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Abstract: The future prevalence and virulence of SARS-CoV-2 is uncertain. Some emerging pathogens
become avirulent as populations approach herd immunity. Although not all viruses follow this path,
the fact that the seasonal coronaviruses are benign gives some hope. We develop a general mathemat-
ical model to predict when the interplay among three factors, correlation of severity in consecutive
infections, population heterogeneity in susceptibility due to age, and reduced severity due to partial
immunity, will promote avirulence as SARS-CoV-2 becomes endemic. Each of these components
has the potential to limit severe, high-shedding cases over time under the right circumstances, but
in combination they can rapidly reduce the frequency of more severe and infectious manifestation
of disease over a wide range of conditions. As more reinfections are captured in data over the next
several years, these models will help to test if COVID-19 severity is beginning to attenuate in the
ways our model predicts, and to predict the disease.

Keywords: SARS-CoV-2; mathematical model; ordinary differential equations; SIR model

1. Introduction

The future of SARS-CoV-2 is uncertain, and it is tempting to look for parallels in the
dramatic animal-to-human crossovers of SARS-like coronaviruses that have occurred in
the last twenty years [1,2]. However, neither SARS or MERS had the pandemic potential of
SARS-CoV-2, which will likely persist alongside the seasonal coronaviruses [3]. A better
clue to the future severity of COVID-19 infection can be found by examining the manner
in which pathogens tend toward avirulence over time. For example, genetic analysis
suggests that a pandemic in the 1890’s historically attributed to influenza may in fact
have been caused by the seasonal coronavirus OC43 when it first began circulating in
humans, and the fact that OC43 is just another seasonal coronavirus today suggests SARS-
CoV-2 could follow a similar path [4]. Additionally, SARS-CoV-2 resembles its benign
cold-causing relatives in some important ways. Coronavirus NL63 uses the same ACE2
receptor to enter highly differentiated epithelial cells [5,6]. Yet NL63 too is just another
seasonal coronavirus [2].

The severity of COVID-19 is changing as genetic variants of SARS-CoV-2 undergo
natural selection, but genetic evolution is not the only means by which disease severity
can attenuate over time. Suggestive evidence for non-genetic change is given by the expe-
riences of the British Antarctic Survey who, after returning to society after long periods
of isolation in the polar environment, experienced fairly severe disease from rhinovirus
infection [7], the most common cause of the common cold [8]. Because reliable immune
protection against severe disease seems to require frequent antigen exposure, the immune
response to forgotten or novel viruses may be ineffective and the symptoms due to im-
munopathology [9]. Thus, on a short timescale before natural selection has much time to
act, the severity of disease may decrease as populations collectively develop immunity.

In this paper, we use mathematical models to characterize the conditions under which
the immune system can promote avirulence on this short timescale, rendering SARS-
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CoV-2 into Just Another Seasonal Coronavirus (JASC). Our models include three factors
that might push SARS-CoV-2 towards becoming JASC. First, mild or asymptomatic cases
tend to shed less virus, creating smaller infectious doses and subsequent mild infections.
Second, children rarely experience more severe forms of COVID-19, and thus may shed
less virus and develop protective immunity. Third, the duration and strength of immunity
to SARS-CoV-2 could generate mild cases as the population develops an umbrella of partial
immunity much like that to the other common cold viruses.

1.1. Small SARS-CoV-2 Doses Are Associated with Mild COVID-19 Disease

Severe cases of COVID-19 might result from high doses of virus particles overwhelm-
ing the immune system [10]. Specifically, high doses might outpace or overwhelm the
initial T cell response, leading to immunosuppression and severe illness before the serocon-
version process begins, as opposed to rapid clearance and milder illness [2]. Regardless
of mechanism, there is a laboratory-confirmed dose response for infection severity in
hamsters, both for SARS and SARS-CoV-2 [11,12]. Mild forms of illness are associated with
short-duration exposures in less crowded, more open, and better ventilated spaces [13].
In China, severe cases correlated with being near the epicenter of the outbreak as opposed
to lower-transmission settings [14]. Higher SARS-CoV-2 viral loads correlate with severe
COVID-19 and death in adults [15]. In addition to higher viral loads, severe cases shed virus
particles for longer periods of time [16]. Asymptomatic individuals transmit SARS-CoV-2
but may be less infectious [17]. Mild or asymptomatic rhinovirus infection is associated
with lower viral loads as well [18]. A mathematical modeling study which accounted for a
dose response in disease severity attributed the second, deadlier wave of the 1918 influenza
pandemic to crowding of infectious individuals as opposed to viral evolution [19].

1.2. Children Develop Mild COVID-19 Infections

Children experience milder forms of SARS-CoV-2 infection [20–22], as in the SARS
outbreak of 2004 [23]. Coronaviruses in general seem to thrive in disrupted immune
systems, and younger people may exhibit a more robust response than immunosenescent
individuals [24–26] thanks to their more robust immune systems with more T cells and NK
cells [27]. Children also tend to have fewer comorbidities than adults [20], and may be less
susceptible to SARS-CoV-2 infection in the first place [28]. Despite the fact that children
do not seem to drive much transmission [29], infected children without symptoms have
viral burdens comparable to or greater than hospitalized adults with severe COVID-19 [30].
In contrast, the most common seasonal coronaviruses (229E and OC43) appear to mostly
infect children [31]. When stratified by age, people between the ages of 15–19 have the
highest positivity rate for seasonal coronaviruses and infants aged 7–11 months have
the lowest [32]. Children drive transmission of some pathogens (like rhinovirus) due to
mixing patterns and behavior [33]. Infection by chicken pox, measles, polio, and Epstein-
Barr tend to produce less severe symptoms in children [34–37] although RSV provides a
notable exception [38].

