with low mi-
crobial biomass or potential contamination from extraction kits, re-
agents, laboratory, or clinical environments can be identified and 
removed. Taxa detected in negative controls can be considered as con-
taminants and be removed from the sample data. Tools such as Decon-
tam [49] can help identify contaminating taxa that inversely correlate 
with sample DNA concentration. Taxa commonly found in commercially 
available kits and reagents should be removed [50]. Any taxa that show 
a strong correlation with these contaminating taxa or batch factors 
should be removed from downstream analysis.  

Given advances in machine learning (ML) algorithms and models 
[51,52,53], steps like feature filtering and contamination detection of 
microbiome data could be improved by ML-enabled methods. However, 
the use of these methods for feature filtering, whether supervised or 
unsupervised, should be carefully evaluated. A recent study focusing on 
analyzing tumor-associated microbial signatures from The Cancer 

Genome Atlas (TCGA) data was criticized for employing biased super-
vised filtering and normalization methods, which introduced distinctive 
signatures into their findings [54,55].  

Proper removal of low-quality samples or features is crucial in 
microbiome data analysis. However, the selection of threshold values or 
filtering methods should be undertaken with caution to avoid intro-
ducing biases and spurious findings. Sometimes, the choice of a filtering 
threshold is subjective, but it should be based on the study design and 
biological understanding of the microbial community. Solely relying on 
abundance levels for setting the threshold can result in exclusion of rare 
but relevant features. It is essential for researchers to critically evaluate 
the rationale behind their choice of filtering criteria, to prevent the 
inadvertent exclusion of important and informative features.  

2) Batch Effect Correction 

Batch effects are sources of variation that can arise from technical 
artefacts or confounding biological variables [56]. If not addressed, 
batch effects will introduce unwanted variations and confounding fac-
tors that align with the groups being compared, and consequently 
obscure true signals or lead to false positives. Microbial-associated 
variables of interest in case-control and longitudinal studies often 
confound with batch surrogates, either environmental [57] or 
host-related factors [58]. Therefore, it is important to detect and correct 
for batch factors during data pre-processing. 

Batch effects can be minimized through proper study designs with 
balanced sample sizes across groups or batches and consistent 

Fig. 1. Flow chart from DNA extraction to data preprocessing steps This process encompasses the extraction of microbiome DNA from human stool or oral samples, 
followed by 16S or shotgun sequencing. Subsequently, standard pipelines are employed to generate feature tables, which are then processed for filtering, batch effect 
correction, missing value imputation, and normalization. 

R. Zhou et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 21 (2023) 4804–4815

4807

OTU table

OTU table ready for
analysis

No

Detect batch bias

Yes

Complete matrix required for
downstream analysis

No

Yes

If the batch effect correction methods
cannot deal with sparse data, imputation

should be conducted priorly

Imputation

Pseudo count

Regression methods

Unsupervised methods

Batch effect correction

Correction of batch
effects

Adjustment of batch
surrogate variables

Normalization and
transformation

Subsampling or
resampling

Scaling

Log transform

No

Detect batch bias

Yes

Batch effect correction

Correction of batch
effects

Adjustment of batch
surrogate variables

Complete matrix required for
downstream analysis

No

Yes

Imputation

Pseudo count

Regression methods

Unsupervised methods

Filtering

OTU/Feature filtering

Sample filtering

Some data
normalization and

transformation methods
are also pre-requisites

for certain batch
correction algorithms.
For example, ComBat
requires adherence to

normality.

Fig. 2. Flow chart to summarize the workflow of data preprocessing Imputation sometimes need to be conducted before batch effect correction, as some batch effect 
correction methods cannot handle sparse data. Additionally, certain data normalization and transformation methods serve as prerequisites for specific batch 
correction algorithms. For instance, ComBat necessitates adherence to normality. 
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experimental protocols such as sample processing [59]. However, even 
with these measures in place, exploratory analysis is still necessary to 
uncover hidden batch effects or covariates that may impact the effects of 
interest. Ordination techniques such as Principal Component Analysis 
(PCA) and clustering methods can be used to qualitatively diagnose the 
contribution of individual variables to the explained variance. However, 
these methods may not be directly applicable to microbiome data, due to 
unbalanced designs and confounding between batch effects and treat-
ment effects [33]. 

