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The constantly evolving human–machine interaction and advancement in

sociotechnical systems have made it essential to analyze vital human factors

such as mental workload, vigilance, fatigue, and stress by monitoring brain

states for optimum performance and human safety. Similarly, brain signals

have become paramount for rehabilitation and assistive purposes in fields

such as brain–computer interface (BCI) and closed-loop neuromodulation

for neurological disorders and motor disabilities. The complexity, non-

stationary nature, and low signal-to-noise ratio of brain signals pose significant

challenges for researchers to design robust and reliable BCI systems to

accurately detect meaningful changes in brain states outside the laboratory

environment. Di�erent neuroimaging modalities are used in hybrid settings

to enhance accuracy, increase control commands, and decrease the time

required for brain activity detection. Functional near-infrared spectroscopy

(fNIRS) and electroencephalography (EEG) measure the hemodynamic and

electrical activity of the brain with a good spatial and temporal resolution,

respectively. However, in hybrid settings, where both modalities enhance

the output performance of BCI, their data compatibility due to the huge

discrepancy between their sampling rate and the number of channels remains

a challenge for real-time BCI applications. Traditional methods, such as

downsampling and channel selection, result in important information loss

while making both modalities compatible. In this study, we present a novel

recurrence plot (RP)-based time-distributed convolutional neural network

and long short-term memory (CNN-LSTM) algorithm for the integrated

classification of fNIRS EEG for hybrid BCI applications. The acquired brain

signals are first projected into a non-linear dimension with RPs and fed into

the CNN to extract essential features without performing any downsampling.

Then, LSTM is used to learn the chronological features and time-dependence

relation to detect brain activity. The average accuracies achieved with

the proposed model were 78.44% for fNIRS, 86.24% for EEG, and 88.41%
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for hybrid EEG-fNIRS BCI. Moreover, the maximum accuracies achieved were

85.9, 88.1, and 92.4%, respectively. The results confirm the viability of the

RP-based deep-learning algorithm for successful BCI systems.

KEYWORDS

recurrence plots (RP), convolutional neural networks (CNN), timedistributional layers,

long-short term memory (LSTM), brain computer interface (BCI)

Introduction

Brain–computer interfaces (BCIs) have become an

indispensable element for individuals with disabilities. They

have become integral components of new medical applications

and have been increasingly applied in communication systems,

human–machine interfaces (Bai et al., 2020), and neurofeedback

applications (Mercado et al., 2021). BCI enables communication

between the human brain and the external computer/device

through generated brain commands, thereby avoiding the

peripheral nervous system (Antonietti et al., 2021). Moreover,

BCI is a neurofeedback method that can enhance the quality

of life of patients suffering from serious motor debilities due to

tetraplegia (Benaroch et al., 2021), stroke (Mane et al., 2020),

and other spinal cord injuries (Al-Taleb et al., 2019). BCI also

has applications in neurorehabilitation, communication and

control, motor therapy and recovery, brain monitoring, and

neuro-ergonomics (Asgher et al., 2020a,b; Mughal et al., 2021).

The BCI analyzes a biosignal measured from a healthy subject

to predict some intangible aspects of their cognitive state. This

process usually consists of three main steps: data acquisition

from the brain depending on the application and modality

chosen, interpretation or pre-processing data into commands,

and output to the computer to generate a command. Among

the three types of BCI, namely, reactive, active, and passive

BCI (pBCI), pBCI is an important research area that estimates

human emotions, cognition, intentions, and behavior based on

generated brain responses to different situations.

The demand for improved traditional BCI practices

has increased with advances in neuroimaging modalities.

Primary non-invasive neuroimaging modalities for BCI

include functional magnetic resonance imaging (fMRI),

electroencephalography (EEG), magnetoencephalography, and

functional near-infrared spectroscopy (fNIRS). Among them,

EEG and fNIRS are the foremost modalities in terms of cost and

manageability (Rahman et al., 2020; Rashid et al., 2020). EEG

measures brain activity by calculating the voltage fluctuations

from the action potentials of neurons, whereas fNIRS detects

brain activity related to hemodynamic response changes (Hong

and Zafar, 2018; Liu et al., 2021). Although invasive techniques

provide more accurate data than non-invasive techniques,

non-invasive modalities are more frequent and appreciated

in the research domain. Non-invasive recording techniques

for brain activity improve safety and reduce ethical concerns

(Burwell et al., 2017; Pham et al., 2018). Over time, various

non-invasive techniques have been used in studies. The most

commonly used are EEG, fNIRS, electrooculography, and fMRI

(Choi et al., 2017). The selection of a non-invasive modality

depends on many factors. Usually, the following parameters

are considered: cost, ease of use, and temporal and spatial

resolution, as needed by the application. Each modality offers

some advantages over the others, and there are always some

associated trade-offs; the pros of one modality compensate for

the cons of the other modality. Thus, hybrid approaches have

proven to be more efficient. Hybrid neuroimaging modalities

increase accuracy and offer a greater degree of reasonable

control (Hong and Khan, 2017; Khan and Hong, 2017; Hong

et al., 2018).

Researchers appreciate the use of low-cost neuroimaging

modalities (Hong et al., 2020). Modalities that offer convenience

for non-laboratory setups are also choices of interest. In this

regard, EEG and fNIRS are the most commonly used. Both

are portable and inexpensive compared to the alternatives.