1.3. Partial Immunity Results in Mild Disease

Immune protection is antigen-dependent, with more recent viral exposure translating
to milder illness [9]. The vast majority of seasonal coronavirus infections are asymptomatic
and up to 45% of all SARS-CoV-2 infections could be asymptomatic [39,40]. Reinfection by
seasonal coronaviruses is common [41]. Indeed, most people carry antibodies for all of the
seasonal coronaviruses, which likely confer some degree of immunity to that specific strain
in addition to some cross-immunity between closely related strains [41]. The coronaviruses
that produce SARS-like symptoms tend to rely on disrupting the interferon response [42].
Exposure to prior antigens might stimulate the interferon response and other components
of the innate pathway early in infection, keeping viremia under control and resulting in
mild infection [43].
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1.4. Non-Pharmaceutical Interventions (NPI) Promote Mild Disease

At the beginning of the pandemic, travel restrictions to and from Wuhan were put in
place to contain the virus. Although that was not sufficient to halt spread, mathematical
models fit to data showed that the reproduction number decreased by 50% [44]. Since
then, a combination of non-pharmaceutical interventions (NPI) have been employed with
varying degrees of sucess across the world to keep the infection rate low, allowing the
population to approach herd immunity at a controlled pace as vaccines are employed
(“flattening the curve”) [45]. Modeling work suggests that social distancing, mask use,
and school closures in combination (but not in isolation) can limit the spread of the virus
until the population is vaccinated [46]. Masks, cleaning, ventilation, and social distancing
all serve to reduce infecting doses of virus particles [13,47]. Epidemiological data suggest
that masks are the most effective components of the NPI bundle to limit infections [48].
Laboratory experiments have confirmed that surgical mask partitions separating infected
and uninfected hamsters confer protection against severe illness [12]. Similarly, social
distancing limits transmission by creating more diffuse infectious viral doses, with the
consequence that individuals who do get infected in more open spaces tend to develop
milder infections [49]. NPI’s have modulated age-dependent transmission pathways to
control viral spread as well. Early in the pandemic, school closures were thought to
be a safeguard against an accelerating rise in cases [50]. Whether school closures have
significantly reduced deaths from COVID-19 is disputed [51].

1.5. Vaccines

Natural and vaccine-induced immune memory fades over time, rendering individuals
more susceptible to infection and severe illness. Vaccines that do not confer sterilizing
immunity may still boost individuals into a partially immune class which has reduced
susceptibility for infection and increased likelihood of mild illness [52]. Waning immune
memory could permit viruses to transmit more effectively, as is the case for Varicella [53].
Additionally, vaccines seem to stimulate general immune pathways which prime the
immune system to respond to other pathogens [43]. Collectively, this suggests that even
if sterilizing immunity wanes over a time, a history of vaccination or viral exposure may
predispose individuals to develop milder secondary infections by SARS-CoV-2 because the
immune system will mount a more robust response.

We first formulate and analyze a simple model that incorporates heterogeneity in the
infection phenotype (high- and low-shedding infections) and immunity that wanes into
partial immunity, and then extend it to a full model with age structure in the population
and vaccination. To quantify whether SARS-COV-2 becomes JASC, we assess the number
of severe infections during both the initial epidemic and over the long run. We assess
how our three hypothesized factors (dose effect, less severe infections in children, and the
effect of partial immunity) individually and collectively reduce the number of severe cases,
and whether they act synergistically.

2. Methods

In order to understand how a dose response, partial immunity, and children can push
SARS-CoV-2 towards JASC, we first need to understand their effects independently. To this
end, we begin with a model of the spread of a virus which can cause two types of infection,
followed by a simple age-structured model which only tracks a single type of infection.
We obtain some analytical results in these cases. Then, we combine these models into
an age-structured model that tracks the spread of two types of infection and examine
it numerically.

2.1. Model with Two Infection Types

In this model, susceptible individuals (S) can acquire two types of infection: “high-
shedding” (H) and “low-shedding” (L). In either case, individuals remain infected for an
average of 1/γ days before gaining sterilizing immunity (R). Sterilizing immunity wanes
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with a rate of ρ/day, rendering individuals partially immune (P). Partial immunity wanes
at rate ρ̃/day. The system of equations is given by

dS
dt

= −α(θH + L)S + ρ̃P,

dP
dt

= −αν̃(θH + L)P + ρR− ρ̃P,

dH
dt

= α(1−Qh)SθH + α(1−Ql)SL− γH + α(1− Q̃h)ν̃PθH + α(1− Q̃l)ν̃PL,

dL
dt

= αQhSθH + αQlSL− γL + αQ̃hν̃PθH + αQ̃l ν̃PL,

dR
dt

= γ(L + H)− ρR,

N = S + P + H + L + R.

For the preliminary analysis, we make the simplifying assumptions that both infection
types are equally infectious (θ = 1) and that partially immune individuals are infected
at the same per capita rate α as susceptible individuals (ν̃ = 1). The parameters Ql and
Qh represent the probability that a susceptible individual develops the low-shedding
form of infection when exposed to low- or high-shedding infections respectively. Q̃l
and Q̃h represent the same probabilities for partially immune individuals. When partial
immunity protects against the high-shedding form of infection, Q̃l > Ql and Q̃h > Qh.
Because we expect that low-shedding infections tend to generate low-shedding infections,
we investigate cases with Ql ≥ Qh and Q̃l ≥ Q̃h.