Managing batch effects can be carried out by two strategies: 
correction of batch effects and adjustment of batch surrogate variables. 
The first correction strategy aims to remove batch effects from the raw 
data to generate corrected data for downstream analysis. Methods such 
as univariate ComBat [25], removeBatchEffect [26], percentile 
normalization [60], multivariate RUVIII [61], and SVD [62] can be 
employed for this purpose. These methods assume no interaction be-
tween batch effects and factors of interest. Some of these methods, such 
as ComBat and RUVIII, require the data to be complete, continuous, 
normally distributed and with negative controls across batches. The 
second adjustment strategy aims to estimate unknown batch variables 
and incorporate them as covariates in linear models. Methods include 

Surrogate Variable Analysis (SVA) [29], Remove Unwanted Variation 
(RUV) [63], and Bayesian Dirichlet-multinomial regression 
meta-analysis (BDMMA) [28] can be used for this approach. SVA iden-
tifies surrogate variables that represent unwanted variation, while RUV 
estimates unwanted variance with the inclusion of negative control 
across batches. Additionally, batch effect correction methods developed 
for single-cell RNA sequencing (scRNA-seq) data, such as Harmony [30], 
Mutual Nearest Neighbors (MNN) [31], and LIGER [32], can be adopted 
to microbiome data analysis with some modifications.  

Many methods for batch effect correction were originally developed 
for transcriptomics and may not be fully optimized for microbiome data 
analysis. Improper use of these methods can introduce biases or artifacts 
[64,65], and may fail to effectively remove batch effects while con-
founding biological signals of interest. To address these challenges, 
several methods have been proposed. PLSDA-batch utilizes Partial Least 
Squares Discriminant Analysis (PLSDA) [33] and considers the sparsity 
of microbiome data by incorporating weighted group sizes to deal with 
unbalanced batches. ConQuR [34], based on a two-part quantile 
regression model, demonstrates improved performance in reducing 
batch variability compared to existing methods and has the potential to 

Table 1 
Common data preprocessing steps of microbiome data.  

Preprocessing 
Step 

Description Methods Advantages Limitation 

Quality Control & 
Filtering 

Removes low quality sequences and 
potential contaminants and filters out 
low-abundance OTUs and samples。 

FastQC [21] 
Trimmomatic [22] 
Cutadapt [23] 
genefilter [24] 

Reduces biases in the data and 
improves reliability of downstream 
analysis. 

Might result in loss of some real but rare 
sequences. 

Batch Effect 
Correction 

Adjusts for systematic differences in data 
due to non-biological factors like 
different sequencing runs or different 
batches. 

ComBat [25] 
Limma [26] 
DESeq2 [27] 
Bayesian 
Dirichlet-multinomial 
regression [28] 
SVA [29] 
Harmony [30] 
MNN [31] 
LIGER [32] 
PLSDA-batch [33] 
ConQuR [34] 

Improves comparability across 
samples and reduces potential 
confounding. 

May inadvertently remove some real 
biological differences if not carefully 
applied. 

Imputation Decides how to handle zero counts in the 
OTU table, imputing their likely values. 

DESeq2 [27] 
phyloseq [35] 
k-NN [36] 
random forest [37] 
mbImpute [38] 

Addresses the issue of missing data. Different methods make different 
assumptions and may not always reflect 
reality. 

Normalization Adjusts for differing sequencing depth 
across samples. 

Rarefaction 
ANCOM-BC [39] 
CSS [40] 
TMM [41] 
TSS 

Makes samples directly 
comparable. 

Rarefaction discards data and can reduce 
sensitivity. Other normalization methods 
might not be suitable for all data types. 

Data 
Transformation 

Converts count data to a different scale, 
often to meet assumptions of 
downstream statistical methods. 

Log-ratio based 
transformation 

Helps meet assumptions of 
downstream analysis and can 
reduce impact of high-abundance 
taxa. 

Can distort data and mask real biological 
differences.  

Table 2 
Comparison of host transcriptomic and metagenomic data set.   

