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Abstract: Tris(8-hydroxyquinoline) aluminum complexes are of significant interest because of their
remarkable optical and electrical properties, both as an emissive layer and electron injection layer.
They emit light in the blue and green ranges of the visible spectrum, so for white organic light
emitting diodes (OLEDs), yellow emission is required as well. In this study, we propose the use of
zinc oxide quantum dots to tune the emission color of the complex while maintaining its luminous
efficiency. Hence, tris(8-hydroxyquinoline) aluminum-zinc oxide nanohybrids with different zinc
oxide quantum dots concentrations (10, 20, or 30 wt.%) were synthesized. The structural properties
were characterized using powder X-ray diffraction analysis, while the composition and optical
characteristics were characterized by Fourier transform infrared spectroscopy, UV-visible absorption
spectroscopy, and photoluminescence emission spectroscopy. The results show that increased levels
of zinc oxide quantum dots lead to a decrease in crystallinity, double hump emission and a slight red
shift in emission peaks. Also, at 20 and 30 wt.% of zinc oxide quantum dots concentrations, yellow
emission was observed.

Keywords: OLED; Alq3; Alq3-ZnO nanohybrids

1. Introduction

Organic light-emitting diodes (OLEDs) have attracted significant research attention,
especially for next-generation flexible and foldable devices compared with their inorganic
counterparts, owing to their outstanding material properties, such as high flexibility,
uniform emission over a large area, tunable wavelength, ease of fabrication, low cost and
power consumption, and environmental friendliness [1–5]. Throughout the last couple of
years, the study has therefore focused on organic-electroluminescent materials. Among
those materials, Tris (8-hydroxyquinoline) aluminum (III) (Alq3) has been attracted and
seen as a promising candidate for its excellent electrical transport and emission properties,
as well as its high thermal stability. As a result, it is a better choice for emissive and electron-
transparent layers in OLED and organic light-emitting transistor (OLET) devices [6–8].

Alq3 is an organometallic semiconductor material which exists in several crystalline
phases (α, β, γ, δ, and ε) depending on the synthesis method. Previous studies have shown
blue fluorescence in δ- and γ phases while green fluorescence was found in the other phases
under UV excitation [9–11].

Color tuning in Alq3 was achieved previously by chemical means in which the band
gap, and therefore complex emission wavelength, was tailored by the attachment of
electron-donating or electron withdrawing substituents to the quinolinolate ligand [12,13].

The only drawback to Alq3 complexes is their high environmental sensitivity and
ease of photooxidation, which results in low stability and hence luminescence efficiency
degradation, subsequently limiting their use in OLED devices [14]. Many researchers have
proposed the use of hybrid (organometallic/inorganic) composites to overcome these issues.
Besides, those hybrids showed significant improvements in mechanical strength, thermal
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stability, luminescent efficiency, and charge mobility when compared to pure Alq3 [15,16].
Cuba et al. [17] showed that Alq3-ZnO composites exhibited enhanced luminescence
properties and a slight shift from green emission to greenish blue. Li et al. [18]. reported
that Alq3-nano-TiO2 using 8-vinyl POSS as a modifier resulted in an enhancement in the
photoluminescence (PL) and electroluminescence (EL) properties of the composites. In this
study, we report the yellow emission of Alq3 upon the introduction of ZnO quantum dots
(QDs) as a dopant and studied the effect of ZnO QDs concentration on the structural and
optical properties of the samples. Alq3-ZnO nanohybrids were synthesized using varying
concentrations of ZnO QDs (10, 20, and 30 wt.%).

2. Materials and Methods
2.1. Materials

Multi-wall carbon nanotubes (MWCNTs, 98%, Sigma Aldrich, Seoul, Korea), zinc
acetate dihydrate (Zn(OAc)2·2H2O, 98%, Duksan, Seoul, Korea), hydrochloric acid (HCl,
35%, Duksan, Seoul, Korea), Sulfuric acid (H2SO4, 98%, Duksan, Seoul, Korea), ethanol
(CH3CH2OH, 99.9%, Duksan, Seoul, Korea), 8-hydroxyquinoline (99%, Junsei Chemical,
Tokyo, Japan), aluminum chloride (AlCl3, 99%, Fluka, Seoul, Korea), and potassium
hydroxide (KOH, 85%, DAEJUNG, Seoul, Korea). All chemicals were used as received
without any further purification.