When γ >> ρ, ρ̃ the steady-state solution for this system following an outbreak
is approximately

S∗ = N
1

R0

ρ̃

ρ̃ + ρ(R0 − 1)
,

P∗ = N
1

R0

ρ(R0 − 1)
ρ̃ + ρ(R0 − 1)

,

L∗ = 0,

H∗ = 0,

R∗ = N
(

1− 1
R0

)
.

where R0 = αN/γ. The P∗ equation shows that greater transmissibility produces more
partial immunity in the population. Because we assume that L and H are equally infectious
and S and P are equally susceptible, the total number of infections L + H matches the
equilibrium of a standard SIR model [54],

(H + L)∗ = N
ρ

γ + ρ

(
1− 1

R0

)
.

A longer duration of immunity, created by a smaller loss of immunity ρ, implies fewer
infection at steady state, matching the approximation above. Because this expression is
independent of the Q parameters, these parameters affect only the relative number of
infections of the two types at steady state. If we split the R compartment into two different
states, Rh and Rl , to track the numbers of immune individuals who pass through the H or L
compartments respectively, it is not hard to verify that R∗l = (γ/ρ)L∗, and R∗h = (γ/ρ)H∗.

If exposure to high-shedding infections always produces high-shedding infections
(Qh = Q̃h = 0) and low-shedding infections produce at least some high-shedding infec-
tions, then low-shedding infections will eventually disappear (L∗ = 0, see full steady
state solution in Appendix A). Conversely, if exposure to low-shedding infections always
produces low-shedding infections (Ql = Q̃l = 1) and high-shedding infections produce at
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least some low-shedding infections, then high-shedding infections will disappear (H∗ = 0).
If each type of infection seeds only itself, the steady state equations are degenerate with
values determined by the initial conditions.

The contour plot in Figure 1 shows that the equilibrium number of high-shedding
cases, H∗, is lowest when both full and partial immunity last 10 years. As shown above,
H∗ decreases to 0 as Ql and Q̃l approach 1 for all values of ρ and ρ̃. The equilibrium is
most sensitive to the value of Qh when the duration of full immunity is long, and to the
value of Q̃l when the duration of partial immunity is long.
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Figure 1. Contour plots of H∗ in the model with two infection types for various Ql and Q̃l along the
axes. The white line corresponds to H∗ = 5000. As Ql and Q̃l approach 1, H∗ decreases to 0 (top right
corner of plots). If sterilizing immunity is long compared to partial immunity, H∗ is more sensitive to
increases in Ql , especially near 0. If partial immunity is long compared to sterilizing immunity, H∗ is
more sensitive to Q̃l , especially near 0. Increasing the duration of sterilizing immunity decreases H∗.
All plots generated with R0 = 2.5, N = 108, Qh = 0, Q̃l = 0.8, and γ = 1/10 per day.

The model’s transient dynamics can differ dramatically from the steady state. In the
limiting case where exposure to high-shedding infection always results in high-shedding
infection for susceptible individuals and all other exposures lead to low-shedding in-
fection (Qh = 0, Q̃h = 1, Ql = 1, Q̃l = 1), H∗ = 0 will be zero and all of the en-
demic infection will low-shedding. However, the initial outbreak looks very differ-
ent. From an initial epidemic seeded by a single high-shedding case (S(0) = N − 1,
H(0) = 1, L(0) = 0, P(0) = 0,R(0) = 0), and neglecting the small rates of immune loss
because ρ << γ, and ρ̃ << γ, the system is approximately given by
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dS
dt

= −αHS,

dP
dt

= 0,

dH
dt

= αSH − γH,

dL
dt

= 0,

dR
dt

= γ H

N = S + H + R.

The initial outbreak matches a standard SIR model consisting only of high-shedding
infections, H. The final size relationship between R0 and the fraction of the population
experiencing infection, f , is given by

R0 =
− ln(1− f )

f
.

Values of R0 near 2.5 give f ≈ 0.9.
On a longer timescale, about 1/ρ weeks after the initial outbreak, a subsequent out-

break can begin because a substantial portion of the immune fraction, f , have lost sterilizing
immunity. However, these individuals enter into the partially immune compartment P, not
S. When f is close to 1, as it will be with R0 ≈ 2.5, the outbreak will follow the same dy-
namics but consist almost entirely of low-shedding cases from the partially immune class.

dS
dt

= 0,

dP
dt

= −αLP,

dH
dt

= 0,

dL
dt

= −γL + αPL,

dR
dt

= γL,

N = P + L + R.

In this idealized case, no high-shedding H infections will accrue during the second
outbreak. The compartment of partially immune individuals P serves as a large reservoir
of L infections. In the more realistic case with R0 = 2.5, the actual waves overlap, and we
expect severe cases to drop by 90% in this wave, and by a similar fraction in subsequent
waves (Figure 2).

Modifications of the Q parameters away from 0 and 1 render this approximation less
accurate, but the behavior of the model is qualitatively similar. As long as the buildup
of partial immunity is sufficiently rapid, the H infections will be largely replaced by L
infections even though the initial wave has few, if any, L infections.
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Figure 2. Partial immunity and a dose response can promote avirulence.The initial outbreak consists
mainly of high-shedding cases, but these are replaced by low-shedding cases in subsequent outbreaks.
The dashed curve corresponds to the approximate dynamics described in the text. Solid curves are
model solutions under the parametrization ε = 0.01, where Qah = ε and Qal = Qkl = Qkh = Q̃ah =

Q̃al = Q̃kh = Q̃kl = 1− ε.

The long-term behavior of the model does not substantially change if θ or ν̃ deviate
from 1. If high-shedding cases are more infectious (θ > 1) the initial outbreak of high-
shedding cases will be larger, and occur slightly sooner. The subsequent outbreak of
low-shedding cases will occur later (Figure A1). If partially immune individuals are less
susceptible (ν̃ < 1) the initial outbreak is unaffected but subsequent outbreaks occur later,
and the system takes longer to reach the endemic steady state.