Electrodes capture EEG signals due to variations in the current

generated by neurons due to postsynaptic activities (Sazgar and

Young, 2019). Several electrodes are placed on the subject’s

scalp for EEG data acquisition. Although EEG provides better

temporal resolution ranging up to ∼0.05 s, it provides a

spatial resolution of only ∼10mm (Puce and Hämäläinen,

2017; Fu et al., 2020). The contrasting comparison of the

temporal and spatial resolutions manifests trade-offs when

using the EEG modality. In contrast to EEG, fNIRS is an

optical imaging technique that measures light absorbance to

calculate concentration changes in oxy-hemoglobin and deoxy-

hemoglobin within the brain. Similar to EEG, fNIRS is cost-

effective and portable. However, unlike EEG, fNIRS provides

better spatial resolution. Moreover, fNIRS is less influenced by

electrical noise (Hasan et al., 2020; Ghafoor et al., 2022). As

evidenced by the comparison, fNIRS can compensate for the

trade-offs of EEG. Thus, the EEG and fNIRS hybrid method

serve as a breakthrough in neuroimaging (Ahn and Jun, 2017)

on theoretical grounds.

As fNIRS measures hemodynamic responses, there is

an innate delay in the measurement (Saeed et al., 2020).
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Various methods have been proposed to compensate for this

slow command generation. In this regard, a hybrid method

comprising EEG and fNIRS techniques can be used, which

proceeds by measuring the initial dip [i.e., at the onset of

neural firing, the oxygenated hemoglobin (HBO) level first

decreases] instead of the actual hemodynamic response (Hong

and Khan, 2017; Kamran et al., 2018). The other contrasting

difference between the two modalities is the rate at which

data are sampled. The EEG data acquisition rate is ∼10–

100 times faster than that of fNIRS. When the EEG and

fNIRS hybrid is used, it is common to downsample the

EEG data to make its processing compatible with that of

the fNIRS data (Khan and Hasan, 2020; Ortega et al., 2020).

Downsampling might discard some segments of valuable data.

As EEG signals are prone to electrical noise, fNIRS suffer from

physiological noise, instrumentation, and experimental errors.

The experimental errors may be spontaneous, unintentional

diversions from the intended protocol, such as motion artifacts

or changes in the light intensity in the ambiance. The motion

artifacts present in the data can be significantly reduced via

Wiener filtering-based methods (Jiang et al., 2019) or wavelet

analysis-based methods (Islam et al., 2021). Instrumentation

can also induce noise in the data, such as noise from the

hardware. However, these noise signals are high-frequency

components; thus, they can be eliminated using a low-pass

filter. Physiological noises can arise due to breathing activity

or heartbeats. Although these noises are unavoidable, many

methods have been reported to counter these noises; commonly

used techniques apply bandpass filters, parameter mapping,

and independent component analysis (Rejer and Cieszyński,

2019; Vourvopoulos et al., 2019; Wankhade and Chorage, 2021).

Denoising the data further removes data regions; thus, the

processed data are even smaller in magnitude than the raw

data. Therefore, the downsampling of the EEG data after pre-

processing to match the fNIRS data removes a considerable

amount of valuable information regarding brain activity.

Recurrence quantification analysis (RQA) of RP has become

popular in recent years for analyzing brain activity because brain

signals are both recurrent and dynamic. RP, in general terms,

is a non-linear evaluation method for recurrent and dynamic

signals. It is a visualization displaying the recurrent occurrences

of states x(n) of a time signal in phase space. RQA is an analysis

technique used to quantify the features of the constructed RP.

In the literature, RQA feature analysis has been used in EEG

signal detection of epilepsy and Alzheimer’s disease, coupling

and synchronization in EEG of epileptic discharge, and so on.

Cortical function during different sleep stages was also analyzed

using RP features. The RQA analysis showed that unique RPs

were extracted for different sleep stages (Parro and Valdo, 2018).

Several studies have also used artificial neural networks (ANNs)

(Torse et al., 2019) and support vector machines (SVMs)

(Houshyarifar and Amirani, 2017; Zhao et al., 2021) to classify

extracted RQA features. One study used a four-layer ANN for

different EEG channels to predict the onset of seizures using

RQA measures (Torse et al., 2019).

As machine learning (ML) has rapidly become a state-of-

the-art analysis tool, researchers have considered searching for

classification features (Park and Jung, 2021). The qualitative

aspects of these RPs can be used for classification. Moreover,

DNNs are highly efficient training classifiers, resulting in better

classification accuracy than ML classifiers (Sattar et al., 2021).

However, only a few studies that applied these algorithms in

BCI are available (Dehghani et al., 2021; Singh et al., 2021).

Only one study used a CNN for the binary classification

of epileptic seizures from EEG using RP as images (Gao

et al., 2020). The practical application of biological feedback

in BCI requires efficient and precise motor activity detection

and classification methods. These conventional quantification

and feature selection methods and simple ML classifiers

face several challenges when implementing real-time BCI.