2.2. Methods
2.2.1. Synthesis of ZnO QDs

Yellow emissive ZnO QDs were synthesized according to the procedure described by
Yang et al. [19]. Multi-walled carbon nanotubes (MWCNTs) were functionalized with acidic
treatment to produce functional MWCNTs (FMWCNTs). A 20 mg sample of FMWCNTs
were suspended in ethanol (20 mL) with sonication for 20 min. A 6 mL aliquot was taken
from suspended FMWCNT solution and added to an ethanolic zinc acetate dihydrate
solution (0.09 M) and stirred at room temp for 30 min, followed by refluxing at 70 ◦C
for 4 h. The solution was subsequently cooled and sonicated for 30 min, and then the
supernatant containing suspended ZnO QDs was collected. The QDs were collected by
centrifugation, cleaned several times with ethanol and water, and dried in an oven at 60◦

at atmospheric pressure.

2.2.2. Synthesize of Alq3

Alq3 was synthesized as follows: 0.3 M of ethanolic 8-hydroxyquinoline solution was
mixed with a 0.22 M AlCl3 ethanolic solution and the pH was neutralized using a KOH
solution. The resulting mixture was refluxed at 70 ◦C for 5 h with stirring. The reaction
mixture was subsequently allowed to cool to room temperature, and the yellow Alq3
precipitate was collected by centrifugation, washed with ethanol, and deionized water, and
dried under vacuum at 100 ◦C for 12 h.

2.2.3. Synthesis of Alq3-ZnO Nanohybrids

To synthesize Alq3-10 wt.% ZnO QDs, Alq3 (180 mg) was suspended in ethanol
(32.5 mL) with stirring. ZnO QDs (20 mg) were also suspended in ethanol (3.25 mL) and
sonicated. After 15 min, both suspensions were added with stirring and heated to 60 ◦C for
4 hrs. A precipitate was formed upon cooling which was collected by centrifugation and
decantation, washed with ethanol, deionized water and dried under vacuum at 100 ◦C for
12 h. Identical procedures were used for the synthesis of Alq3-20 wt.% ZnO QD and Alq3-
30 wt.% ZnO QD. For characterization, the MPD (Panalytical, Malvern, United Kingdom)
Xpert Multipurpose X-ray Diffraction System was used for powder X-ray diffraction (XRD)
analysis. A Spectrum 100 spectrometer (Perkin-Elmer, Waltham, Massachusetts, United
States) and a Cary 5000 UV-vis-NIR spectrophotometer (Agilent Technologies, Santa Clara,
California, United States) were used to record the Fourier transform infrared (FTIR) and
absorption spectra, respectively.
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3. Results and Discussion

Figure 1 illustrates the structural properties of the synthesized Alq3, ZnO QDs, and
Alq3-ZnO nanohybrids studied by XRD. The distinctive peaks of Alq3 and hexagonal ZnO
observed in the XRD spectra are in agreement with the stated values standard (JCPDS
26-1550) and (JCPDS 75-0576), respectively. The crystallite sizes of the ZnO QDs were
estimated using the Debye-Sherrer equation [20] and found to be 8.78, 8.85, 10.67, 11.08, 9.6,
10.41, and 10.04 nm for the (100), (002), (101), (102), (110), (103), and (112) crystalline phases,
respectively. Figure 1c shows the diffraction pattern of Alq3-ZnO nanohybrids at different
concentration levels of ZnO QDs. Increasing in ZnO QDs concentration results in a slight
decrease in peaks intensity as well as a slight shifting of the diffraction peaks toward lower
diffraction angles which confirms the incorporation of the ZnO QDs in the Alq3 matrix,
resulting in positional rearrangement in the Alq3 lattice. In addition, no individual ZnO
QDs peaks were observed for all the samples.
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Figure 1. XRD pattern of (a) pure Alq3, (b) ZnO QDs and (c) Alq3-ZnO nanohybrids.

The composition of the Alq3 and Alq3-ZnO QD nanohybrids was studied by FTIR
spectroscopy as shown in Figure 2. The FTIR spectrum of Alq3 shows all the expected
characteristic peaks, as shown in Table 1. Doping with ZnO QDs resulted in weakening
of the absorbance band in the 400–600 cm−1 region and shifting of several absorbance
peaks. These observations are an indication of the interactions between the ZnO QDs and
Alq3 and are consistent with the results of the XRD analysis. Notably, an absorption band
around 500 cm−1 broadened with increasing ZnO QD concentration, which was attributed
to Zn-O vibrations.
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Figure 2. FTIR spectrum of (a) pure Alq3, (b) Alq3-10 wt.% ZnO QDs (c) Alq3-20 wt.% ZnO QDs
(d) Alq3-30 wt.% ZnO QDs.
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Table 1. IR Vibrational modes in FTIR spectra of pure Alq3 and Alq3-ZnO nanohybrids [3].