2.2. Model with Age-Structure Only

In the second model, we revert to a single-phenotype infection but account for varia-
tion in susceptibility across the population by splitting the population into two interacting
groups, interpreted here as age structure (young and old), although other stratifications
according to susceptibility would be equally well described by the same equations. One
group is indexed with “k” (children) and the other by “a” (adults). The equations are

dSa

dt
= −α(Ia + Ik)Sa + ρRa,

dSk
dt

= −αν(Ia + Ik)Sk + ρRk,

dIa

dt
= α(Ia + Ik)Sa − γIa,

dIk
dt

= αν(Ia + Ik)Sk − γIk,

dRa

dt
= γIa − ρRa,

dRk
dt

= γIk − ρRk,

Na = Sa + Ia + Ra,

Nk = Sk + Ik + Rk.

The parameter ν represents the susceptibility of children relative to adults, which can
be smaller or larger than 1 to model reduced or enhanced susceptibility. Although the
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expressions are much more cumbersome, it is possible to solve this system at steady-state,
with infection most concentrated in adults for values of ν which are intermediate between 0
and 1 (Figure 3). The total number of infections in the population is maximized when both
groups are equally susceptible. If children are much more susceptible than adults (ν→ ∞),
then the number of infections declines until the entire share of infections is concentrated in
children. Reducing R0 produces more marked declines in I∗a than I∗k when children make
up 17% of the population, matching the fraction of the US population younger than 14
years (not shown).

,

Figure 3. The values of I∗a and I∗k from the age-structured model plotted against ν, the relative
susceptibility of children. Total infections are maximized when children are equally susceptible to
adults (ν = 1). Infections are most concentrated in adults if children are less susceptible (ν < 1).
Children reduce infections in adults if they are more susceptible (ν > 1). These relationships are
more pronounced if children make up a greater share of the population (Figure A2). The population
of the United States is Na + Nk = 328,239,523, and children are considered under 14 years of age
(Nk = 56,406,387) [55].

On a short timescale when immune loss has negligible impact on the dynamics,
it is possible to derive a final-size relation describing the initial outbreak for the two
subpopulations, obeying the power law relationship

Sa,∞

Na
=

(
Sk,∞

Nk

)1/ν

.

If children are much less susceptible to infection (ν → 0), then more of the adult
population experiences infection during the outbreak. The reverse holds true if children
are more susceptible than adults, in qualitative agreement with the steady-state analysis
in Figure 3.

2.3. The Full Model

We combine the previous models to describe the spread of the two infection pheno-
types (H and L) across the two interacting subpopulations (adults and children). There are
now twelve state variables: susceptible adults Sa, low- and high-shedding infectious adults
La and Ha, immune adults stratified according to recovery from low- or high-shedding
infection, Ral and Rah, and partially immune adults Pa. Children have the same states,
except the state variables have k in place of a in the subscripts. The system of equations for
the adult subpopulation is given by
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dSa

dt
= ρ̃Pa + ρRal + ρRah −

αakSa
Lk
Nk
− αaaSa

La

Na
− αakθSa

Hk
Nk
− αaaθSa

Ha

Na
+ τSk − µSa,

dLa

dt
= αakSa

Lk
Nk

Qal + αaaSa
La

Na
Qal + αakθSa

Hk
Nk

Qah + αaaθSa
Ha

Na
Qah +

αak ν̃aPa
Lk
Nk

Q̃al + αaa ν̃aPa
La

Na
Q̃al + αakθν̃aPa

Hk
Nk

Q̃ah + αaaθν̃aPa
Ha

Na
Q̃ah +

τLk − γal La − µLa,
dHa

dt
= αakνaSa

Lk
Nk

(1−Qal) + αaaνaSa
La

Na
(1−Qal) +

αakθνaSa
Hk
Nk

(1−Qah) + αaaθνaSa
Ha

Na
(1−Qah) +

αak ν̃aPa
Lk
Nk

(1− Q̃al) + αaa ν̃aPa
La

Na
(1− Q̃al) +

αakθν̃aPa
Hk
Nk

(1− Q̃ah) + αaaθν̃aPa
Ha

Na
(1− Q̃ah) +

τHk − γHa − µHa,
dRal

dt
= γLa + τRkl − ρRal − µRal ,

dRah
dt

= γHa + τRkh − ρRah − µRah,

dPa

dt
= ρal Ral + ρahRah −

αak ν̃aPa
Lk
Nk

+ αaa ν̃aPa
La

Na
+ αakθν̃aPa

Hk
Nk

+ αaaθν̃aPa
Ha

Na
+ τPk − ρ̃Pa − µPa,

and the system of equations describing the spread of infections within the subpopulation
of children is given by