Traditional feature engineering methods involve multiple

steps, such as feature extraction, feature selection, finding

suitable combinations for various features, and sometimes

dimensionality reduction from a comparatively small quantity

of data, thus leading to other problems such as overfitting and

bias (Asgher et al., 2020b). These inherent constraints hinder

adjustments by researchers. Therefore, the initial analysis steps,

namely, data mining and pre-processing, are time-consuming.

On the other hand, deep learning (DL) algorithms such

as CNNs can be employed in two ways for BCI applications:

altering or modifying the CNN algorithm architecture to

accommodate the one-dimensional time-series data obtained by

the modalities or transforming one-dimensional data into two-

dimensional (2D) data to be conveniently input to the CNN.

Deep neural networks (DNNs) and other traditional classifiers

have also been employed based on fNIRS and EEG signals to

recognize three different cognitive states (Huve et al., 2019;

Takahashi et al., 2021), electromyography signals classification

(Oh and Jo, 2021), control of wearable exoskeleton (Sun et al.,

2021), and other control applications (Kim et al., 2021; Li

et al., 2021; Yaqub et al., 2021). A similar approach has been

used for various other applications, such as controlling robots

(Huve et al., 2018), differentiating workloads by analyzing the

fNIRS signals, and using deep learning techniques. Shoeibi et al.

(2022) used an adaptive neuro-fuzzy interface to detect epileptic

seizures from EEG signals. The literature also demonstrates

the time-delay neural network for classification purposes.

Thyagachandran et al. (2020) used this approach to classify

EEG signals; however, the presented model was not sufficiently

deep to learn the hierarchical features of the EEG signal. The

research that resonated most with our present study is that of

Tanveer et al. (2019). The authors investigated deep learning-

based BCI to detect driver drowsiness. The output strength of

the selected channels was translated into color maps and fed

into the CNN classifier as an input. The output color maps

were obtained by linear mapping the values from the channel to
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the color intensity. Recent biosignal analysis techniques have a

higher inclination toward non-linear dynamics. One of the most

widely used methods is the recurrence plot (RP). The analysis

focuses on the repeatability of the time-series states and presents

the output in geometric structures, whose topology is analyzed

to estimate the characteristics of the dynamics (Nayak et al.,

2018; Acharya et al., 2019). In the literature, researchers have also

experimented with hybrid CNN-LSTM models for time-series

biological signal analysis to detect mental disorders. A study to

detect schizophrenia via EEG was carried out by Shoeibi et al.

(2021) using different ML and DL models, and a comparison

was made between applied algorithms based on their accuracy

percentage. Among all ML and DL algorithms, CNN-LSTM

proved the best architecture for diagnosing schizophrenia.

This study investigated the RP performance for EEG, fNIRS,

and hybrid EEG-fNIRS within a deep convolutional neural

network and a long short-term memory (CNN-LSTM) model

for neuroimaging brain data for BCI. The obtained RPs of

EEG and fNIRS were fed as images into the hybrid CNN-

LSTM network for classification. The initial hypothesis of this

study was that “The classification accuracy of Hybrid EEG-

fNIRS BCI will improve by incorporating all signal information

from both modalities using recurrence plots instead of using

traditional methods of downsampling EEG signals tomake them

compatible with fNIRS for hybrid BCI.” The main contributions

and novelty of our work are as follows:

(i) Implementing whole EEG and fNIRS signals, without any

information loss or downsampling, for Hybrid EEG-fNIRS

BCI using recurrence plots.

(ii) Implement the time-distributed CNN-LSTM model for

activity detection using EEG and fNIRS recurrence plots for

hybrid BCI.

Furthermore, to the best of the authors’ knowledge, time-

distributional (TD) layers were implemented in a network that

was not previously used in the BCI field.

The detailed methodology of this research, the dataset

used, RP formation from EEG and fNIRS datasets, and the

classification approach used for the four-class classification

of constructed RP are detailed in the following sections.

The related performance of RP in EEG-BCI, fNIRS-BCI, and

hybrid EEG-fNIRS-BCI is discussed, and the study’s conclusions

are provided.

Methodology

In this study, RP performance for EEG, fNIRS, and hybrid

EEG-fNIRS with the deep CNN-LSTM model was investigated

for neuroimaging brain data for BCI. RP transformed the time

series data into the phase space and provided an alternate

method to envisage the periodic nature of a time series

trajectory, that is, brain signal data in phase space. RPs of EEG

and fNIRS were constructed and used as images to feed the

hybrid time-distributed CNN-LSTM network for classification.

The detailed methodology is described in this section and

illustrated in Figure 1.

Dataset and experimental protocol

The research used an open-source meta-dataset. The data

were recorded at the Technische Universität Berlin (Shin et al.,

2018) and collected through three different paradigms from 26

healthy participants while focusing on cognitive tasks. Datasets

A, B, and C were chosen for the three different cognitive

tasks: n-back, discrimination response, and word generation,

respectively. On these grounds, the selected dataset was an

appropriate choice for research in the domain of hybrid BCI.

First, task A was performed, followed by tasks C and B. In

this study, only dataset A (n-back) was used. The entire n-back

dataset consisted of three sessions, and each session consisted

of three series: 0-back, 2-back, and 3-back tasks. The total

recording time for each series was 62 s. The initial 2 s were

dedicated to task illustration. The following 40 s were reserved

for the task performance (20 numbers displayed for 2 s each on

the screen), and the last 20 s were reserved for the rest period.