Host transcriptomic data Metagenomic data 

Matrix Type Dense matrix with numerical values Sparse matrix with large number of zeros 
Typical Values Continuous values representing gene expression levels Counts data representing abundance of features in the samples 
Value 

Characteristics 
Values may vary widely in scale Zero-inflated and overdispersion, usually convert to relative abundance 

Nature of Data Non-compositional data Compositional data, values can be counts or relative abundance that sums up to a 
constant 

Dimensionality High: many genes, potentially fewer samples, around tens of thousands to 
over 100,000 different transcripts/splicing isoforms 

High: many microbial species potentially fewer samples, depend on the number of 
bacterial species, around few thousands to tens of thousands 

Challenges Managing variation in scale across genes and samples, dealing with high 
dimensionality 

Dealing with sparsity and zero-inflation, handling compositional nature of data, 
dealing with high dimensionality  
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extend its applicability to metagenomic data. While missing value 
imputation (MVI) algorithms are increasing being used in microbiome 
data analysis, recent works demonstrated that inappropriate use of MVI 
can obscure batch effects [66,67]. Therefore, a promising direction for 
the future of microbiome data analysis may involve integrating impu-
tation and batch effect correction into a comprehensive package or 
pipeline, considering the inherent data sparsity. Similar to HarmonizR 
[68], incorporating appropriate missing value handling prior to batch 
effect correction could harness more reliable data for downstream 
analysis. Given that the factors contributing to batch effects in micro-
biome data are often multifaceted and interdependent, a thorough 
assessment of the batch variables prior to correction is crucial. (Table 3).  

3) Imputation 

Imputation is a critical technique used in different fields of data 
science analysis to estimate missing values. However, imputing missing 
values in microbiome data poses unique challenges due to the abun-
dance of zeros resulting from the absence or low presence of certain 
microbiome taxa. 

The prevalence of zeros in microbiome data presents several diffi-
culties that can impact downstream analysis. Firstly, the large number of 
zeros can lead to information loss, as taxa may not be accurately 
detected due to limited sequencing depth. Secondly, the sparsity can 
introduce bias into statistical analyses, inflating the false-positive rate 
and reducing statistical power [69]. Lastly, the high sparsity can also 
make the results difficult to interpret. Therefore, it is crucial for re-
searchers to carefully select appropriate statistical methods to handle 
this sparsity, such as zero-inflated negative binomial (ZINB) and 
zero-inflated Poisson (ZIP) distributions. These distributions can model 
the excess zeros in microbiome data. Despite these challenges, with 
careful and suitable analysis, valuable insights into the microbiome 
community and its roles in human diseases can still be obtained. 

The zeros in microbiome data can be classified into two categories: 
biological and technical. Biological zeros represent the true absence of a 
taxon in a corresponding microbiome sample due to biological process. 
In contrast, technical zeros arise from limitations of measurement, such 
as insufficient sequencing depth [70]. The imputation strategy for 
microbiome data aims to differentiate between biological zeros and 
technical zeros and insert estimated values for the latter. 

A traditional approach to handle missing values is to add a pseudo- 

count [71]. Although this strategy is straight-forward and simple, it 
can introduce bias. Imputation methods can be categorized as para-
metric and non-parametric. Parametric methods assume a specific dis-
tribution of data, such as a normal distribution that permits the use of 
regression modelling to predict missing values [40,72]. However, 
microbiome data is often not normally distributed, and the zero-inflated 
negative binomial (ZINB) distribution is more commonly used to ac-
count for the high number of zeros and the overdispersion. Parametric 
imputation can be implemented using tools like DESeq2 [27] and phy-
loseq [35]. However, parametric models may not be able to capture 
complex patterns in the data [73]. Non-parametric methods, on the 
other hand, make fewer assumptions and have been widely used in 
imputations, including k-Nearest Neighbors (k-NN) imputation [36] and 
random forest imputation [37] to predict missing values. Nevertheless, 
imputation on microbiome data has limitations in capturing the 
complexity of microbial interactions and non-linear relationships. Some 
imputation techniques may have unrealistic assumptions of data distri-
bution. Additionally, imputation methods may fail to estimate missing 
values of rare taxa given limited information. 