dSk
dt

= ρ̃Pk + ρRkl + ρRkh −

αkkνkSk
Lk
Nk
− αakνkSk

La

Na
− αkkθνkSk

Hk
Nk
− αakθνkSk

Ha

Na
− τSk − µSk,

dLk
dt

= αkkνkSk
Lk
Nk

Qkl + αakνkSk
La

Na
Qkl + αkkθνkSk

Hk
Nk

Qkh + αakθνkSk
Ha

Na
Qkh +

αkk ν̃kPk
Lk
Nk

Q̃kl + αak ν̃kPk
La

Na
Q̃kl + αkkθν̃kPk

Hk
Nk

Q̃kh + αakθν̃kPk
Ha

Na
Q̃kh −

τLk − γLk − µLk,
dHk
dt

= αkkνkSk
Lk
Nk

(1−Qkl) + αakνkSk
La

Na
(1−Qkl) +

αkkθνkSk
Hk
Nk

(1−Qkh) + αakθνkSk
Ha

Na
(1−Qkh) +

αkk ν̃kPk
Lk
Nk

(1− Q̃kl) + αak ν̃kPk
La

Na
(1− Q̃kl) +

αkkθν̃kPk
Hk
Nk

(1− Q̃kh) + αakθν̃kPk
Ha

Na
(1− Q̃kh)−

τHk − γHk − µHk,
dRkl

dt
= γLk − τRkl − ρRkl − µRkl ,

dRkh
dt

= γHk − τRkh − ρRkh − µRkh,

dPk
dt

= ρRkl + ρRkh −

αkk ν̃kPk
Lk
Nk

+ αak ν̃kPk
La

Na
+ αkkθν̃kPk

Hk
Nk

+ αakθν̃kPk
Ha

Na
− τPk − ρ̃Pk − µ Pk.
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We examine how immune duration, susceptibility, infectiousness, and probabilities
of developing low-shedding infection alter the number of high- and low-shedding cases.
Using data from the CDC [56], we calibrate contact rates so that the model’s total new daily
cases match the reported number of probable new cases each day in the United States from
22 January 2020 (day 0) until 16 March 2021 (day 419). We assume that αak = αaa = αkk = α,
or that they are in fixed proportions relative to α. At each time step we adjust α so the model
matches the daily calibration target. High-shedding and low-shedding cases are produced
in children or adults in proportions which are determined by the other parameters in
the model (see Tables 1 and 2). We assume vaccination commences at a constant rate,
starting on 16 January 2020 (day 360) and ending on day 460. After 16 March 2021 (day
419), we set α to be constant in time consistent with R0 = 1.3 until vaccination ends,
and thereafter contact rates rise to levels consistent with 2.5. We quantify the model’s
response by considering (i) cumulative cases of each type by time t (ii) active cases of each
type at time t, (iii) the fraction of infections that are high-shedding at time t, and (iv) the
fraction of infections up to time t that have been high-shedding.

Table 1. State Variables for the Full Model.

Variable Description Initial Condition

Sx Susceptible adults and children 271,833,136 and 56,406,387 [55]

Px Partially resistant adults, children 0

Lx Low-shedding infected adults, children 0

Hx High-shedding infected adults, children 1, 0

Rxy Resistant adults/children 0
after low-shedding/high-shedding infection

State variables describe the U.S. population, with children defined to be 14 years of age or younger [20,55,57]. The total population size is
328,239,523 [55]. Subscripts with x index age (a or k for adults or children) and the extra y in the subscript for Resistant individuals denotes
the type of infection experienced (h or l for high- or low-shedding). The epidemic is seeded by a single high-shedding adult.

Table 2. Parameters for the full model.

Parameter Description Value

ρ̃ Loss rate of partial immunity 1
2 per year [58–61]

ρ Loss rate of sterilizing immunity 1
2 per year [58–61]

αak Contact rate between adults and children Calibrated to
daily incidence data

or R0 = 1.3, 2.5 [56,62]

αaa Contact rate between adults Calibrated to
daily incidence data

or R0 = 1.3, 2.5 [56,62]

αkk Contact rate between children Calibrated to
daily incidence data

or R0 = 1.3, 2.5 [56,62]

θ Infectiousness of high-shedding cases
relative to low-shedding cases [1, 5]

τ Maturation rate 1
14 per year [55]

µ Death rate 1
80 per year [55]



Viruses 2021, 13, 854 11 of 23

Table 2. Cont.

Parameter Description Value

γ Recovery rate from infection 1
10 per day [63,64]

νk Susceptibility, S child [0, 5]

ν̃a Susceptibility, P adult 1
2

ν̃k Susceptibility, P child 1
2 νk

Qxy Probability an individual in Sx develops [0, 1]
low-shedding infection Lx upon contact with

an infection of type y

Q̃xy Probability an individual in Px develops [Qxy,1]
low-shedding infection Lx upon contact with

an infection of type y

Ω Daily vaccination rate [106, 3× 106]
from days 360–460

Parameter values used in the full model. Rates of immune loss are chosen so the duration of immunity to SARS-CoV-2 lies between the
duration reported for SARS and the seasonal coronaviruses [58–61]. The average infectious period is chosen to coincide with estimated
durations of infectiousness [63,64]. Contact rates are either (i) calibrated to match daily incidence, or (ii) held at fixed values to coincide with
a given R0 value, as explained at the end of the Methods section. Susceptibility parameters were chosen so partial immunity reduces the
probability of infection by 50% in all of the figures to follow, but main results are not sensitive to the particular value (Figure A1). Other
parameters which are not fixed across simulations are unknown and are varied over the ranges indicated by the intervals across simulations.
Relationships between these parameters and model outputs are presented within the figures in Results.

3. Results

The combined effects of partial immunity, age-structure, and dose response effectively
control the total number of high-shedding cases across a broad range of infectiousness
for the high-shedding phenotype (Figure 4). Subsets of these mechanisms fail to limit
high-shedding cases when they are only slightly more infectious than low-shedding cases
(Figure 4). Some subsets of mechanisms are more effective than others. In particular,
partial immunity and protective youth effects are ineffective to control high-shedding cases
without a dose response present, whereas a dose-response combined with a protective
youth effect but no partial immunity is at the higher end of effectiveness. Partial immunity
is the most effective mechanism in isolation, particularly for large θ (Figure 4). The dose
response is the least effective mechanism in isolation. Even with all three mechanisms in
place it is impossible to eradicate high-shedding infections if they are too infectious (θ → ∞
in Figure 4).