Thus, for every n-task, there were 180 trials. The experimental

protocol for the n-back dataset is shown in Figure 2.

Data acquisition

The EEG and fNIRS data were recorded simultaneously to

ensure that the data were synchronized, and a parallel port was

used to send the triggers. A BrainAmp EEG amplifier was used to

record the EEG data, and the sampling frequency was 1,000Hz.

A stretchable fabric cap was used to place the 30 active electrodes

to acquire data in frontal, motor cortex, parietal, and occipital

regions according to the internationally recognized 10–5 system

(Shin et al., 2018).

The fNIRS data were recorded at a sampling frequency of

10.4Hz via NIRScout (NIRx Medizintechnik GmbH, Berlin,

Germany). Sixteen electrodes, representing a combination

of sources with detectors, were positioned at the frontal

lobe, motor cortex, parietal lobe, and occipital lobe. The

optodes of the NIRS were fixed with EEG electrodes on the

same cap. The positioning of the electrodes and optodes is

illustrated in Figure 3 green circles: EEG electrodes, red circles:

NIRS optodes.

Data pre-processing and labeling

The EEG data were downsampled to 200Hz. A 6th-order

Butterworth bandpass filter with a passband frequency range
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FIGURE 1

Methodology of the study shows the construction of the hybrid EEG-fNIRS dataset using RPs and classification using time-distributed

CNN-LSTM.

FIGURE 2

Experiment paradigm of n-back tasks.

of 1–40Hz was used for filtering purposes. The acquired data

were first translated into oxy- and deoxy-hemoglobin intensity

variations to pre-process the fNIRS data. The conversions were

conducted using the modified Beer–Lambert law. The fNIRS

raw data were downsampled at 10Hz. As the fundamental

frequency of this dataset was very low, the downsampled data

were not fed into the Butterworth bandpass filter. Instead, the

data were low-pass filtered to avoid losing the fundamental

frequency component. The cutoff frequency of the filter was

chosen to be 0.2Hz. The data were acquired using MATLAB

R2013b software. Further processing was performed using

Python on Spyder in the Anaconda development environment.

After filtration, the dataset was labeled using the activity

time markers from the acquired continuous EEG and fNIRS

signals. Four classes, namely, 0-, 2-, and 3-back classes, and

one of the remaining states, were labeled concerning the

experimental protocol. After that, the labeled data were used for

RP construction.
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FIGURE 3

EEG and NIRS electrode positions according to the 10–5 system. Green dots represent EEG electrodes and red dots denote NIRS Optodes.

Recurrence plots

A recurrence plot (RP) is a contemporary technique

for analyzing non-linear data. This technique employs

the visualization of a square matrix whose elements

link to the dynamic state repetition. The ordered pair

of matrices corresponds to the specific timing of the

repetition. Recurrence analysis is a graphical technique

that aims to identify hidden recurring patterns (Ledesma-

Ramirez et al., 2020). To illustrate this idea, our desired

information is univariate time series data and that the data

under analysis are a subpart of the large n-dimensional

dataset. The topological rendering of the original n-

dimensional dataset can be obtained using a single

observable variable.

Thus, the embedded matrix, namely, xm, can be constructed

as follows:

[xmi = (xi, xi+d, xi+2d, ......., xi+(m−1)d)] (1)
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where xi is a scalar series, the dimension is represented by m,

and d is the delay. In case the condition

m ≥ 2n+ 1 (2)

is satisfied, the single output variable exhibits the potential

to recreate the entire system. Recreation heavily depends on

the sequence of the embedded matrix. The sequence can

be controlled by adequately choosing parameters m and d.

The asymmetric matrix of the Euclidean distances can also

be constructed by measuring the distance between pairs of

embedded vectors. These distances are translated into an

equivalent color, and each distance has a distinctive color. Thus,

an RP is a square assortment of pixels whose color depends on

the corresponding magnitude of values. The pixel coordinates

also carry useful information that is linearly related to the

location of the data in the original data matrix.

The use of ε is commonly employed in RPs. This ε is

referred to as the critical radius. Each value is compared with

the critical radius to check whether the pixel value is ≤ε; then,

the pixel is displayed as a darkened pixel. In other words, RP

is a visualization of a square recurrence matrix showing all the

instances of times at which a state of a non-linear system repeats;

the columns and axes of the recurrence matrix correspond to

specific time intervals. In technical terms, an RP shows every

time of a non-linear time signal from a dynamical system at

which its phase space trajectory spans approximately the same

area in the phase space. In graphical terms, this is a graph of

−→x (i) ≈ −→x (j) (3)

where i is on the horizontal axis, j is on the vertical axis,

and −→x is the phase space trajectory of the dynamical system.

Thus, a binary recurrence matrix is constructed using a specific

time window w = 5 s, where any two-time steps are separated

by the time interval ε = 0.1 and a step size of 10 in the

following manner:

R
(

i, j
)

=

{

1 if
∥

∥

−→x (i) − −→x (j)
∥

∥ ≤ ε

0 otherwise
(4)

where i and j are the horizontal and vertical time axes, i, j ǫ {t0,

t1. . . .t, . . . . tT}. The RP is a visualization of the recurrence matrix

with a black square of the lattice at coordinates (i, j) if R(i, j)= 1

and a white square if R(i, j)= 0.

