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Abstract

We propose a genetic prediction modeling approach for genome-wide association study (GWAS) data that can include not only marginal
gene effects but also gene–environment (GxE) interaction effects—i.e., multiplicative effects of environmental factors with genes rather
than merely additive effects of each. The proposed approach is a straightforward extension of our previous multiple regression-based
method, STMGP (smooth-threshold multivariate genetic prediction), with the new feature being that genome-wide test statistics from a
GxE interaction analysis are used to weight the corresponding variants. We develop a simple univariate regression approximation to the
GxE interaction effect that allows a direct fit of the STMGP framework without modification. The sparse nature of our model automatically
removes irrelevant predictors (including variants and GxE combinations), and the model is able to simultaneously incorporate multiple envi-
ronmental variables. Simulation studies to evaluate the proposed method in comparison with other modeling approaches demonstrate its
superior performance under the presence of GxE interaction effects. We illustrate the usefulness of our prediction model through applica-
tion to real GWAS data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
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Introduction
Although discovery of genetic risk factors for disease is an impor-
tant goal of genome-wide association studies (GWAS), predicting
disease development or related traits is an important task for ap-
plying GWAS results in precision medicine. Many researchers
have explored algorithms for accurate genetic prediction based
on GWAS data with a large number of single-nucleotide polymor-
phisms (SNPs) (Evans et al. 2009; Purcell et al. 2009; Yang et al.
2011; Chatterjee et al. 2013; de Los Campos et al. 2013; Dudbridge
2013; Makowsky et al. 2013; Maier et al. 2015; Moser et al. 2015;
Vilhjálmsson et al. 2015; Privé et al. 2019), but no model has been
found that performs universally well with all data, and perfor-
mance is highly dependent on the data-generating mechanism
(Cherlin et al. 2018). Popular models are linear in the variants (or
SNPs), such as Purcell’s gene score (Purcell et al. 2009) and geno-
mic best linear unbiased prediction (BLUP) (Yang et al. 2011). As
an alternative, we developed a statistical method for genetic pre-
diction modeling called smooth-threshold multivariate genetic
prediction (STMGP) (Ueki and Tamiya 2016), and Takahashi et al.
(2020) recently demonstrated that the performance of STMGP
was superior to that of other genetic prediction methods for

predicting status of depression with actual GWAS data. STMGP is
a sparse modeling method based on a multiple linear regression
model such as the lasso (Tibshirani 1996) or the elastic net (Zou
and Hastie 2005), and it is able to account for the ultrahigh di-
mensionality of the p� n situation by filtering variants based on
the corresponding marginal-effect P-values calculated from uni-
variate regressions arising from a genome-wide scan. Sparseness
is achieved by ignoring irrelevant variants; the corresponding re-
gression coefficient estimates are set to zero as a result of shrink-
age based on the strength of the marginal effect through the
smooth-threshold estimating equations developed by Ueki
(2009). STMGP also automatically tunes the prediction model by
a Cp-type model selection criterion (as with the Akaike informa-
tion criterion (Akaike 1973)), where the tuning parameter corre-
sponds to the cutoff or threshold value for the marginal P-values
that determines which effects to filter. The proposed Cp-type cri-
terion based on Stein’s unbiased risk estimation (SURE, Stein
1981; Ye 1998; Efron 2004) has a closed-form expression and is a
computationally efficient alternative to cross-validation that is
often used to choose a P-value cutoff in the genetic prediction
context (Purcell et al. 2009; Warren et al. 2013).
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Recent advances in data platforms now make it possible to in-
tegrate feature variables other than variants, such as those asso-
ciated with lifestyle, clinical variables, imaging, etc. The simplest
integration is to enter everything as an additive term in a multi-
ple linear regression model as implemented in Ueki and Tamiya
(2016) and Takahashi et al. (2020). While such an additive model-
ing approach is simple and straightforward, there may be cases
where other approaches are more appropriate. One example is
gene–environment (GxE) interaction, which has received atten-
tion recently as one potential candidate to unveil the missing
heritability problem (Maher 2008; Manolio et al. 2009; Manolio
2013). With GxE interaction, the model to be estimated is no lon-
ger simply additive; rather, it involves terms that are multiplica-
tive in the covariates. Many investigations have aimed at
discovering genetic factors that contribute to GxE interactions in
disease risk (Kraft et al. 2007; Kooperberg and LeBlanc 2008;
Hamza et al. 2011; Ober and Vercelli 2011; Aschard et al. 2012;
Sung et al. 2014; Kraft and Aschard 2015, 2015; Sung et al. 2016;
Gauderman et al. 2017; Khoury 2017; McAllister et al. 2017; Ritchie
et al. 2017; Moore et al. 2018; Osazuwa-Peters et al. 2020): the ap-
proach using GWAS data is sometimes called a genome-wide en-
vironment interaction study (GWEIS) (Meijsen et al. 2018; Arnau-
Soler et al. 2019; Ueki et al. 2019). The need for GxE interactions
depends on the data and target traits, but as with variant discov-
ery, it would be beneficial to have a model for genetic prediction
also that can incorporate GxE interactions (Aschard 2016).
However, currently the number of such studies is very limited,
especially with respect to human disease prediction.

To address this issue, we present a straightforward extension
of our STMGP method to allow incorporation of GxE interaction
effects for building a genetic prediction model using large-scale
genome-wide SNP data in conjunction with environmental varia-
bles. The proposed method can incorporate multiple environ-
mental variables. The STMGP method requires as input the
marginal association P-values from univariate regression models
for each individual variant. This requirement implies that GxE in-
teraction can be fit directly in the STMGP framework if it is
expressed in a univariate regression model. The standard univar-
iate GxE interaction model for variant j in n samples is

yi ¼ li þ ei ¼ b0j þ b1jEi þ b2jGij þ b3jEiGij þ ei;

where i ¼ 1; . . . ; n. This model contains three terms: Ei, Gij, and
EiGij. Here, yi is the response variable, li is the conditional mean
of yi, Ei is the environmental variable, Gij is the jth variant
(j ¼ 1; . . . ; p), p is the number of all variants, �i is the error variable,
and b0j; b1j; b2j, and b3j are the corresponding regression coeffi-
cients. In general, removing either Ei or Gj will change the regres-
sion coefficient estimate of the GxE interaction term (see
Appendix for additional discussion). In this sense, the three
terms—Ei, Gij, and EiGij—are considered one set, meaning that the
GxE interaction effects cannot be represented by a univariate
model. To overcome this issue, we propose a simple approxima-
tion by a univariate regression model (the rationale is given in
the “Materials and Methods” section),

yi ¼ b0j þ b1j
~Ei þ b3j

~EiGij þ ei;

in which ~Ei is the centered value of Ei, i.e. ~Ei ¼ Ei � E with E the
sample mean of E1; . . . ; En. In words, b2jGij is simply removed from
the standard model and ~Ei is used instead of Ei. As a result of this

approximation, a one-to-one correspondence is made between
the regression coefficient b3j and the single predictor variable
EiGij. Thus, the STMGP method can now incorporate the GxE in-
teraction directly.