While imputation has historically been overlooked in microbiome 
data analysis, its importance in the data preprocessing pipeline is 
increasing. Although it is challenging due to the high data sparsity, 
specific imputation method for microbiome data has been developed 
[38]. The method aims to distinguish between true zeros and technical 
zeros by assuming different data distributions: Gamma distribution for 
the non-biological or technical zeros, and normal distribution for the 
taxonomical abundances including the true zeros with a presumed 
missing value rate. DeepMicroGen is another newly developed method 
to impute missing values in longitudinal microbiome studies [74]. It 
utilizes a generative adversarial network (GAN) model with recurrent 
neural network (RNN)-based components. When used appropriately, 
imputation can provide a more complete dataset of the microbiome 
(Table 4). Future studies should consider improving current imputation 
techniques or developing new methods specifically for microbiome data. 
This will enable researchers to better capture the richness of information 
that microbiome data holds.  

4) Normalization 

Microbiome data is inherently compositional, and the application of 
standard statistical methods to such data can yield unreliable results 

Box 1 
Batch effect correction methods. 

ComBat works by estimating batch-specific means (μ̂ik) and variances (σ̂ik
2) and then shrinks these estimates towards the overall mean (μ̂i) and 

variance (σ̂i
2): 

X′
ij =

Xij − μ̂ik

σ̂ik
× σ̂i + μ̂i   

SVA is based on the identification of surrogate variables that capture the unwanted variation in the data [29] 
E = X⋅B+ S⋅C+ ε  

where E is the expression matrix, with known covariate X and surrogate variable S, C is the matrix of coefficients for the surrogate 
variables. 

Harmony uses a matrix factorization approach to estimate the bias and adjust the data by aligning all possible batch effects. 
MNN identifies sample pairs that are nearest neighbors between different batches as these pairs are more likely to influence each other and cause 
batch effect. MNN can then estimate batch variations based on these pairs. 
LINGER distinguishes shared factors and dataset-specific factors through integrative non-negative matrix factorization (iNMF). Clusters of 
samples are then normalized by these factor loadings.  
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Table 3 
Common methods for batch effect correction.  

Method Original Data 
Type 

Theoretical 
Framework 

Details on Theoretical 
Framework 

Advantages Limitation R Package Reference 

ComBat None Empirical Bayes 
methods, location 
and scale 
adjustments 

Assume that data is normal- 
like distributed. 
Bayesian framework 
borrows information from 
all the OTUs/features to 
estimate the batch effect 
parameters, which is 
beneficial when the sample 
size is small. 

Can correct batch effects 
in presence of 
confounding variables, 
widely used, effective 

Potential 
overcorrection for 
large sample sizes, does 
not perform well with 
sparse count data 

sva [25] 

Limma Transcriptomics Linear modeling, 
empirical Bayes 
statistics 

Fit linear models to 
expression data. Each OTU/ 
feature is individually 
modeled, but information is 
borrowed across features 
using empirical Bayes 
methods. 
Require log-transformed to 
ensure a normal-like 
distribution 

Provides robustness to 
outliers, uses empirical 
Bayes moderation, 
powerful statistical 
framework 

Less appropriate for 
zero-inflated datasets, 
such as single-cell 
RNA-seq 

limma [26] 

DESeq2 Transcriptomics Negative binomial 
distribution, Wald 
significance tests 

Negative binomial 
distribution captures the 
over-dispersion observed in 
microbiome count data. 

Appropriate for count 
data, estimates variance- 
mean dependence, 
controls false discovery 
rate 

Not designed 
specifically for batch 
effect correction, 
potential for over- 
dispersion 

DESeq2 [27] 

Bayesian 
Dirichlet- 
multinomial 
regression 

Microbiome data Dirichlet- 
multinomial 
regression model 
and adopt the 
Bayesian framework 

Investigate the impact of 
over-dispersion on the 
association detection 
performance of BDMMA by 
varying the degree of 
baseline dispersion. 
BDMMA shows better 
performance than the other 
methods. 

Reduce the number of 
false discoveries 
Able to identify the small 
set of taxa that are truly 
associated with the 
phenotypes with very low 
false discovery rates 

Require the batch 
information to be 
known for all the 
samples. 

BDMMA [28] 

SVA Transcriptomics Surrogate Variable 
Analysis, data 
decomposition 

Assume that the most 
substantial component of 
variability is not explained 
by the model (i.e., the SVs). 
They represent unwanted 
or technical variation. 