Figure 4 shows the corresponding RPs constructed using the

fNIRS dataset for the 0-, 2-, and 3-back classes, and the rest state

for Subject 1.

After experimenting with different values for the parameters

of the RPs, ε = 0.1 and step size = 10 were adopted.

Figure 4 depicts the non-linear mapping of the acquired brain

signals to the new dimension through the RPs with the

selected parameters. Each subject’s RP data were split into

training and test datasets using 10-fold cross-validation before

performing classification to avoid overfitting and provide better

generalization. Moreover, the model performance was evaluated

based on the following performance metrics.

Accuracy

The accuracy of a classifier is the proportion of the total

number of correct predictions made by the classifier. If the

confusion matrix is given, accuracy is defined as:

Accuracy =
True Positives + True Negatives

Total Number of Samples

Precision

Precision or positive predictive value is the proportion of the

correctly predicted positive cases of all cases predicted positively

by a classifier. Given a confusion matrix, precision is defined as:

Precision =
True Positives

Total Number of Samples Predicted as Positive

Recall

Recall or sensitivity is the proportion of all actual positive

cases that were correctly predicted to be positive by a classifier.

Given a confusion matrix, recall is defined as:

Recall =
True Positives

Total Number of Actual Positive Samples

F1 score

The F1 score is the harmonic mean of precision and recall

values for a given classificationmodel. Given a confusionmatrix,

the F1 score is defined as:

Precision =

(

Precision−1
+ Recall−1

2

)−1

Time distributed CNN-LSTM

A CNN is a multilayered neural network with architecture

to detect complex features in the data. Unlike traditional

multilayer perceptron architectures, CNN uses two operations

called “convolution” and “pooling” to reduce the image into

its essential features, which are used to understand and

classify it. CNNs are composed of basic building blocks, which
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FIGURE 4

RPs of fNIRS dataset. (A) 0-back, (B) 2-back, (C) 3-back, (D) rest.
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FIGURE 5

Inside a TD layer. RP input to two Conv2D layers, each with 16 filters, and ReLu as activation function, followed by a max pool and flatten layer.

FIGURE 6

Time-distributed CNN-LSTM network for classification of four-class mental workload using RPs of EEG and fNIRS dataset.

include the following: a convolutional layer with a filter or

kernel passed over an image; an activation layer that usually

has an activation function; a rectified linear unit (ReLU) to

introduce non-linearity that allows the network to train itself

through backpropagation; a pooling layer that downsamples

and reduces the size of the matrix and is focused on the most

prominent information in each feature of the image; and a

fully connected layer that outputs the different probabilities

associated with every label attached to the image. The label

with the highest probability is the classification decision. CNNs

are widely used in agriculture, self-driving vehicles, healthcare,

and surveillance. LSTM networks are recurrent neural networks

(RNNs) that use special and standard units. The special

units include the “memory cell,” which maintains information

in its memory for longer. LSTM has feedback connections,

unlike standard feed-forward neural networks; it can process

entire data sequences, including speech and video. LSTM is

widely used in speech recognition, handwriting recognition,

handwriting generation, music generation, language translation,

image captioning, and anomaly detection in intrusion detection

systems. A simple LSTM unit comprises a cell, input, output,

and forget gate. The cell remembers the information, whereas

the gates regulate the flow of information. LSTM networks

are modified forms of RNNs; they remember past data

in memory.

Over time, researchers have applied different architectures

and types of deep learning networks. Unlike images, text,

voice, and other widely used datasets, neuroimaging signals

are intrinsically different and have an important chronological

order. This chronological order dictates the flow of information

necessary to detect activities or actions. Examples of such

chronological order are the initial dip at the start of activity in
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FIGURE 7

Time-distributed CNN-LSTM network for classification of four-class mental workload using RPs of hybrid EEG-fNIRS dataset.

fNIRS signals and positive deflection in event-related potential

P300 signals in EEG. A novel CNN-LSTM network was

designed for this study. The network consists of one CNN

and one LSTM module combined with a dense layer. After

pre-processing, the data are fed into the CNN module; this

module consists of two convolutional layers, each with 16

filters and ReLU as the activation function, and one max-

pooling layer. CNNs are best known for their abilities of

feature extraction from 2D and 3D images. Considering the

data sequence used in the form of chronologically ordered

time windows, the relationship between two windows in a

given input should be detected. An LSTM layer enables the

network to use its memory and enhance its prediction. The

convoluted output from the CNN block is reshaped and

flattened before being fed into the LSTM layer. The layers

preceding the LSTM layers are wrapped inside a time-distributed

layer that allows their application to every temporal slice

of the input data. This time-distributed wrapper applies the

same instance of convolutional layers to each timestamp, such

that the same set of weights is used. After passing through

another dense layer, the LSTM layer terminates into the

output layer.

No researcher has exploited this chronological order using

time-distributed layers in deep learning models to the authors’

knowledge. The constructed RPs with a fixed window length

and an overlapping portion are fed into the network as images.