Materials and Methods
We use vector and matrix notation. Let
y ¼ ðy1; . . . ; ynÞT; l ¼ ðl1; . . . ; lnÞT, E ¼ ðE1; . . . ; EnÞT, and Gj ¼
ðG1j; . . . ;GnjÞT (j ¼ 1; . . . ; p). We first briefly explain the STMGP
framework (Ueki and Tamiya 2016), then we present our pro-
posed approach.

STMGP framework
Consider the linear multiple regression model, y ¼ lþ e, where
l ¼ Xb, e ¼ ðe1; . . . ; enÞT is the error vector, X is an nxp-dimensional
design matrix, and b is the corresponding vector of p regression
coefficients. In application to GWAS data without GxE interac-
tions, we set X ¼ ðG1; . . . ;GpÞ. Note that p is much larger than n in
typical GWAS data—i.e., p� n. Sparse modeling in which some of
the regression coefficients are set to zero is often used in GWAS
(Hoggart et al. 2008; Ayers and Cordell 2010; Abraham et al. 2013;
Lello et al. 2018; Privé et al. 2019). If disease-susceptibility SNPs
show relatively large marginal signals, marginal association
screening effectively reduces the dimensionality. The polygenic
score, including the gene score method (Purcell et al. 2009) and its
multivariate generalization (Warren et al. 2013), uses upper-
ranked SNPs with marginal association as predictors to build the
prediction model. The former uses independent SNPs after prun-
ing on the basis of LD (linkage disequilibrium), which means that
LD is not modeled.

The STMGP method (Ueki and Tamiya 2016) is a variant of the
multivariate gene score method (Warren et al. 2013), which is es-
sentially the multiple regression model for the upper-ranked
SNPs, and it accounts for correlations among SNPs by not includ-
ing LD-based pruning. Let Tjðy;XÞ denote a test statistic for mar-
ginal association that takes a nonnegative value. Examples of
Tjðy;XÞ include the squared Pearson’s correlation and the F statis-
tic. Let t > 0 be a cutoff value for Tjðy;XÞ defining inclusion of
SNPs. The cutoff value t corresponds to a quantile of the null dis-
tribution of Tjðy;XÞ, as in hypothesis testing. The linear multiple
regression after marginal association screening uses Xj satisfying
Tjðy;XÞ > t in the model. Without loss of generality, assume that
a large value of Tjðy;XÞ indicates stronger marginal association.
Multiple regression after marginal association screening can be
expressed by

l̂ ¼ Xb̂;

b̂ ¼ b̂A
b̂Ac

 !
¼ ðX

T

A
XAÞ�1X

T

A
y

0

0
@

1
A;

A ¼ fj : Tjðy;XÞ > tg;

(1)

where XA ¼ ðXjÞj2A and Ac indicates the complement set of A.
Note that the above procedure is similar to sure independence
screening (Fan and Lv 2008), which uses predictor variables that
are upper-ranked in marginal association analyses. The proce-
dure (1) is feasible for p� n data and is useful in building a pre-
dictive model. In view of the normal equations, it can be seen
that b̂ in (1) satisfies, for j ¼ 1; . . . ; p,
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ð1� D̂jÞfX
T

j
ðXb̂ � yÞg þ D̂jb̂ j ¼ 0; (2)

or, in vector form,

ðIp � D̂ÞfXTðXb̂ � yÞg þ D̂b̂ ¼ 0;

where D̂j ¼ 1fTjðy;XÞ � tg, where 1f�g denotes the indicator
function, D̂ ¼ diagðD̂j : jÞ, and Ip is the p-dimensional identity
matrix. Obviously, for j 2 Ac, D̂j ¼ 1 and (2) reduces to b̂ j ¼ 0,
i.e., a sparse solution; for j 2 A, D̂j ¼ 0 and the above normal
equations reduce to XT

AðXAb̂A � yÞ ¼ 0 because b̂Ac ¼ 0. These
are the normal equations for an ordinary least squares regres-
sion with design matrix XA. The resulting prediction process
forms l̂ðyÞ ¼ XAb̂A ¼ XAðXT

AXAÞ�1XT
Ay, which is discontinuous in

y due to the thresholding induced by D̂j.
The main innovative idea in STMGP is to replace the discontin-

uous thresholding D̂j in (2) with a smooth thresholding using the
smooth-threshold estimating equations proposed by Ueki (2009).
Following Ueki (2009), D̂j ¼ 1fTjðy;XÞ � tg is replaced by an adap-
tive lasso smooth-thresholding function

�Dj ¼min½1; ft=Tjðy;XÞg
1þc

2 �; (3)

where c > 0 is a tuning parameter. This smooth-thresholding
function is chosen so as to be identical to the adaptive lasso esti-
mator under the simplest least squares regression of y ¼ bþ e

(Ueki 2009). If Tjðy;XÞ � t (or j 2 Ac), �Dj ¼ 1, producing a zero-
valued regression coefficient; if Tjðy;XÞ > t (or j 2 A), �Dj < 1 pro-
ducing a nonzero regression coefficient. Therefore, the condition
for a sparse solution with �Dj is the same as that with D̂j. Note
that �Dj is monotonically decreasing in Tjðy;XÞ, so regression coef-
ficients having large Tjðy;XÞ are penalized to a lesser extent than
those having small Tjðy;XÞ.

For a given screening cutoff value t > 0, which gives a SNP set
A ¼ fj : Tjðy;XÞ > tg, the estimates of the p regression coefficients
are

�b ¼
�bA
�bAc

� �

¼ fðIjAj � �DAÞðX
T

A
XA þ kIjAjÞ þ s�DAg

�1

ðIjAj � �DAÞX
T

A
y

0

0
B@

1
CA; (4)

where jAj is the cardinality of A. The non-negative tuning param-
eters c and s are set to 1 and n=

ffiffiffiffiffiffiffiffiffiffiffiffi
log n

p
, respectively, following

previous studies (Ueki and Tamiya 2016; Takahashi et al. 2020),
and k > 0 is a small constant to avoid singularity of XT

AXA. The
corresponding prediction of yi is then �l iðyÞ ¼ XT

i
�b, where �Dj is an

adaptive lasso smooth-thresholding function defined as
�Dj ¼min½1; ft=Tjðy;XÞg

1þc
2 �. Since �Dj ¼ 1 if and only if Tjðy;XÞ � t,

the screened set A with �Dj is the same as that with
D̂j ¼ 1fTjðy;XÞ � tg. It can be seen that �Dj replaces the discontin-
uous screening process D̂j by a continuous function. As a result,
�l iðyÞ turns out to be continuous in y, enabling stable model
selection (Breiman 1996).

According to Ueki (2009) and Ueki and Tamiya (2016), the
regression coefficients for the screened set in (4) can equivalently
be considered as the solution of the generalized ridge
regression with loss jjy� XAbAjj2 þ

P
j2A b2

j Wj, in which

Wj ¼ kþ s�Dj=ð1� �DjÞ. The ridge weight for each predictor
variable, Wj, represents the uncertainty of the marginal associa-
tion screening. If the marginal association is very weak, �Dj � 1
and Wj is large, and the corresponding regression coefficient is
strongly shrunken toward zero. If the marginal association is
strong, �Dj � 0 and Wj � k, and the corresponding regression coef-
ficient is less penalized. Continuity due to the smooth threshold-
ing also allows computation of a Cp-type model selection
criterion using SURE. The Cp-type criterion enables a computa-
tionally efficient choice of optimal P-value cutoff from the per-
spective of model selection. Details are provided in the
Supplementary Material of Ueki and Tamiya (2016). We now
outline the STMGP algorithm for X ¼ ðG1; . . . ;GpÞ.