Corrects for known and 
unknown confounding 
variables, flexible 
application. 
Design for the high- 
dimensional data 

Less straightforward to 
use, not ideal for zero- 
inflated data 

sva [29] 

Harmony Transcriptomics Iterative harmonic 
alignment, 
dimensionality 
reduction 

The principle is that within 
each batch, OTUs can be 
grouped into clusters, and 
these clusters should be 
similar across batches. By 
adjusting the centers of 
these clusters across 
batches, Harmony corrects 
for batch effects. 

Intended for high- 
dimensional data, allows 
integration of multiple 
datasets, good 
performance with single- 
cell data 

Requires high 
computational 
resources, not ideal for 
low-dimensional data 

harmony [30] 

MNN Single-cell 
transcriptomics 

k-nearest neighbors, 
data alignment 

For each OTU/feature in 
one batch, the algorithm 
finds its nearest neighbors 
in another batch. 
Assume that batch effects 
are additive, half of the 
difference of these pairs are 
considered as an estimate 
of the batch effect. 

Effective for single-cell 
RNA-seq data, can identify 
mutual nearest neighbors 
across batches 

Might not perform well 
with large differences 
between batches, 
requires good 
preprocessing 

scran, scater [31] 

LIGER Single-cell 
transcriptomics 

Nonnegative Matrix 
Factorization, 
clustering 

Use non-negative matrix 
factorization (NMF) to 
decompose each dataset 
into two matrices: one 
representing shared and 
unique factors (W matrix) 
and another representing 
cell or sample loadings for 
these factors (H matrix). 

Allows joint analysis of 
multiple datasets, can 
identify shared and 
dataset-specific factors 

Relatively complex to 
use, requires careful 
parameter tuning, high 
computational demand 

LIGER [32] 

PLSDA-batch Microbiome data Partial Least Squares 
Discriminant 
Analysis 

A relaxed assumption about 
data distribution and thus is 
more suitable for 
microbiome data 

Preserve treatment 
variation; include group 
size weight to handle 
unbalanced batch 
× treatment designs; 
include variable selection 

Require pre-defined 
batch group 
information; 
constructed based on a 
linear combination of 
variables 

PLSDAbatch [33] 

(continued on next page) 
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[11]. To address this challenge, normalization techniques are employed 
in microbiome data to transform the data to a common and comparable 
scale. Normalization is important due to over-dispersion and uneven 
sampling depths, and it should be performed prior to downstream 
analysis of microbiome data [75]. The effectiveness of normalization 
can be influenced by different factors, including the choice of normali-
zation methods and sample size. The presence of rare OTUs can also 
impact the selection normalization method, as some methods are sen-
sitive to low-abundance taxa. Therefore, it is critical to carefully select 
appropriate method that suits the specific dataset. 

Among the normalization methods used in microbiome research, 
rarefaction is the most employed. Samples with different sequencing 
depths are subsampled to the same depth based on the minimum 
sequencing depth across samples, or by evaluating rarefaction curves 
[76]. To avoid under-sampling, it is important to remove samples with 
low library sizes prior to rarefaction. Scaling is another simple and 
commonly used normalization method. It involves multiplying each 
count by a ratio determined based on a quantile of the data. Commonly 
used scaling methods include Cumulative-sum scaling (CSS) [40], 
Trimmed Mean of M-value (TMM) [41], or Total-Sum Scaling (TSS). 
Since microbiome data often contains many zeros, different approaches 
are used to handle these zeros. Some researchers choose to retain the 
zeros [77], while some others assign a small value to all the zeros [78]. 
Both approaches are part of the standard pipeline for analyzing micro-
biome data. 

Several log-ratio based normalization methods have been proposed 
for microbiome data. These include log-transformations such as additive 
log-ratio (ALR), isometric log-ratio (ILR) and centered log-ratio trans-
formation (CLR). Quantile normalization [79] is another useful tech-
nique that involves adjusting the distribution of each sample’s data to 
match a common reference distribution. Given a matrix X with columns 
as samples and rows as OTUs/features, the quantile normalization 
proceeds as follows:  

a. Rank the data in each column.  
b. For each rank, calculate the average value across all columns. 

c. Replace the data in each column with the average values corre-
sponding to the rank from step b.  