The different configurations of this proposed network for fNIRS,

EEG, and hybrid modalities are discussed in detail in the

Discussion section. The network architecture for the EEG and

fNIRS BCI and the details of the hyperparameters of the DL

model used, that is, several layers, dimensions, the number of

filters used in each layer, and the number of neurons, among

other details, are shown in Figure 7. Researchers have invested

tremendous efforts to determine the single best architecture

for deep learning neural networks, giving rise to the sub-

research field known as neural architecture search (NAS).

However, there is no definite answer regarding the optimal

neural architecture a priori. The number of neurons, number

of filters, number of layers, their combinations, dropout, and

max-pooling percentage remain the best hyperparameters. The

most viable approach seems to be using intuition and domain

knowledge to determine an initial guess for these parameters

and then iteratively shortlist them to obtain good values. In

this study, the NAS design process was as follows: a network

with a minimum number of parameters, a single convolutional

layer, a single LSTM layer, and one dense layer was created;

other hyperparameters were tuned; more layers were added, and

the network hyperparameters were tuned with a grid search

using the sklearn wrapper. We performed the above grid search

with sample data and chose the best-performing network for

EEG, fNIRS, and EEG+fNIRS datasets. However, this approach

resulted in input dimension mismatch because of the extra

number of features in the hybrid dataset compared to the single

modality datasets. We solved this problem by adding another

sequence module on top of the EEG network architecture and

wrapping it inside the TD layer, similar to the EEG network.

The later stages of a network-like dense layer, LSTM layer, and

the following layers remained the same; however, this strategy

solved the input dimensionality mismatch problem. Figures 5–7

show the network architecture of the study.
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TABLE 1 Performance evaluation metrices of fNIRS-BCI, EEG-BCI, and hybrid EEG-fNIRS-BCI.

S1 S2

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 81.32 81.00 80.66 80.53 81.12 82.20 80.35 80.72

EEG-BCI 85.11 85.41 84.87 84.66 86.34 86.44 86.01 86.00

Hybrid-BCI 89.63 90.09 89.26 89.45 86.78 87.19 86.13 85.90

S3 S4

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 77.25 77.80 76.56 76.59 71.74 72.15 70.70 70.52

EEG-BCI 86.53 87.01 86.15 86.11 85.60 85.87 84.76 84.47

Hybrid-BCI 88.33 88.41 88.09 87.91 86.66 86.88 86.61 86.58

S5 S6

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 70.57 71.26 69.75 69.82 76.74 78.70 75.79 76.08

EEG-BCI 89.31 89.33 89.05 89.01 85.55 85.22 84.92 84.76

Hybrid-BCI 91.79 92.01 91.36 91.37 89.81 89.57 89.39 89.28

S7 S8

Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 score

fNIRS-BCI 77.74 78.53 77.28 76.90 82.44 82.82 82.15 82.10

EEG-BCI 89.00 89.44 88.79 88.84 82.14 82.53 81.89 81.98

Hybrid-BCI 92.28 92.57 92.27 92.28 83.32 83.15 82.76 82.35

S9 S10

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 80.40 80.98 79.83 79.84 80.14 80.38 79.52 79.59

EEG-BCI 88.76 89.25 88.61 88.51 84.06 84.70 84.00 84.01

Hybrid-BCI 90.62 90.61 90.28 90.38 87.40 87.90 87.45 87.25

S11 S12

Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 score

fNIRS-BCI 79.16 79.67 78.34 78.27 77.18 76.65 76.37 75.85

EEG-BCI 83.93 84.09 83.50 83.53 89.75 89.89 89.56 89.59

Hybrid-BCI 86.71 86.88 86.54 86.51 91.35 91.45 91.18 91.13

S13 S14

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 75.15 75.39 74.22 74.16 77.00 79.12 75.66 76.23

EEG-BCI 89.63 89.92 89.10 88.51 87.84 87.57 87.36 87.26

Hybrid-BCI 91.91 92.11 91.73 91.68 89.93 89.90 89.72 89.57

(Continued)
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TABLE 1 Continued

S15 S16

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 74.64 75.56 73.45 73.47 78.66 79.20 77.80 77.71

EEG-BCI 86.35 87.24 85.97 85.51 82.33 82.61 81.48 81.59

Hybrid-BCI 87.34 87.46 86.76 86.64 83.50 83.59 83.33 82.99

S17 S18

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 80.27 80.60 79.60 79.75 81.76 82.07 81.48 81.48

EEG-BCI 87.77 87.88 87.78 87.60 89.68 89.92 89.62 89.49

Hybrid-BCI 92.16 92.83 91.69 91.81 93.58 93.67 93.66 93.56

S19 S20

Accuracy Precision Recall F-1 Score Accuracy Precision Recall f-1 Score

fNIRS-BCI 79.35 80.48 79.55 79.17 80.33 80.86 79.49 79.71

EEG-BCI 86.16 86.08 85.69 85.64 87.52 87.80 86.92 87.01

Hybrid-BCI 87.63 87.84 86.91 87.04 91.36 91.87 91.06 91.11

S21 S22

Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 Score

fNIRS-BCI 74.21 75.29 72.88 73.14 82.37 83.42 81.60 81.96

EEG-BCI 87.89 88.04 87.64 87.46 79.91 80.76 78.72 78.81

Hybrid-BCI 89.75 89.95 89.44 89.33 81.65 82.46 81.05 81.11

S23 S24

Accuracy Precision Recall f-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 79.60 79.75 78.90 78.91 78.61 78.82 78.05 78.12