Outline of the STMGP algorithm
Step 1. Perform single-SNP association analysis for p SNPs with a
univariate model for each SNP.

Step 2. Retain SNPs whose single-SNP association P-value is
less than amax.

Step 3. Fix c ¼ 1 and s ¼ n=
ffiffiffiffiffiffiffiffiffiffiffiffi
log n

p
, and select an optimal a

from candidate values in ½amin; amax� by minimizing the Cp-type
criterion:

CðaÞ ¼
Xn

i¼1

fyi � �l iðaÞg2 þ 2r̂2GDFðaÞ:

Step 4. Compute �b in (4) by using the selected a in Step 3.
Here, �l iðaÞ denotes the predicted value for the ith subject at

the P-value threshold a corresponding to the test statistic thresh-
old t; amax is the maximum P-value in the search, which is set to
make the expected number of screened SNPs to be on the order
of n in practice; r̂2 is an error variance estimate; and GDFðaÞ
denotes the generalized degrees of freedom (Ye 1998; Efron 2004).
The univariate model for the jth variant Gj (j ¼ 1; . . . ; p) in Step 1 is

l01 ¼ 1nb0j þ Gjb1j: (5)

Step 3 outputs estimates of regression coefficients,
�b0;

�b1; . . . ; �bp, for the intercept and each variant, which allows
computation of the prediction model in an additive form. Some
of the regression coefficients �b1; . . . ; �bp can be exactly zero

(i.e., sparsity). The predicted value for a new individual who

has variants ðG?
j Þj¼1;...;p can be calculated as �b0 þ

Pp
j¼1

G?
j
�b j. The

above method assumes a linear regression model for a
quantitative phenotype. For a binary phenotype, a logistic re-
gression model is used.

Incorporating GxE interactions with univariate
regression approximation
In what follows, we describe our procedure to incorporate GxE
interactions into the STMGP framework. Consider the standard
GxE interaction model for the jth variant Gj and an environmen-
tal variable E,

l0123 ¼ 1nb0j þ Eb1j þ Gjb2j þ ðGj
�EÞb3j; (6)

where � denotes the Hadamard product—i.e., the ith element of
ðGj
�EÞ is given by GijEi. As seen in Steps 1 and 2 of the STMGP algo-

rithm, because the STMGP framework requires input of multiple
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predictors that pass a marginal association P-value threshold
from each univariate regression model, the above GxE interaction
model does not directly fit the STMGP framework due to there be-
ing two regression coefficients—b2j and b3j—that associate with
Gj. For example, if b2j is highly significant but b3j is not, it is uncer-
tain whether we may include only Gj, because b2j differs from the
regression coefficient of Gj in the univariate regression model
without interaction term ðGj

�EÞ. In contrast, if b3j is highly signifi-
cant but b2j is not, then it is unclear whether we need ðGj

�EÞ only,
for the same reason. Furthermore, including both ðGj

�EÞ and Gj

might reduce predictive power by increasing the number of pre-
dictors included: in other words, the curse of dimensionality.

We propose a simple approximation to the above GxE interaction
model by using a univariate regression model to eliminate these
complications. To this end, we assume independence between E
and each Gj. Such assumption is sometimes made in the literature
on GxE interaction (Chatterjee and Carroll 2005; Mukherjee and
Chatterjee 2007), and it is reasonable for many real GWAS data as
the majority of variants have small marginal effects on environ-
mental factors. Our proposed method (the main result) is simply to
use the following univariate regression model instead of (6):

l013 ¼ 1nb0j þ ~Eb1j þ ðGj
�~EÞb3j; (7)

in which ~E is the centered E as defined previously. In the
Appendix we show that, under independence between Gj and E,
the least squares estimate of the regression coefficient of ðGj

�EÞ
in (6) is approximated by that of ðGj

�~EÞ in (7). This implies a one-
to-one correspondence between the effects of the regression coef-
ficient of ðGj

�EÞ in (6) and that of the single predictor ðGj
�~EÞ. As a

consequence, the STMGP framework can be directly applied by
setting the following design matrix with 2p predictors:

X ¼ ðG1; . . . ;Gp; G1
�~E; . . . ;Gp

�~EÞ:

If we have m environmental variables, E1; . . . ; Em, we may set

X ¼ ðG1; . . . ;Gp; G1
�~E1; . . . ;Gp

�~E1; . . . ; G1
�~Em; . . . ;Gp

�~EmÞ;

which has ð1þmÞp predictors. To implement this proposal, we
simply include an additional procedure into Steps 1 and 2 above.
The following is the modification to include m environmental
variables.

Steps 1 and 2 of STMGP algorithm modified to incorporate GxE inter-
actions with m environmental variables E1; . . . ; Em

Step 1’: Perform single-SNP association analysis for each of
the p SNPs with a univariate model for each variant, and perform
SNPx~Ek interaction analysis for each of the p SNPs and ~Ek with
the model (7) (k ¼ 1; . . . ;m), where ~Ek ¼ Ek � Ek1n with Ek the sam-
ple mean of Ek.

Step 2’: Screen (retain) SNPs on the basis of single-SNP associa-
tion P-values, and screen SNP–environmental variable pairs on
the basis of SNPx~Ek interaction P-values (k ¼ 1; . . . ;m) at amax.

The above steps are easily performed with PLINK (Purcell et al.
2007; Chang et al. 2015), as follows. Prepare the centered environ-
mental variable in a covariate file, say environment.cov. Then,
the PLINK command option is –linear –covar environment.cov –
interaction –parameters 1,2,3 –tests 1,3. It is also possible to in-
clude additional covariates. We have implemented the above al-
gorithm in our STMGP package. We have also implemented a

prediction model for binary traits with a logistic regression model
based on the method developed in Ueki and Tamiya (2016).

Simulation study
To examine the performance of the proposed method, we con-
ducted simulation studies based on real SNP-GWAS data analo-
gous to those of Takahashi et al. (2020). We used an ADNI-GWAS
dataset obtained from the publicly available Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership led by
Principal Investigator Michael W. Weiner, MD. The goal of the
ADNI has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography, other biological
markers, and clinical and neuropsychological assessments can
be combined to measure the progression of mild cognitive im-
pairment (MCI) and early Alzheimer’s disease (AD). For up-to-
date information, see www.adni-info.org (Accessed: 2021 August
31). The ADNI is an ongoing, longitudinal study with the primary
purpose being to explore the association of genetic and neuroim-
aging information with late-onset Alzheimer’s disease. The study
investigators recruited subjects older than 65 years of age com-
prising about 400 subjects with MCI, about 200 subjects with AD,
and about 200 healthy controls. Each subject was followed for at
least 3 years. During the study period, the subjects were assessed
with MRI measures and psychiatric evaluation to determine the
diagnostic status at each time point.