When children are less susceptible to infection (νk = 1/2) and all three mechanisms are
in place (Qah = 0,Qal = Qkl = Qkh = Q̃ah = Q̃al = Q̃kh = Q̃kl = 0), a supercritical Hopf
bifurcation occurs as θ passes through 2.3 (Figures 5, A3 and A4). This coincides with the
corner seen in the “All mechansisms” curve in the top panel of Figure 4. Periodic outbreaks
of high-shedding cases in adults occur on a biennial cycle. For θ ≈ 2.5, high-shedding
cases decline after the initial outbreak but then return in greater numbers with each cycle
until they settle on a long-term amplitude which exceeds that of the initial outbreak
(Figure 5). The magnitude of periodic outbreaks diminishes as high-shedding infections
become increasingly infectious (θ > 2.5) but high-shedding cases persist (Figures 5 and 6).
For large enough values of infectiousness θ, the periodic orbits disappear through another
supercritical Hopf bifurcation (Figure A4).

Weakening the three mechanisms pushes the system away from JASC. In Figure 6,
the parameter ε enters into the parametrization as Qah = ε, Qal = Qkl = Qkh = Q̃ah =

Q̃al = Q̃kh = Q̃kl = 1− ε, so ε > 0 constitutes a deviation away from the boundary of
100% efficacy in the three mechanisms. The long-term average number of high-shedding
cases in adults decreases as ε→ 0 and θ → 1 (Figure 6). Deviating from the boundary of
100% efficacy (ε > 0) eliminates the Hopf bifurcation, and periodic outbreaks do not occur
(not shown).
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Figure 4. Dose response, partial immunity, and protective effects of youth combine to limit the
cumulative number of high-shedding infections which occur within the first 30 years (top panel).
“Dose” in isolation is identical to “None” for θ > 1. Each combination of the three mechanisms
produces different dynamics, as shown for θ = 2 (bottom panel, which corresponds to dotted
black line in the top panel). High-shedding cases are driven close to extinction only if all three
mechanisms are in place (“All mechanisms” in (bottom panel)). Cases are shown within adults
only. Across all simulations, νk = 1/2, Ω = 3× 106/day. In the “All” curves, Qab = 0, and the
other Qxy, Q̃xy = 1. In the “None” curves, Qxy = Q̃xy = 0. Curves with the “Age” mechanism
have Qky = Q̃ky = 1. Curves with the “Dose” mechanism have Qxl = Q̃xl = 1, and “Dose only”
additionally has Qxh = Q̃xh = 0 (partial immunity and Age override this latter constraint). Curves
with the “PI” mechanism have Q̃xy = 1.

Children help control the number of high-shedding cases in adults as long as there
is a dose response (Figures 4 and 6). If they are more susceptible to infection they keep
the long-term number of active high-shedding cases low (Figure 6). If children are more
susceptible to infection, periodic outbreaks of high-shedding cases in adults do not occur
and they can be driven to extinction, or nearly so (not shown). Social distancing that
disproportionately reduces contact between children and adults can offset these beneficial
effects and potentially increase the number of high-shedding infections in adults (Figure 7).
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Figure 5. With all three mechanisms in place and children less susceptible to infection (νk = 1/2), a Hopf bifurcation occurs
as θ passes through ∼2.3. For θ near 2.5, high-shedding cases return in greater numbers on a biennial cycle and eventually
exceed their initial outbreak levels. The magnitude of outbreaks diminishes as θ increases past 2.5 but high-shedding
infections make up a greater share of total infections in adults. Periodic solutions do not exist if children are more susceptible
than adults (νk > 1). Vertical axes are the number of active infections in adults. Except for θ, all parameters as in Figure 4.

Figure 6. The Sweet Spot for JASC: the three mechanisms in combination limit the long-term average number of high-
shedding cases if they generate low-shedding cases with probability close to 100% and provided that high-shedding cases
are not too infectious (ε ≈ 0, θ ≈ 1, (left panel)). Children help mitigate disease severity if they develop low-shedding
infections and are more susceptible than adults (νk > 1, (right panel)). High-shedding infections can make up half of
the total infection prevalence in adults if children do not acquire infection (νk < 1, right panel, and also refer to the
θ = 5 case in Figure 5). High-shedding infections in adults are rare and periodic outbreaks will not occur if children are
equally susceptible (νk = 1). Low-shedding infections in adults further decline if children are more susceptible (νk → ∞).
Parametrization in the left panel corresponds to νk = 1/2 and the parametrization in the right panel corresponds to ε = 0.
See text for description of the other parameters.

Figure 7. Social distancing which disproportionately reduces contact between children and adults
from day 20 to 460 could increase the number of high-shedding cases in adults if children always
develop low-shedding infections. The effect is enhanced for a larger vaccination rate. The vaccination
period begins on day 360 and ends on 460 (rate of 3 million doses per day). For the “Distancing”
curve, αak = 0 from days 20-460. For the “No distancing” curve, αak, αaa and αkk are set equal and are
calibrated to the incidence data up to day 418, are set to values consistent with R0 = 1.3 from days
418-460, and R0 = 2.5 thereafter. Other parameters: Qab = 0, Qam = Qkb = Qkm = Q̃ab = Q̃am =

Q̃kb = Q̃km = 1, and νk = 1/2.
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A sufficiently intense short-term vaccination program obviates the need for subsequent
vaccination if high-shedding cases are not too infectious (large Ω in the θ = 2 panel in
Figure 8). If they are too infectious to disappear from the population then subsequent
vaccination can greatly reduce the number of high-shedding cases which occur over a
thirty year time period (θ = 3 in Figure 8).