Wavenumber (cm−1) Wavenumber (cm−1)

Alq3 Alq3-10
wt.%

Alq3-20
wt.%

Alq3-30
wt.% Assignment Alq3 Alq3-10

wt.%
Alq3-20

wt.%
Alq3-30

wt.% Assignment

419 419 420 422 Al-N vibration 1053 1053 1056 1056 C-O stretching
444 444 444 445 Al-O stretching 1115 1113 1110 1110 C-O stretching
457 457 459 459 Al-O stretching 1138 1137 1133 1133 C-O stretching
473 473 473 473 Al-O stretching 1175 1173 1173 1173 C-O stretching
504 503 497 497 Al-O stretching 1231 1231 1236 1232 C-O stretching
543 543 545 545 Al-O stretching 1281 1280 1278 1278 Aromatic amine
576 576 576 576 C-H bending 1327 1327 1321 1321 Aromatic amine
599 601 605 606 C-H bending 1383 1384 1386 1278 Aromatic amine
647 648 651 651 C-H bending 1425 1425 1426 1321 C=C stretching
750 750 733 733 C-H bending 1468 1466 1460 1385 C=C stretching
788 788 788 187 C-H bending 1499 1499 1497 1497 C=C bending
806 805 803 803 C-H bending 1580 1576 1575 1575 C=C bending
877 877 823 823 C-H bending 1605 1604 1603 1603 C=C bending
1034 1034 1034 1034 C-O stretching

The absorption spectra of Alq3 and Alq3-ZnO nanohybrids are shown in Figure 3.
The spectrum of Alq3 showed an absorption peak at approximately 400 nm corresponding
to the π–π* electronic transitions of the quinolinolate ligands [17]. Doping with ZnO
QDs resulted in the emergence of an additional peak at approximately 350 nm which
corresponded to the direct band gap transition of ZnO QDs [21]. The band gap energy of
the samples was estimated using the Tauc method [22] with the following equation:

αhv = (hv − Eg)n, (1)

where n is 1/2 for allowed direct transitions, and 2 for allowed indirect transitions [22].
The direct band gap was estimated to be 2.79 eV for Alq3, which is consistent with the
previously reported value [22]. The addition of ZnO QDs to Alq3 results in a slight decrease
in the band gap with increasing concentration. The calculated bandgap energies of the
Alq3-ZnO nanocomposites were calculated to be 2.76, 2.73, and 2.72 eV for Alq3-10 wt.%
ZnO QDs, Alq3-20 wt.% ZnO QDs, and Alq3-10 wt.% ZnO QDs, respectively (Figure 4).
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The PL spectra of Alq3 and Alq3-ZnO nanohybrids after excitation with a He-Cd laser
(325 nm) are shown in Figure 5. Pure Alq3 exhibits green emission centered around 525 nm.
The presence of ZnO QDs results in introducing a new energy sate within the energy band
gap of the Alq3 and hence results in a double-hump emission, the first due to the Alq3
molecules and the second due to the presence of ZnO QDs. Additionally, the emission
peaks gradually red shifted with increasing ZnO QD concentration. The integrated PL
intensity was found to be almost identical for all samples. The deconvoluted emission
spectra are shown in Figure 6. The emission hump at approximately 520 nm correspond to
Alq3, while the emission hump at approximately 560 nm corresponds to the ZnO QDs.
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4. Conclusions

A yellow emissive Alq3 is obtained through physical means by doping with ZnO QDs.
The Alq3-ZnO nanohybrids containing 10, 20, and 30 wt.% ZnO QDs were synthesized.
Pure Alq3 exhibits green emission at 530 nm under excitation at 325 nm while doping with
ZnO QDs results in a yellow emission peak centered at 560 nm for Alq3-20 wt.% ZnO QDs
and Alq3-30 wt.% ZnO QDs. Therefore, based on our findings the color tuning in Alq3
can be achieved using ZnO QDs while maintaining the intrinsic PL intensity. This study
demonstrates that these nanohybrids can be considered as promising candidates for use as
emitting and transparent layers in yellow and white emissive OLEDs and OLETs.
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