The ADNI-GWAS data were obtained from 818 DNA samples of
ADNI1 participants by using the Illumina Human 610-Quad geno-
typing array (Shen et al. 2014). The data initially included 620,901
SNPs. We included the apolipoprotein E (APOE) SNPs rs429358 and
rs7412 in our analysis. We used data from 684 non-Hispanic
Caucasian samples after we excluded one pair showing cryptic relat-
edness (revealed by the PLINK pairwise p̂ statistic being greater than
0.125) (Purcell et al. 2007), and we excluded subjects whose reported
sex did not match the sex inferred from X-chromosome SNPs. We
then applied further quality control measures by excluding SNPs
with missing genotype rate > 0:1, Hardy–Weinberg equilibrium test
P-value < 10�6, and MAF < 5%; the total number of remaining
SNPs was 528,984, which is the value of P for this analysis.

For the 684 individuals, given that the above real genotype data
remain fixed, we artificially generated a quantitative trait, which
was used as a target variable to be predicted. We also simulated
two environmental variables (sex, E1, and years of education, E2) as
follows. E1 was generated from a Bernoulli distribution with success
probability 0.5. E2 was generated from a standard normal distribu-
tion. Both variables were standardized to have mean zero and vari-
ance 1 in the generated sample. First, we denote by p0 the number
of causal variants for the main effects of genes, GxE1 effects, and
GxE2 effects; note that the p0 variants of each type are not the
same. The corresponding 3p0 regression coefficients, b	j
(j ¼ 1; . . . ; 3p0), were generated from pre-specified distributions.
Specifically, the first p0 regression coefficients were generated inde-
pendently and identically from a normal, NEG2 (normal–exponen-
tial–gamma with shape parameter 2), or Laplace distribution with
mean zero and variance h2

G; the second p0 regression coefficients
were generated independently and identically from a normal,
NEG2, or Laplace distribution with mean zero and variance h2

G
E1
;

the remaining p0 regression coefficients were generated indepen-
dently and identically from a normal, NEG2, or Laplace distribution
with mean zero and variance h2

G
E2
. Next, we randomly selected 3p0
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causal variants, G	1; . . . ;G	3p0
, from among the p SNPs, ðG1; . . . ;GpÞ.

The first p0 variants (G	1; . . . ;G	p0
) had a nonzero gene main effect,

the second p0 variants (G	1þp0
; . . . ;G	2p0

) had a nonzero GxE interac-
tion effect with E1, and the remaining p0 variants (G	1þ2p0

; . . . ;G	3p0
)

had a nonzero GxE interaction effect with E2.
Then, the conditional mean was set as

ltrue ¼
1ffiffiffiffiffi
p0
p

Xp0

j¼1

~G
	
j b
	
j þ

1ffiffiffiffiffi
p0
p

X2p0

j¼1þp0

~ðG	j � E1Þb	j

þ 1ffiffiffiffiffi
p0
p

X3p0

j¼1þ2p0

~ðG	j � E2Þb	j ;

in which ~G
	
j , ~ðG	j � E1Þ, and ~ðG	j � E2Þ denote the corresponding

terms standardized to have mean zero and variance one. Finally,
a quantitative trait was generated as y ¼ ltrue þ e, where � is an in-
dependently and identically distributed normal random variable

with mean zero and variance 1� h2
G � h2

G
E1
� h2

G
E2
.

Note that Eð 1ffiffiffiffi
p0
p
Pp0

j¼1

~G
	
j b
	
j Þ ¼ 1ffiffiffiffi

p0
p
Pp0

j¼1

~G
	
j Eðb	j Þ ¼ 0 and

Varð 1ffiffiffiffi
p0
p
Pp0

j¼1

~G
	
j b
	
j Þ ¼ 1

p0

Pp0

j¼1
ð~G	j Þ

2Varðb	j Þ ¼ h2
G, and, similarly,

1ffiffiffiffi
p0
p

P2p0

j¼1þp0

~ðG	j � E1Þb	j and 1ffiffiffiffi
p0
p

P3p0

j¼1þ2p0

~ðG	j � E2Þb	j have mean zero and

variance h2
G
E1

and h2
G
E2

, respectively. Also note that the three

terms in ltrue and � are mutually independent. Thus, y has mean

zero and variance 1, and the triplet h2 ¼ ðh2
G; h

2
G
E1

; h2
G
E2
Þ is

referred to as heritability throughout this paper. We considered

a total of eight scenarios for h2. First, we considered

ð0:3; 0; 0Þ; ð0:6; 0; 0Þ; ð0; 0:3; 0Þ, and ð0; 0:6; 0Þ, where the first and

second are scenarios with gene effect without GxE interactions,

and the third and fourth are scenarios with GxE interactions

only for E1. Then we considered four additional scenarios:

ð0; 0:15; 0:15Þ; ð0; 0:3; 0:3Þ; ð0; 0; 0:3Þ; ð0; 0; 0:6Þ, where the first and

second are scenarios with GxE interactions both for E1 and E2, and

the third and fourth are scenarios with GxE interactions only for E2.

We used cross-validation to evaluate the prediction models.
The data were randomly divided into two parts: 20% for training
data and the remaining 80% for test data. The training dataset
was used to build prediction models, and then the prediction ac-
curacy of each model was evaluated on the basis of how well the
simulated quantitative traits in the test dataset were predicted
by the trained model. We used the prediction correlation coeffi-
cient (PCC) to measure the prediction accuracy. The above proce-
dure was repeated 100 times. We note that the 3p0 causal SNPs
and true regression coefficients differed for each replicate.

We also considered simulations for prediction of binary traits.
A binary trait was generated by dichotomizing the quantitative
trait on the basis of whether or not its value exceeded U�1ð0:7Þ, in
which U�1 is the standard normal quantile function. With a binary
trait, the prediction accuracy of each model was evaluated by the
area under the receiver operating characteristic curve (AUC).

Comparisons among prediction models
We compared the proposed extension of the STMGP method with
other prediction models. We included the usual STMGP without

GxE interaction as a competitor; specifically, the STMGP models
compared were the STMGP without environmental variables,
STMGP with environmental variable E1, STMGP with environ-
mental variable E2, and STMGP with both environmental varia-
bles E1 and E2.

We also compared the proposed STMGP extension with other
prediction models based on genomic BLUP. Specifically, we con-
sidered the following four genomic BLUP models,

lb ¼ 1nb0 þ E1b1;1 þ E2b2;1 þ
Xp

j¼1

~Gjbj;2; (8)

lbge1 ¼ 1nb0 þ E1b1;1 þ E2b2;1 þ
Xp

j¼1

~Gjbj;2 þ
Xp

j¼1

ð~Gj
�
E1Þbj;3; (9)

lbge2 ¼ 1nb0 þ E1b1;1 þ E2b2;1 þ
Xp

j¼1

~Gjbj;2 þ
Xp

j¼1

ð~Gj
�
E2Þbj;3; (10)

lbge12 ¼ 1nb0 þ E1b1;1 þ E2b2;1 þ
Xp

j¼1

~Gjbj;2 þ
Xp

j¼1

ð~Gj
�
E12Þbj;3; (11)

where E12 ¼ ðE1 þ E2Þ=2; b0 and b1 are fixed effects, and bj;2 and bj;3

are random effects that are independently distributed as Nð0;r2
GÞ

and Nð0;r2
G
EÞ, respectively. Similar BLUP models have been con-

sidered in previous studies (e Sousa et al. 2017; Moore et al. 2018).
We constructed the prediction model by BLUP implemented in the
BGEE package for R (Granato et al. 2018) by using the BGEE function
with options ite¼ 20000, burn¼ 1000, and thin¼ 3.