Figure 8. As long as high-shedding cases are not too infectious (θ = 2) prolonged vaccination over
the next thirty years is not necessary for SARS-CoV-2 to become JASC. If high-shedding cases are
sufficiently infectious to cause periodic outbreaks (θ = 3) then regular vaccination is necessary to
limit high-shedding cases. Vaccination rate Ω is the number of doses (in the millions) administered
to susceptible individuals per day during the intense vaccination program which begins on day
360 and lasts until day 460. After day 460, 60% of the population continues to get vaccinated at the
corresponding Frequency (in years) along the vertical axis. Contact levels consistent with R0 = 1.3
maintained from day 418 (16 March 2021) up to day 460, after which contact returns to levels consistent
with R0 = 2.5. In both panels Qab = 0, Qam = Qkb = Qkm = Q̃ab = Q̃am = Q̃kb = Q̃km = 1,
and νk = 1/2.

4. Discussion

Will SARS-CoV-2 become “Just Another Seasonal Coronavirus?” We developed a
mathematical model where infections can be “high-shedding”or “low-shedding”, with the
latter tending to coincide with mild forms of illness, similar to infections caused by the
seasonal coronaviruses. We explore how three mechanisms proposed to alter the severity of
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COVID-19 might work together to promote avirulence. First, milder cases might produce a
smaller number of infectious particles and in turn create milder cases. Second, children
have lower susceptibility to severe infection overall and thus provide a source of mild
low-shedding infections. Finally, immunity may wane via a partially immune class that,
like children, experiences mild low-shedding infections. We implement these in the model
by structuring the host population into high and low susceptibility, to represent adults and
children, respectively. Each infection phenotype reproduces itself in new susceptible hosts
with greater probability, with children and partially immune hosts predisposed for low-
shedding infections. Each mechanism, considered in isolation, has the potential to direct
the system toward an avirulent regime as long as the high-shedding, severe manifestation
of infection is not more infectious than the low-shedding, mild phenotype. However, when
these mechanisms act in combination they strongly reduce the number of severe infections.

Because we have evidence for all three mechanisms for SARS-COV-2, it is quite
possible that the initial outbreak composed of many severe, high-shedding infections can
be followed by an endemic state characterized by mild, low-shedding infections much like
the seasonal coronaviruses. Other models predict COVID-19 is likely to persist alongside
the seasonal coronaviruses [3], and severity could attenuate over time as the attack rate
concentrates in children, who are predisposed for mild illness [65]. Our results show
that under the right circumstances, protective effects from age combined with a dose
response and partial immunity can accelerate this process. Given the relatively early stage
of the pandemic and limited information, it is too early to assess whether this process
is indeed under way, and where it will end up. Epidemiological data [66] will provide
clues as to whether SARS-CoV-2 is transitioning to JASC according to the mechanisms we
have proposed. Data accounting for age, infection severity, vaccination history, and prior
infection history (potentially including other viruses) could quantify the strength of the
proposed mechanisms. Information on geographic setting or network connectivity will be
necessary to place individuals in a context of the degree of immunity and severity to test
whether exposure to mild/low-shedding cases is associated with lower disease severity.
Further study will also be needed to establish whether individuals with a history of prior
infection tend to exhibit milder symptoms when they are reinfected. These analyses will
need to account for whether people have received a vaccine, because this could also be
associated with less severe illness.

Vaccines add other challenges to this evaluation. They might or might not mimic
natural infection in terms of the type and duration of immunity. If disease severity tends
to be lower after widespread vaccination, that could indicate that vaccines confer the
type of partially protective immunity we considered. The issue is complicated by the
multiple vaccine technologies in use (such as mRNA vs viral vector) and by potential
interaction with prior infection, that might confer different types of protection for different
amounts of time.

Heterogeneous responses to the pandemic across the world provide natural exper-
iments to test whether prior exposure leads to less severe disease. In places where a
large fraction of the population experienced natural infection, we might expect future
reinfections to tend less severe because prior exposure has conferred some degree of partial
immunity. In places which succeeded in keeping infection rates low we might expect future
primary infections to tend more severe because the population remains immunologically
naive. Of course, widespread vaccination would be expected to alter that outcome.

As with many studies [67], this simple ordinary differential equation model places
individuals into a rather small number of categories (adults vs children, partially vs totally
immune, low vs high-shedding infection). We do expect our results to be robust to general-
ization to more finely divided categories, but only further modeling could establish that.
This well-mixed model for the U.S. fails to capture spatial dynamics, which could produce
entirely different behavior. Similarly, we did not include seasonality in transmission that
could alter the speed of transition of SARS-CoV-2 to JASC by clustering cases in time.
The models assume constant transition rates between classes, creating exponential sojourn
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times [54] that are likely not realistic particularly for immunity. Although there is consid-
erable uncertainty about parameter values, we were able to calibrate to existing data and
experiment with a wide range of parameter values. Due to limited current knowledge, we
ignored heterogeneity in vaccine effects resulting from different technologies, and assumed
that vaccine efficacy is homogeneous across the population.

Existing genetic variation in the virus and further genetic mutation may alter the
evolutionary path of SARS-CoV-2 in ways that our model cannot predict. In particular,
new variants that escape partial immunity could short-circuit the process proposed here.
Interactions with the seasonal coronaviruses or other upper respiratory viruses could
create unexpected feedbacks [3]. In addition, the immune system could select for more
virulent genetic variants within hosts, as seems to be the case with malaria [68]. On a
longer timescale than we have considered, the human immune system and SARS-CoV-2
may coevolve in the context of a genetic arms race rendering pathogen more virulent and
host more resistant [69].