EEG-BCI 84.37 83.94 83.70 83.62 86.96 87.64 86.52 86.77

Hybrid-BCI 85.36 85.18 84.73 84.46 89.81 90.03 89.70 89.62

S25 S26

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 80.27 80.77 79.40 79.47 81.45 81.72 80.56 80.58

EEG-BCI 84.43 85.21 83.81 83.86 85.17 85.15 84.18 84.30

Hybrid-BCI 84.92 85.63 84.57 84.52 85.17 85.62 84.48 84.16

Results

The time-distributed CNN-LSTM was used in this research

to classify four classes, namely, the three n-back activities

and the rest state from the fNIRS dataset acquired from

26 subjects. The data acquisition and initial pre-processing

included filtering EEG data using a zero-phase, low-pass, 6th-

order Butterworth filter. In the case of fNIRS, conversion of

light densities into changes in the concentrations of HbO

and HbR (hemodynamic response) was performed using the

modified Beer–Lambert law followed by a zero-phase, low-

pass, 6th-order Butterworth filter. After that, the data were
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FIGURE 8

Comparison of accuracies of fNIRS-based BCI, EEG-based BCI, and hybrid EEG-fNIRS-based BCI.

labeled along with outlier rejection and data normalization.

The window size selection in the hybrid EEG/fNIRS-based

BCI system is essential because hemodynamics response has

an inherent delay, which requires 0–10 s to complete after the

stimulus. In the literature, researchers have experimented with

different windows of varying lengths, such as 2–9, 2–7, and

3–7 s (Khan and Hong, 2017; Gaur et al., 2021). Generally,

the smaller the window size, the better the BCI performance

will be. After an initial investigation, a window size of 5 s

with 20% overlap was used for all BCIs. After that, the RPs

for segmented signals were constructed into a sequence of 5

s windows.

The deep learning algorithms were trained on a GTX

1060 graphic card with 3 GB VRAM and an Intel 6th

Gen Core i7-6700HQ processor with a 3.2-GHz frequency.

The Keras API was used with the TensorFlow backend

on Spyder in the Anaconda integrated development

environment. The average accuracy achieved for the four-

class classification was 78.4% for fNIRS, 86.44% for EEG,

and 88.41% for hybrid EEG-fNIRS BCI. The maximum

accuracies achieved were 82.4, 89.75, and 93.58%, respectively.

Table 1 summarizes the results of the 26 participants in

terms of their classification accuracies, precision, recall, and

F1 score for EEG-BCI, fNIRS-BCI, and Hybrid EEG-fNIRS

BCI. Figure 8 shows the average accuracies achieved by

these approaches.

Discussion

Researchers appreciate the use of low-cost neuroimaging

modalities. Modalities that offer convenience to non-laboratory

setups are also choices of interest. In this regard, EEG and

fNIRS are the most commonly used neuroimaging modalities.

Both are portable and inexpensive compared to fMRI. However,

EEG offers a spatial resolution of only ∼10mm (Puce and

Hämäläinen, 2017; Fu et al., 2020). The contrasting comparison

of the temporal and spatial resolutionsmanifests trade-offs when

using the EEG modality.

In contrast to EEG, fNIRS constructs functional

neuroimages of the brain by employing NIR light. As

fNIRS measures hemodynamic responses, there is an innate

delay in the measurement (Saeed et al., 2020). Various

methods have been proposed to compensate for this slow

command generation. In this regard, hybrid EEG-fNIRS can

be an option. However, the sampling frequencies of both

modalities are different, thus resulting in information loss.

Moreover, the most important objective of all studies conducted

on BCI is to enhance real-time classification accuracy and

reduce computational costs with multiple commands, thus

emphasizing the need to develop appropriate identification and

classification methods for real-time BCI (Phanikrishna et al.,

2021). Usually, multi-channel brain signal acquisitionmodalities

(i.e., EEG) analyze brain motor activity using different methods,
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TABLE 2 Comparison with other 4-class classification studies for BCI.

Authors
Brain acquisition modality Classes Subjects Methods Performance %

Ge et al. (2014) EEG 4 3 CSP and SVM 72.3, 73.2

Wang et al. (2014) EEG 4 9 ICA and SVM 71.8

Naeem et al. (2006) EEG 4 8 ICA and CSP Between 33 and 84

Our work fNIRS 4 26 Time distributed CNN-LSTM 78.44

Our work EEG 4 26 Time distributed CNN-LSTM 86.24

Our work Hybrid EEG-fNIRS 4 26 Time distributed CNN-LSTM 88.41

TABLE 3 Comparison with other 4-class hybrid classification studies for BCI with same dataset.