Application to prediction of real traits
We applied the proposed extension of the STMGP to the predic-
tion of real traits. All variables were obtained from the
ADNIMERGE package for R. We considered four cognitive scores
as target traits for prediction: FAQ (Functional Assessment
Questionnaire), CDRSB (Clinical Dementia Rating Sum of Boxes),
MMSE (Mini-Mental State Examination), and ADAS11 [the 11-
item ADAS-cog (Alzheimer’s Disease Assessment Scale-Cognitive
Subscale)]. We used SEX and EDU (years of education) as environ-
mental variables. We also considered two additional covariates,
AGE and APOE4 genotype. The latter is a known risk allele for AD
development. As with the above simulations, we evaluated pre-
diction accuracy via cross-validation.

First, we randomly divided the 684 individuals into five groups
of roughly equal size. Then, one of the five groups was selected
as the test set and the remaining groups were used as the train-
ing set. Consequently, by repeating this with each group in turn
acting as the test set, we had five different test/training sample
combinations (i.e., 5-fold cross-validation). For each of the five
combinations, we built a prediction model based on the training
set and predicted each trait value for the test set with the con-
structed prediction model.

For each training set, we used 528,984 SNPs as predictors as in
the above simulation studies. The prediction models we com-
pared were STMGP with SEX as the environmental variable,
STMGP with EDU as the environmental variable, and STMGP with
SEX and EDU both as environmental variables. BLUP-based pre-
diction models are (8)–(11). Since the target traits are cognitive
scores, we additionally studied regression models including
APOE4 genotype interaction without other variants; specifically,
we considered the following models without GWAS data:

ll0 ¼ 1nb0 þ SEXb1;1 þ EDUb2;1; (12)
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ll ¼ 1nb0 þ SEXb1;1 þ EDUb2;1 þ AGEb3;1 þAPOE4b4;1; (13)

llge1 ¼ 1nb0 þ SEXb1;1 þ EDUb2;1 þ AGEb3;1 þAPOE4b4;1
þAPOE4�SEXb5;1;

(14)

llge2 ¼ 1nb0 þ SEXb1;1 þ EDUb2;1 þ AGEb3;1 þAPOE4b4;1
þAPOE4�EDUb5;1;

(15)

llge12 ¼ 1nb0 þ SEXb1;1 þ EDUb2;1 þ AGEb3;1 þ APOE4b4;1
þAPOE4�SEXb5;1 þ APOE4�EDUb6;1:

(16)

Prediction accuracy was evaluated with PCC, which compares
the predicted value with the actual trait in the test set.

Results
Simulation results
Results of the quantitative trait simulation are shown in
Figures 1 and 2, and Supplementary Figure S1, where each cell

exhibits mean PCC and the number of causal variants is p0 ¼ 100,
1000, and 500, respectively.

The first and second scenarios for h2, ð0:3; 0; 0Þ and ð0:6; 0; 0Þ,
are those with gene effects but no GxE interactions. From
Figures 1 and 2, and Supplementary Figure S1, all methods
showed a higher predictive power in the latter scenario than in
the former scenario due to the larger heritability. The four
STMGP methods resulted in comparable predictive power, imply-
ing that the inclusion of GxE interactions had virtually no effect
on predictive power, which is a reasonable result because no GxE
interaction effects were assumed in the data-generating model.
The BLUP models had lower predictive power than the STMGP
methods, which is also reasonable because only a small propor-
tion of variants was assumed to be causal and the BLUP models
do not carry out variable selection. Indeed, by comparing
Figures 1 and 2 and Supplementary Figure S1, it can be seen that
an increase in the number of causal variants made the difference
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Figure 1 Quantitative trait simulation with p0 ¼ 100. Average predictive correlation coefficient (PCC) for eight models. For each scenario (shown in rows),
high values are highlighted in red and low values in white. s: STMGP with E1 and E2 as covariates; sge1: STMGP with E1 and E2 as covariates and E1 as
environmental variable for GxE interaction; sge2: STMGP with E1 and E2 as covariates and E2 as environmental variable for GxE interaction; sge12:
STMGP with E1 and E2 as covariates, and E1 and E2 as environmental variables for GxE interaction; bg: BLUP with E1 and E2 as covariates; bge1: BLUP with
E1 and E2 as covariates and E1 as environmental variable for GxE interaction; bge2: BLUP with E1 and E2 as covariates and E2 as environmental variable
for GxE interaction; bge12: BLUP with E1 and E2 as covariates, and average of E1 and E2 as environmental variable for GxE interaction. Scenarios are
denoted as ðh2

G; h
2
G
E1

; h2
G
E2
Þ_ dist, where dist means effect size distribution: Normal, NEG2, or Laplace.
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Figure 2 Quantitative trait simulation with p0 ¼ 1000. Average predictive correlation coefficient (PCC) for eight models. See Figure 1 for explanation of
scenarios (shown in rows).
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between the STMGP and BLUP methods smaller. The difference
in effect size distribution had a non-negligible impact on predic-
tive power. While the BLUP methods assume a normal distribu-
tion, the STMGP methods do not rely on the effect size
distribution, and the STMGP methods had much higher predic-
tive power than the BLUP methods, in particular, when the effect
size distribution was non-normal. The difference between the
STMGP and BLUP methods was pronounced under the NEG2 dis-
tribution, which has the heaviest tails among the three effect-
size distributions compared. A similar result was observed in the
simulation studies of Takahashi et al. (2020).

The third and fourth scenarios for h2, ð0; 0:3; 0Þ and ð0; 0:6; 0Þ,
are those with GxE interactions only for E1. As in the scenarios for
h2 ¼ ð0:3; 0; 0Þ and ð0:6; 0; 0Þ, all prediction models gave higher
predictive power in the latter scenario than in the former sce-
nario. Unlike the scenarios with no GxE interactions h2 ¼
ð0:3; 0; 0Þ and ð0:6; 0; 0Þ, the STMGP methods incorporating GxE in-
teraction effects had higher predictive power than the STMGP
method without GxE interactions. For example, in scenario h2 ¼
ð0; 0:6; 0Þ under a normal effect-size distribution, the STMGP
without GxE interaction produced mean PCC 0.36 (standard devi-
ation 0.26), while the STMGP with GxE interaction on variable E1

resulted in mean PCC 0.41 (standard deviation 0.22). On the other
hand, the STMGP with GxE interaction on variable E2 resulted in
mean PCC 0.37 (standard deviation 0.26), which is comparable
with STMGP without GxE interaction. This is reasonable since no
GxE interaction effect on variable E2 was assumed. The STMGP
with GxE interaction on both E1 and E2 gave mean PCC 0.41 (stan-
dard deviation 0.23), a predictive power comparable to that of
STMGP with GxE interaction on variable E1. Total heritability and
the difference in effect size distribution had a similar impact on
predictive power in scenarios ð0:3; 0; 0Þ and ð0:6; 0; 0Þ. For p0 ¼ 100
and the larger heritability scenario, h2 ¼ ð0; 0:6; 0Þ, or under the
NEG2 distribution, STMGP with GxE interaction on variable E1

tended to produce higher predictive power than the BLUP meth-
ods, which is perhaps due to the fact that only a small proportion
of variants was assumed to be causal. In the other cases among
the third and fourth scenarios (any distribution with other than
ð0; 0:6; 0Þ and p0 ¼ 100, or p0 ¼ 100 and NEG2 with any heritability

[ð0; 0:3; 0Þ or ð0; 0:6; 0Þ]), the STMGP methods did not always per-
form better than the BLUP methods.