If the data distribution is not considered, normalization methods can 
potentially distort the relationships between samples and features. 
Therefore, some novel methods like Analysis of Compositions of 
Microbiome with Bias Correction (ANCOM-BC) were specifically 
developed for more complex compositional data [39]. ANCOM-BC fo-
cuses on differential abundance analysis and incorporates a bias 
correction term in linear regression to account for biases caused by 
different library size. This approach is similar to the log-ratio trans-
formation employed in other methods like ANCOM[71] and DESeq2 
[27] for analyzing compositional data. 

Normalization is a standard pre-processing step for various types of 
data, including transcriptome and microbiome data. However, the high 
sparsity observed in abundance matrices can pose challenges for some 
normalization approaches. For instance, log-transformations including 
CLR, ALR and ILR cannot be directly applied to zero counts. There are 
several ways to address this issue, such as adding a small constant to all 
counts (pseudo-count) as mentioned in imputation methods. Conse-
quently, it is important to select an appropriate normalization method 
that can account for different library sizes. 

Normalization methods usually assume that the factors causing 
variations in sequencing depth or technical biases have the same impact 
among all samples. The normalization process aims to uniformly 
transforms the data across all samples. However, in certain cases, this 
assumption may not hold true. The normalization process may not 
capture different types of biases among samples. Therefore, it is 
important to carefully consider the selection of normalization methods 
that better accommodate the characteristics of the microbiome data and 
provide a more accurate representation of the true biological diversity 
within the samples (Table 5).  

5) Data integration in microbiome data 

Table 3 (continued ) 

Method Original Data 
Type 

Theoretical 
Framework 

Details on Theoretical 
Framework 

Advantages Limitation R Package Reference 

when estimating 
treatment components 

ConQuR Microbiome data Non-parametric 
modeling with two- 
party quantile 
regression model 

A logistic model determines 
the likelihood of the taxon’s 
presence, and quantile 
regression model’s 
percentiles of the read 
count distribution given the 
taxon is present. 

Account for zero-inflated, 
over-dispersed 
microbiome data 

Not working if batch 
completely confounds 
the key variable 

ConQuR [34]  

Table 4 
Methods for imputation of missing values in microbiome data.  

Method Theoretical Framework Advantages Limitation R package Reference 

Pseudo count Replace the missing value with a 
pseudo count or small constant 

Easy to implement and interpretation Introduce biases None None 

Average/median 
of the feature 

Compute the average or median 
to replace the missing value 

Easy to implement and interpretation Introduce biases None None 

mbImpute After distinguishing biological 
zeros and technical zeros, impute 
technical zeros with statistical 
modeling 

Specifically designed for microbiome 
data. Empowered DESeq2-phyloseq has 
better performance in selecting 
predictive taxa for disease conditions 

Highly depend on the assumption of data 
distribution. Some real-world datasets may 
not fulfil the requirement 

mbImpute [38] 

DeepMicroGen Recurrent neural network-based 
GAN model 

Specifically designed for microbiome 
data. 
Discriminator can differentiate the actual 
and the imputed values from the 
generator and predict the timepoint of 
each sample 

Assume that the samples are generated with 
the same time intervals. If subjects are 
sampled at irregular time intervals, 
DeepMicroGen may not perform well. 

DeepMicroGen [74]  
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Data integration involves merging data from multiple sources to gain 
a more comprehensive understanding of datasets. In the context of 
microbiome studies, where different platforms, techniques, and studies 
are often used, effective data integration is crucial. Batch effect 
correction and data transformation are important steps to harmonize the 
datasets. Batch effect correction identifies technical variations to ensure 
comparability between datasets, while data transformation aligns 
datasets from different studies to a common scale. Microbiome data 
presents statistical analysis challenges due to zero inflation and the 
compositional nature of abundance data. Transformations are applied to 
modify the data structure, making it more suitable for statistical tests 
and ensuring the validity of the analyses. 