Authors
Brain acquisition modality Classes Subjects Methods Performance %

Saadati et al. (2020) EEG-fNIRS 4 26 DNN 87

Kwon et al. (2020) EEG-fNIRS 3 26 CSP 77.6

Our work Hybrid EEG-fNIRS 4 26 Time distributed CNN-LSTM 88.41

such as time and frequency feature analysis, event-related

synchronization-desynchronization analysis, common spatial

or temporal patterns, and spatial-spectral decomposition. Most

of these methods require high computational costs and are less

feasible to use for real-time BCI (Janapati et al., 2020). With

advances in brain signal acquisition modalities, the demands

for better signal processing and feature extraction have also

increased. Traditional methods of extracting useful information

from multi-channel brain signal acquisition modalities, such as

time and frequency analysis, event-related synchronization and

desynchronization analysis, and finding common spatial and

temporal patterns are computationally expensive and not very

feasible for real-time BCI applications. RQA of RP has become

popular in recent years for analyzing brain activity because

brain signals are both recurrent and dynamic. RQA is an

analysis technique used to quantify features of the constructed

RP. In the literature, RQA features have been used in EEG signal

detection of epilepsy and Alzheimer’s disease, coupling, and

synchronization in EEG of epileptic discharge. Cortical function

during different sleep stages was analyzed using RP features.

The RQA analysis showed that unique RPs were extracted for

different sleep stages (Parro and Valdo, 2018). Several studies

have also used SVM and ANNs to classify extracted RQA

features. One study used a four-layer ANN for different EEG

channels to predict the onset of seizures using RQA measures

(Torse et al., 2019).

Considering the complexity and computational cost

of DNNs, researchers have invested tremendous efforts to

determine the best architecture for deep learning neural

networks, giving rise to the sub-research field known as NAS.

However, there is no definite conclusion regarding the optimal

neural architecture a priori. The number of neurons, number

of filters, number of layers, their combinations, dropout, and

max-pooling percentage remain the best hyperparameters. The

most viable approach seems to be using intuition and domain

knowledge to determine an initial guess for these parameters

and then iteratively shortlist to obtain good values. In this

study, the NAS design process was as follows: a network with a

minimum number of parameters, a single convolutional layer,

a single LSTM layer, and one dense layer was created; other

hyperparameters were tuned; more layers were added, and the

network hyperparameters were tuned with a grid search using

the sklearn wrapper. We performed the above grid search with

sample data and chose the best-performing network for the

fNIRS dataset. Another advantage of using an RP with a DNN

is that it incorporates the entire signal and does not require

any extra steps, such as feature extraction and feature selection.

Moreover, it also minimizes extra pre-processing steps, such

as finding temporal or spatial features. The constructed RPs

of EEG and fNIRS were fed to the classification network

to detect the class of activity (0, 2-back, 3-back, or rest).

The classification network used was the time-distributed

CNN-LSTM. CNN is best known for feature extraction from

multidimensional images. In contrast, the RNN has an excellent

pattern recognition ability for input sequences. However,

CNN and RNN have stability issues due to either exploding or

vanishing gradients. An RNN variant was used to solve this issue

by using memory cells and LSTM. The highest classification

accuracy for four-class mental workload data for the BCI was

achieved using this network.

The study results indicate that using the hybrid modalities

for the classification of BCI results in higher accuracy than that
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of the single modality, along with an increase in the number of

commands and a reduction in detection time. Figure 8 shows

the comparison of the average accuracies achieved for all BCIs.

The results of our study have proven the initial hypothesis

that incorporating the entire EEG signal for hybrid EEG-

fNIRS BCI instead of downsampling will significantly increase

classification accuracy. The classification accuracies achieved

with our proposed methodology were the highest compared to

other classification methods for four-class EEG-based BCI and

other studies on the same dataset for four-class classification

for hybrid EEG-fNIRS. A comparison with relevant studies is

presented in Tables 2, 3, respectively. Moreover, implementing

the TD layers resulted in faster and easier computation. This

may prove to be a state-of-the-art algorithm in the present BCI

realm. The results show a promising future for the use of RPs

in real-time BCI. The proposed classification method can help

improve the accuracy of real-time BCI.

The limitations of our work are as follows: first, the

proposed methodology is computationally costly, and

substantial computational resources are required to train

and test deep learning models with large datasets because the

size of RP increases exponentially with the data size fed at

a time, as does the model complexity. Second, the proposed

algorithm has not yet been implemented for real-time BCI,

which leaves room for network improvement and optimization.

There are many potential applications for RPs in BCIs other

than EEG and fNIRS signals, as all biological signals constitute

dynamic time series data, and our study has validated the

successful implementation of RP for time-series data analysis.

In the future, further work can be conducted to explore and

experiment with new deep learning methods in computer vision

along with RPs, such as transformers and attention learning

for active channel selection for real-time BCI. Working in this

direction will help researchers mitigate nuances related to deep

learning algorithms in BCI.

Conclusion

This paper provides an inimitable time-distributed

convolutional neural network and long short-term memory

method for the integrated categorization of fNIRS-EEG for

hybrid BCI applications. The recorded brain signals are

first projected onto a non-linear dimension via RPs and

supplied into the CNN to extract critical characteristics

without downsampling. Then, LSTM is utilized to learn the

chronological properties and time-dependence relation to

identify brain activity. The average accuracy levels were 78.44%

for fNIRS, 86.24% for EEG, and 88.41% for hybrid EEG-fNIRS

BCI when using the suggested model. The findings support

the RP-based deep-learning algorithm’s suitability for effective

BCI applications.
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