Results of the additional four scenarios are shown in
Supplementary Figures S3–S5. The first and second scenarios for
h2, ð0; 0:15; 0:15Þ and ð0; 0:3; 0:3Þ, are the scenarios with GxE inter-
actions both for E1 and E2. Unlike the scenarios ð0; 0:3; 0Þ and
ð0; 0:6; 0Þ, all three STMGP methods with GxE interaction had
comparably higher predictive power than STGMP without GxE in-
teraction. This is reasonable as GxE interaction was assumed for
both variables, E1 and E2. The third and fourth scenarios for h2,
ð0; 0; 0:3Þ and ð0; 0; 0:6Þ, are those with GxE interactions only for
E2. The results were similar to those for ð0; 0:3; 0Þ and ð0; 0:6; 0Þ, in
which the role of E2 was replaced by E1.

Results of the binary trait simulation are shown in Figures 3
and 4, and Supplementary Figure S2, in which each cell exhibits
the mean AUC. The results were consistent overall with the
results of the quantitative trait simulation, but differences in pre-
dictive power between methods were smaller than with the
quantitative trait simulation.

Prediction of real quantitative trait
Results of predicting the four cognitive scores—FAQ, CDRSB,
MMSE, and ADAS11—as target traits are shown in Table 1, which
convey the five PCCs from 5-fold cross-validation. Generally, the
prediction accuracy differed across the four traits. By comparing
l0 with l, lge1, lge2, and lge12, which correspond to formulae
(12)–(16), we see that inclusion of the APOE4 genotype (without
genome-wide variants) gave much higher predictive power.
However, the observed comparable prediction ability among
models l, lge1, lge2, and lge12 implies that the inclusion of an in-
teraction between APOE4 and either SEX or EDU did not impact
predictive power. The BLUP methods, s, sge1, sge2, and sge12,
resulted in performance that was comparable to those of l, lge1,
lge2, and lge12, and did not show any extremely distinctive be-
havior. Similarly, the STMGP methods did not behave much dif-
ferently from the other methods, but STMGP with a GxE
interaction with EDU (sge2) tended to show slightly higher predic-
tive power and improved upon the STMGP without GxE interac-
tion. In particular, for prediction of FAQ, STMGP with a GxE

0.5

0.53

0.54

0.54

0.59

0.63

0.62

0.62

0.61

0.67

0.66

0.67

0.49

0.53

0.54

0.53

0.58

0.61

0.62

0.62

0.63

0.68

0.68

0.7

0.49

0.52

0.54

0.53

0.59

0.62

0.61

0.62

0.62

0.67

0.66

0.66

0.49

0.52

0.54

0.52

0.58

0.61

0.62

0.62

0.63

0.68

0.68

0.7

0.5

0.51

0.5

0.51

0.53

0.51

0.62

0.62

0.61

0.67

0.66

0.66

0.5

0.51

0.5

0.5

0.52

0.5

0.62

0.63

0.62

0.68

0.67

0.67

0.51

0.51

0.5

0.51

0.52

0.51

0.62

0.62

0.61

0.68

0.66

0.66

0.51

0.51

0.5

0.51

0.52

0.51

0.62

0.62

0.61

0.68

0.67

0.66

(0,0.3,0)_Laplace

(0,0.3,0)_NEG2

(0,0.3,0)_Normal

(0,0.6,0)_Laplace

(0,0.6,0)_NEG2

(0,0.6,0)_Normal

(0.3,0,0)_Laplace

(0.3,0,0)_NEG2

(0.3,0,0)_Normal

(0.6,0,0)_Laplace

(0.6,0,0)_NEG2

(0.6,0,0)_Normal

s sge1 sge2 sge12 bg bge1 bge2 bge12

Figure 3 Binary trait simulation with p0 ¼ 100. Average area under the ROC curve (AUC) is shown for eight models. For each scenario (in rows), high
values are highlighted in red and low values in white. s: STMGP with E1 and E2 as covariates; sge1: STMGP with E1 and E2 as covariates and E1 as
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STMGP with E1 and E2 as covariates, and E1 and E2 as environmental variables for GxE interaction; bg: BLUP with E1 and E2 as covariates; bge1: BLUP with
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for GxE interaction; bge12: BLUP with E1 and E2 as covariates, and average of E1 and E2 as environmental variable for GxE interaction. Scenarios are
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G
E1

; h2
G
E2
Þ_ dist, where dist means effect size distribution: Normal, NEG2, or Laplace.
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Figure 4 Binary trait simulation with p0 ¼ 1000. Average area under the ROC curve (AUC) for eight models. See Figure 3 for explanation of scenarios
(shown in rows).

Table 1 Results of predicting four quantitative traits, FAQ, CDRSB, MMSE, and ADAS11

Traita Datab l0c ld lge1e lge2f lge12g sh sge1i sge2j sge12k bgl bge1m bge2n bge12o

FAQ CV 1 0.07 0.16 0.15 0.17 0.16 0.11 –0.01 0.15 0.05 0.14 0.13 0.13 0.12
CV 2 0.17 0.35 0.33 0.36 0.34 0.26 0.24 0.32 0.31 0.32 0.35 0.33 0.33
CV 3 0.19 0.15 0.15 0.16 0.16 0.19 0.13 0.21 0.15 0.17 0.15 0.18 0.17
CV 4 0.01 0.26 0.26 0.27 0.27 0.31 0.18 0.24 0.19 0.23 0.28 0.25 0.23
CV 5 0.08 0.16 0.16 0.10 0.09 0.15 0.14 0.17 0.15 0.17 0.14 0.17 0.15
Mean 0.10 0.21 0.21 0.21 0.20 0.20 0.14 0.22 0.17 0.21 0.21 0.21 0.20

SD 0.08 0.09 0.08 0.10 0.10 0.08 0.09 0.07 0.09 0.07 0.10 0.08 0.09
CDRSB CV 1 0.07 0.13 0.13 0.12 0.12 0.21 0.18 0.22 0.17 0.12 0.13 0.10 0.11

CV 2 0.16 0.38 0.37 0.36 0.35 0.33 0.28 0.33 0.30 0.34 0.36 0.34 0.33
CV 3 0.22 0.26 0.26 0.26 0.26 0.28 0.26 0.26 0.25 0.25 0.25 0.26 0.27
CV 4 0.10 0.37 0.37 0.37 0.37 0.44 0.36 0.41 0.31 0.36 0.39 0.37 0.36
CV 5 0.19 0.27 0.26 0.25 0.22 0.27 0.25 0.28 0.27 0.27 0.25 0.27 0.27
Mean 0.15 0.28 0.27 0.27 0.26 0.31 0.27 0.30 0.26 0.27 0.27 0.27 0.27