Emerging pathogens can be quite virulent, but as they transition to members of the
larger ecosystem they often tend toward avirulence. The role the immune system plays
in this transition is unclear. The COVID-19 pandemic provides us with an opportunity to
better understand how it might facilitate the evolution of disease. If it mitigates disease
severity in a dose-dependent manner like we have described, then our results suggest
that mild or asymptomatic infections by SARS-CoV-2 will become typical. Although viral
evolution and interactions with vaccines complicate the picture, we maintain hope that
SARS-CoV-2 will become the fifth seasonal coronavirus.
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Appendix A

Appendix A.1. Full Steady State Solution for the Model with Two Infection Types

The exact solution for the steady-state is
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The approximation in the main text is obtained by assuming that γ >> ρ, ρ̃. Adding
H∗ + L∗ gives the expression for total infection prevalence in the main text. The long-term
amount of partial immunity is weighted by the product of R0 − 1 and the total amount

of time spent in the infected and removed states,
(

1
ρ + 1

γ

)−1
, reflecting the fact that an

infection with a relatively small R0 will not spread to much of the population.

Figure A1. Accounting for infectiousness θ and susceptibility ν̃ in the model with two infection
phenotypes If high-shedding individuals are twice as infectious, the initial outbreak is larger, consists
of fewer low-shedding cases, and the subsequent outbreak of low-shedding cases occurs later (dotted
curve: θ = 2, solid curve: θ = 1, (top panel)). If partially immune individuals are half as susceptible,
it takes longer to reach the endemic steady state because subsequent outbreaks occur later (dotted
curves: ν̃ = 1/2, solid curves: ν̃ = 1, (bottom panel); all other parameters as in Figure 2).
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,

Figure A2. The values of I∗a and I∗k from the age-structured model plotted against ν, the relative
susceptibility of children, who make up half the population. The curves are qualitatively similar to
those in Figure 3 but the relationships are more pronounced since children make up a greater share
of the population.

Figure A3. Supercritical Hopf Bifurcation in the Full Model. The red complex eigenpair is about to
cross the imaginary axis as θ passes near 2.2, resulting in a supercritical Hopf bifurcation (left). Two
real eigenvalues near−0.1 are not shown. Near the bifurcation, transients decay slowly (right). These
results were generated from the full model without calibrating to data, without vaccination, νk = 1/2,
Qah = 0, Qal = Qkl = Qkh = Q̃ah = Q̃al = Q̃kl = Q̃kh = 1, and contact rates αaa = αak = αkk = α

were chosen so R0 = 2.5. For simplicity, we have set τ = µ = 0. Hopf bifurcations are only present
close the limiting case Qah = 0, Qal = Qkl = Qkh = Q̃ah = Q̃al = Q̃kl = Q̃kh = 1.
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Figure A4. Amplitude of solutions in the Full Model at 10,000 days. The supercritical Hopf bifur-
cation appears near θ = 2.2. For large enough θ the periodic solutions disappear through another
supercritical Hopf bifurcation (eigenvalue analysis not shown). These results were obtained from the
same parametrization as Figure A3.

Appendix A.2. Simplifying the Full Model

When there are no differences between high- and low-shedding infections, and chil-
dren and adults are identical, the model simplifies. The following sets of parameters can
be equated:

Q = Qah = Qal = Qkh = Qkl = Q̃ah = Q̃al = Q̃kh = Q̃kl

ν = ν̃a = νa = ν̃k = νa

E = Eal = Eah = Ekl = Ekh

θ = θl = θh

α = αaa = αkk = αak

γ = γal = γah = γkl = γkh

I = Ha + La + Hk + Lk

S = Sa + Sk + Pa + Pk

The system of equtaions simplifies to

dI
dt

= αθνS(
Lk + Hk

Nk
+

La + Ha

Na
)− γI
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With age structure, but no difference between high- and low-shedding infection,
the parameterization becomes

Qa = Qah = Qal = Q̃ah = Q̃al

Qk = Qkh = Qkl = Q̃kh = Q̃kl

νa = ν̃a

νk = ν̃k

Ea = Eal = Eah

Ek = Ekl = Ekh

θ = θl = θh

γa = γal = γah

γk = γkl = γkh

The system of equations can be reduced to

dLa

dt
+

dHa

dt
= θνa(Sa + Pa)(αak

Lk + Hk
Nk

+ αaa
La + Ha

Na
)− γa(La + Ha)

dLk
dt

+
dHk
dt

= θνk(Sk + Pk)(αkk
Lk + Hk

Nk
+ αak

La + Ha

Na
)− γk(Lk + Hk)

Ignoring age structure but allowing for differences between high- and low-shedding
infection, the parameterization can be simplified to

Ql = Qal = Qkl

Qh = Qah = Qkh

Q̃l = Q̃al = Q̃kl

Q̃h = Q̃ah = Q̃kh

α = αaa = αak = αkk

ν̃ = ν̃a = ν̃k

ν = νa = νk

El = Eal = Ekl

Eh = Eah = Ekh.

The system of differential equations simplifies to

dLa

dt
+

dLk
dt

= α
[
ν(Sa + Sk)(θlQl(

Lk
Nk

+
La

Na
) + θhQh(

Hk
Nk

+
Ha

Na
)) +

ν̃(Pa + Pk)(θlQ̃l(
Lk
Nk

+
La

Na
) + θhQ̃h(

Hk
Nk

+
Ha

Na
)
]

− γl(La + Lk)

dHa

dt
+

dHk
dt

= α
[
ν(Sa + Sk)(θl(1−Ql)(

Lk
Nk

+
La

Na
) + θh(1−Qh)(

Hk
Nk

+
Ha

Na
)) +

ν̃(Pa + Pk)(θl(1− Q̃l)(
Lk
Nk

+
La

Na
) + θh(1− Q̃h)(

Hk
Nk

+
Ha

Na
))
]

− γh(Ha + Hk).
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