There are numerous methods available for data integration. Meta- 
analysis is a robust approach for pooling results from multiple studies. 
There are R packages that allow for the meta-analysis of microbiome 
data from different studies, combining effect sizes to determine overall 
patterns. MetamicrobiomeR employs the Generalized Additive Models 
for location, scale and shape using a zero-inflated beta family to analyze 
microbiome relative abundance datasets [81]. MANTA (Microbiota And 
phenotype correlation Analysis platform) is a data integration platform 
that allows users to test the correlation between the microbiome abun-
dance and other phenotypic variables, including dietary habits and 
lifestyle parameters [82]. NetMoss can minimize batch effects and 
identify strong biomarkers that may be overlooked by abundance-based 
methods [83]. Instead of combining the raw data, another approach is to 
analyze the summarized results from other studies. MMUPHin (Meta--
Analysis Methods with a Uniform Pipeline for Heterogeneity in 

microbiome studies) incorporates batch and study effect correction, 
meta-analyzed differential abundance testing and population structure 
discovery [84]. 

In addition to discussing the combination of data from different 
sources, we have reviewed various research papers focused on micro-
biome studies (Table 6). These papers have adopted different pre-
processing methods in their analysis of microbiome data. While filtering 
and normalization are consistently performed, there is variability in the 
specific techniques used. Imputation is under-utilized, possibly due to 
the absence of reliable and unbiased techniques. Moreover, there is a 
growing trend in adopting integrated pipeline packages capable of 
performing multiple preprocessing steps. These observations highlight 
the need to further optimize and standardize preprocessing methodol-
ogy for microbiome studies. 

3. Conclusion 

Issues of over-dispersal, high sparsity, and high dimensionality in 
microbiome data pose significant challenges for downstream analyses. 
Failing to address these challenges can result in misleading outcomes. In 
this paper, we examined several common approaches for data pre- 
processing. These play a crucial role in mitigating biases and 
improving the interpretability of microbiome data. However, it is 
important to acknowledge that they have limitations. Therefore, future 
research should prioritize improving existing methods and exploring 
novel approaches that can effectively handle the unique characteristics 
of microbiome data. 

Box 2 
Log-ratio normalization methods formula. 

Given a sample with different features: x = (x1, x2,…, xn)

ALR(x) =
[

log
(

x1

xn

)

, log
(

x2

xn

)

,…, log
(

xn− 1

xn

)]

Where xn is chosen as the reference part. 

In ILR, we first need to divide the composition into two groups: numerator and denominator groups: (x1,…, xc)and(xc+1,…,xn). 

ILR(x) =

̅̅̅̅̅̅̅̅̅̅
d1

d1+d2

√

log
( ̅̅̅̅̅̅̅̅̅̅̅

x1…xc
d1√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅xc+1…xnd2√

)

Where d1, d2 are the number of elements in the numerator and denominator groups respectively. 

CLR transformation takes the logarithm of each element divided by the geometric mean of all elements. For a composition vector x with positive 
components [x1,x2,….,xn]. 

CLR(xi) =

[

log
(

x1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(x1x2…xn)

n
√

)

, log
(

x2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(x1x2…xn)

n
√

)

,…, log
(

xn̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(x1x2…xn)

n
√

)]

Table 5 
Common methods for normalization and data transformation.  

Method Theoretical Framework Advantages Limitation R package Reference 

Rarefaction Random sampling Simple, easy to implement Loss of data, increased false negatives phyloseq [35] 
Cumulative-sum 

scaling 
Statistical modeling Robust to various library sizes Sensitive to outliers, may introduce bias metagenomeSeq [40] 

Trimmed Mean of 
M-value 

Linear scaling Minimizes log-fold changes 
between samples 

Requires counts to be of similar distribution edgeR [41] 

Total-Sum Scaling Constant sum scaling Easy to interpret Sensitive to outliers phyloseq [35] 
Additive log-ratio Log-ratio based 

transformation 
Can reveal relative changes 
between features 

Require selection of denominator component and may 
cause the loss of one dimension 

compositions [80] 

Isometric log-ratio Log-ratio based 
transformation 

Removes the unit-sum 
constraint 

Computationally intense and harder to interpret compositions [80] 

Centered log-ratio Log-ratio based 
transformation 

Centered at zeros Highly sensitive to zeros compositions [80] 

ANCOM-BC Bayesian framework Can deal with zero-inflated 
data 

Requires sufficient sample size ANCOMBC [39]  
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In recent years, computational biology has placed greater emphasis 
on addressing key challenges such as data imputation and batch effect 
correction. Robust batch effect correction methods are essential when 
integrating data from multiple sources. Continuous efforts are being 
made to develop new methodologies that can effectively tackle these 
issues. By employing appropriate methods for data pre-processing, the 
analysis of microbiome data will enable researchers to obtain a more 
accurate and comprehensive understanding of the intricate role of 
microbiome in human health and disease. 
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Table 6 
Different combinations of preprocessing steps in some published studies.  