SD 0.06 0.10 0.10 0.10 0.10 0.08 0.06 0.07 0.06 0.09 0.10 0.10 0.10
MMSE CV 1 0.10 0.27 0.25 0.26 0.25 0.13 0.21 0.18 0.16 0.22 0.23 0.23 0.22

CV 2 0.19 0.34 0.33 0.33 0.32 0.30 0.33 0.33 0.33 0.29 0.30 0.31 0.30
CV 3 0.30 0.35 0.35 0.35 0.35 0.28 0.26 0.34 0.35 0.37 0.38 0.36 0.36
CV 4 0.27 0.35 0.35 0.35 0.36 0.35 0.34 0.39 0.37 0.36 0.37 0.36 0.37
CV 5 0.17 0.28 0.26 0.28 0.25 0.25 0.23 0.26 0.22 0.29 0.28 0.29 0.27
Mean 0.21 0.32 0.31 0.31 0.31 0.26 0.27 0.30 0.29 0.31 0.31 0.31 0.30

SD 0.08 0.04 0.05 0.04 0.05 0.08 0.06 0.08 0.09 0.06 0.06 0.05 0.06
ADAS11 CV 1 0.12 0.31 0.32 0.30 0.31 0.30 0.28 0.29 0.26 0.29 0.29 0.28 0.27

CV 2 0.17 0.30 0.30 0.30 0.30 0.22 0.23 0.24 0.22 0.28 0.27 0.28 0.29
CV 3 0.15 0.29 0.30 0.29 0.30 0.22 0.26 0.24 0.26 0.29 0.29 0.29 0.29
CV 4 0.11 0.36 0.36 0.35 0.35 0.29 0.29 0.37 0.29 0.37 0.38 0.35 0.36
CV 5 0.22 0.34 0.32 0.33 0.32 0.30 0.28 0.34 0.24 0.33 0.31 0.32 0.31
Mean 0.15 0.32 0.32 0.31 0.32 0.27 0.27 0.30 0.25 0.31 0.31 0.30 0.30

SD 0.04 0.03 0.03 0.03 0.02 0.04 0.02 0.06 0.03 0.04 0.04 0.03 0.03

a Prediction of each target trait is evaluated by the prediction correlation coefficient (PCC) from 5-fold cross-validation.
b Data used to calculate PCC (CV 1–CV 5 denote each cross-validated dataset from 5-fold cross-validation) for each model are shown in row together with mean
and standard deviation (SD).
c Linear regression with SEX and EDU as predictors.
d Linear regression with SEX, EDU, AGE, and APOE4 as predictors.
e Linear regression with SEX, EDU, AGE, APOE4, and APOE4xSEX as predictors.
f Linear regression with SEX, EDU, AGE, APOE4, and APOE4xEDU as predictors.
g Linear regression with SEX, EDU, AGE, APOE4, APOE4xSEX, and APOE4xEDU as predictors.
h STMGP with SEX, EDU, AGE, and APOE4 as covariates.
i STMGP with SEX, EDU, AGE, and APOE4 as covariates, and SEX as environmental variable for GxE interaction.
j STMGP with SEX, EDU, AGE, and APOE4 as covariates, and EDU as environmental variable for GxE interaction.
k STMGP with SEX, EDU, AGE, and APOE4 as covariates, and AGE and EDU as environmental variables for GxE interaction.
l BLUP with SEX, EDU, AGE, and APOE4 as covariates.
m BLUP with SEX, EDU, AGE, and APOE4 as covariates, and SEX as environmental variable for GxE interaction.
n BLUP with SEX, EDU, AGE, and APOE4 as covariates, and EDU as environmental variable for GxE interaction.
o BLUP with SEX, EDU, AGE, and APOE4 as covariates, and average of AGE and EDU as environmental variable for GxE interaction.
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interaction with EDU (sge2) gave the highest mean PCC (0.22;
standard deviation 0.07) among the methods. However, the dif-
ferences among models were small: for example, the second best
mean PCC was 0.21 for l, lge1, lge2, bg, bge1, bge2, and the mean
PCC for the STMGP without GxE interaction was is 0.20 with stan-
dard deviation 0.08. On the other hand, the STMGPs with GxE in-
teraction with SEX (sge1) or with both SEX and EDU (sge12)
produced lower or more variable prediction results.

The above results indicate the possibility that incorporating
GxE interactions leads to improved predictive performance. Of
course, whether the predictive performance is improved or not
depends on the choice of environmental variable, which was also
observed in the simulation studies.

Finally, we checked the validity of the proposed univariate re-
gression approximation in the real data application.
Supplementary Figures S9–S16 show the accuracy of the pro-
posed approximation, where each figure gives a scatter plot ma-
trix of P-values associated with the GxE interaction term Gj

�E
from models (6) and (7) with environmental variables either cen-
tered or not. Since centering of environmental variable E does not
change the model (6), we only compared three P-values: model
(6), model (7) with centered E, and model (7) with non-centered E.
Among the figures, Supplementary Figures S9, S11, S13, and S15
show the P-values associated with GxE interaction for SEX as the
environmental variable, and Supplementary Figures S10, S12,
S14, and S16 show the P-values associated with GxE interaction
for EDU as the environmental variable. In all figures, the � log 10

P-values for the GxE interaction term in the approximate univari-
ate regression (i.e., with no gene main effect) using a centered en-
vironmental variable were highly correlated (>0.99) with the
� log 10 P-values for the GxE interaction term in the interaction
model having a gene main effect. On the other hand, with a non-
centered environmental variable the same sets of � log 10 P-val-
ues for the GxE interaction terms were either less correlated (cor-
relation around 0.65 for SEX as E) or uncorrelated (< 0:02 for
EDU). These results confirm the validity of the proposed univari-
ate regression approximation.

Discussion
In this article, we presented a procedure to incorporate GxE inter-
action effects into our previously developed genetic modeling ap-
proach, the STMGP method. Since the STMGP method relies on
univariate regression to screen for high-dimensional predictors,
we developed a univariate regression approximation to the GxE
interaction model so that the STMGP framework can be directly
applied without modification. The approximation is simply to
use “centered” environmental variables and remove gene main
effect terms from the standard GxE interaction regression model.
Simulation studies and real data analysis showed that incorpo-
rating GxE interactions may improve the performance of the
STMGP, but, as expected, its effectiveness depends to a great ex-
tent on the underlying genetic structure.

An important point to note is that genome-wide GxE interac-
tion analysis is more sensitive to model misspecification than
marginal association analysis, as pointed out by Voorman et al.
(2011), Almli et al. (2014), and Ueki et al. (2019). Since the model
misspecification issue applies to all GxE interaction analyses,
special care should be taken in modeling GxE interaction, such as
selection of the environmental variable. We recommend using
the check statistic proposed by Ueki et al. (2019) before perform-
ing a GxE interaction analysis; this enables prediction of

problematic behavior in the GxE interaction analysis without
having to perform the actual genome-wide scan.