Study Design Filtering Batch effect correction Imputation Normalization 

Perspective study; Metagenomics of fecal 
samples from 94 melanoma patients 
treated with anti-PD-1 [85] 

Dataset was filtered to include at 
least 5000 reads per sample 

ComBat Pseudo count Log transformed and quantile normalized 

Randomized controlled trial; metagenomic 
and 16s rRNA sequencing of fecal and 
mucosal microbiome from subjects with or 
without probiotics [86] 

16s: OTUs with relative abundance 
<0.1 % 
Metagenomics: fecal samples with 
less than 500k and mucosal 
samples with less than 100k 
bacterial reads were removed 

None None 16s: rarefied to a depth of 10,000 reads 
All samples: normalized to baseline 

Re-analysis of whole-genome and whole- 
transcriptome sequencing data from The 
Cancer Genome Atlas (TCGA) to identify 
the patterns of tumor-associated microbial 
signatures [54] 

Samples with missing metadata 
(ethnicity, ICD10 codes, DNA/RNA 
analyte amounts, or FFPE status) 
OTUs likely to be contaminants 
were removed 

Supervised normalization 
correction (SNM) 

None Log transformation of detected microbial 
read counts into count per million using 
the Voom algorithm 
Quantile normalization for SNM correction 

Meta-analysis of published studies on 
inflammatory bowel disease [84] 

None Combat (MMUPHin) Pseudo count Quantile normalized 

Randomized study; 16s rRNA sequencing of 
gut microbiome from infants with early- 
onset neonatal sepsis and healthy infants 
from two separate sites [87] 

Abundance-based filtering selects 
OTUs present at a confident level of 
detection (0.1 % relative 
abundance) in at least two samples 

None None Scaling: To calculate counts per million in 
order to normalize read counts for library 
size, counts were divided by a 
normalization factor of the library size 
divided by 1000,000. 

Randomized, double-blind, placebo- 
controlled clinical trial; 16s rRNA 
sequencing of gut microbiome from 169 
participants received probiotics 
Lactobacillus rhamnosus or placabo [88] 

Quality filtering with DADA2 None None Total Sum Scaling (TSS) normalization and 
Centered log-ratio (CLR) transformation. 

Randomized controlled trial; 16s rRNA 
sequencing of fecal microbiome from 
participants randomized to a high protein 
diet or normal protein diet [89] 

Amplicon sequence variants were 
filtered if not present in at least 15 
% of all samples. 

DESeq2 DESeq2 DESeq2 

Clinical trial; 16s rRNA sequencing of infant 
stool samples [90] 

Keep taxa with 5 counts in a 
minimum of 5 % of samples 

phyloseq phyloseq phyloseq: Total Sum Scaled (TSS) 

Randomized, double-blind, placebo- 
controlled crossover intervention trial; 16s 
rRNA sequencing of fecal microbiome 
from participants underwent 
supplemental bacteriophage antimicrobial 
treatment [91] 

Phylotypes with prevalence less 
than 75 % were removed 

None None Rarefaction 

Case-controlled study; 16s rRNA sequencing 
of fecal microbiome from normal controls 
and patients with dermatitis [92] 

DADA2 Multivariate linear 
regression was carried out 
to adjust the clinical 
variables and batch effects. 

mbDenoise 
and 
mbImpute 

Centered log-ratio transformation (CLR) 

Perspective study; metagenomic sequencing 
of skin microbiome from patients with 
atopic dermatitis [93] 

Quality-filtered reads (median of 3 
million reads per metagenome) 

PLSDA-batch None Trimmed Mean of M-value (TMM)  
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(MOH-NMRC). 
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