Most of the existing genetic prediction models treat genetic data
separately from non-genetic data. While the widely used additive
models to combine genetic and non-genetic data are simple and
easy to handle, there must be situations where non-additive mod-
els, such as models with GxE interactions, improve upon the addi-
tive models. However, studies have reported low power of GxE
interaction analysis (Kraft et al. 2007). Nevertheless, analogous to
the relationship between an association study and prediction
modeling, the goal is not to discover GxE interactions but to have a
better prediction model. Low statistical power is not necessarily a
severe issue in this context: GxE interactions, even if not genome-
wide significant, may be useful in helping to improve predictive
power.

Data availability
All data necessary to reproduce the conclusions are fully presented
in the paper. The authors do not have ownership of the data used;
the data obtained were collected and are owned by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Researchers may request
and access the data through the ADNI website (http://adni.loni.usc.
edu/ (Accessed: 2021 August 31)). The authors had no special access
privileges to use these data. A computer program for the method
proposed in this paper is available from the R package stmgp (ver-
sion 1.0.4).

Supplementary material is available at G3 online.
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Appendix

Derivation of the univariate regression
approximation
We consider the GxE interaction model yi ¼ b0jþ
Eib1j þ Gijb2j þ EiGijb3j þ ei, where the �i are independently
and identically distributed with mean zero and variance r2

0.
Here, we assume that Gijand Ei are independent, and that each
is independently and identically distributed for i ¼ 1; . . . ;n.
We also assume that r2

0, vGj
¼ VarðGijÞ, and vE ¼ VarðEiÞ

are finite. Let PX ¼ XðXTXÞ�1XT be the projection matrix
onto the column space of X, and let QX ¼ In � PX. Then, for n-
dimensional one-vector 1n, the operator Q1n ¼ In � P1n gives cen-
tering to have mean zero. Let ~E ¼ Q1n E and ~Gj ¼ Q1n Gj. Then, for
large n,

n�1 ~G
T

j
~E ¼ Eðn�1 ~G

T

j
~EÞ þ OpfVarðn�1 ~G

T

j
~EÞ1=2g ¼ Opðn�1=2Þ: (A1)

Finally, let Wj ¼ E�Gj and ~Wj ¼ ~E
�
Gj.

Note that PX ¼ Pn�1=2X for any given matrix X. Thus, QX ¼
Qn�1=2X also holds. By Ueki and Kawasaki (2013) and Ueki et al.
(2019), the least squares estimate of regression coefficient b3j in
the model l ¼ lðE;GjÞ ¼ 1nb0j þ Eb1j þ Gjb2j þ ðGj

�EÞb3j, model (6),
is

b̂
0123

3j
ðE;GjÞ ¼

yTQð1n ;E;GjÞWj

jjQð1n ;E;GjÞWjjj2
¼

n�1yTQð1n ;E;GjÞWj

n�1jjQð1n ;E;GjÞWjjj2
: (A2)

Similarly, the least squares estimate of regression
coefficient b3j in the model l ¼ lðE;GjÞ ¼ 1nb0j þ Eb1j þ Gjb2j þ
ðGj
�EÞb3j is

b̂
013

3j
ðE;GjÞ ¼

yTQð1n ;EÞWj

jjQð1n ;EÞWjjj2
¼

n�1yTQð1n ;EÞWj

n�1jjQð1n ;EÞWjjj2
: (A3)

We utilize the decomposition of a projection matrix
or blockwise formula (Takane and Yanai 1999, Lemma
3 (iii)), PðA;BÞ ¼ PA þ PQAB for two matrixes A and B. Note that
PAPQAB ¼ PQABPA ¼ O since QAA ¼ O. Then, Pð1n ;EÞ ¼ P1n þ P~E .
Using this, and by the blockwise formula again, we have
Pð1n ;E;GjÞ ¼ P1n þ Pð~E ;~GjÞ ¼ P1n þ P~E þ PQ~E

~Gj
¼ Pð1n ;EÞ þ PQ~E

~Gj
. Thus,

Qð1n ;E;GjÞ ¼ Qð1n ;EÞ � PQ~E
~Gj
;

and applying this identity to (A2),

b̂
0123

3j
ðE;GjÞ ¼

n�1yTQð1n ;E;GjÞWj

n�1W
T

j
Qð1n ;E;GjÞWj

¼
n�1yTfQð1n ;EÞ � PQ~E

~Gj
gWj

n�1W
T

j
fQð1n ;EÞ � PQ~E

~Gj
gWj

¼
n�1yTQð1n ;EÞWj � n�1yTPQ~E

~Gj
Wj

n�1jjQð1n ;EÞWjjj2 � n�1W
T

j
PQ~E

~Gj
Wj

;

(A4)

which differs from (A3) unless n�1WT
j PQ~E

~Gj
Wj and n�1WT

j PQ~E
~Gj

Wj

are both negligible. Let Gj ¼ Q~E
~Gj. The second term of the nu-

merator of (A4) can be written as

n�1yTPGj
Wj ¼ n�1yTGjðG

T

j
GjÞ�1G

T

j
Wj

¼ ðn�1yTGjÞðn�1G
T

j
GjÞ�1ðn�1W

T

j
GjÞ:

To begin with, by (A1) the left, middle, and right terms reduce to

n�1yTGj ¼ n�1yTQn�1=2~E
~Gj ¼ n�1yT ~Gj �

ðn�1yT~EÞðn�1 ~G
T

j
~EÞ

jjn�1=2~Ejj2
¼ n�1yT ~Gj þ opð1Þ;

(A5)

n�1G
T

j
Gj ¼ n�1 ~G

T

j
Qn�1=2~E

~Gj ¼ n�1 ~G
T

j
~Gj �

ðn�1 ~G
T

j
~EÞ2

jjn�1=2~Ejj2

¼ n�1 ~G
T

j
~Gj þ opð1Þ;

(A6)

n�1W
T

j
Gj ¼ n�1W

T

j
Qn�1=2~E

~Gj ¼ n�1W
T

j
~Gj �

ðn�1W
T

j
~EÞðn�1 ~G

T

j
~EÞ

jjn�1=2~Ejj2

¼ n�1W
T

j
~Gj þ opð1Þ;

(A7)

respectively. Combining (A5)–(A7), the numerator of (A4)
reduces to

n�1yTQð1n ;EÞWj � n�1yTPQ~E
~Gj

Wj

¼ n�1yTQð1n ;EÞWj �
ðn�1yT ~GjÞðn�1W

T

j
~GjÞ

n�1 ~G
T

j
~Gj

þ opð1Þ:
(A8)

By analogous calculations, the denominator of (A4) reduces to

n�1jjQð1n ;EÞWjjj2 � n�1 W
T

j
PQ~E

~Gj
Wj (A9)

¼ n�1jjQð1n ;EÞWjjj2 �
ðn�1 W

T

j
~GjÞ2

n�1 ~G
T

j
~Gj

þ opð1Þ: (A10)

Substituting (A8) and (A10) into (A4),

b̂
0123

3j
ðE;GjÞ ¼

n�1yTQð1n ;EÞWj �
ðn�1yT ~GjÞðn�1 W

T

j
~GjÞ

n�1 ~G
T

j
~Gj

n�1jjQð1n ;EÞWjjj2 �
ðn�1 W

T

j
~GjÞ2

n�1 ~G
T

j
~Gj

þ opð1Þ: (A11)

This approximates (A3) if ðn�1yT ~GjÞðn�1WT
j

~GjÞ and ðn�1WT
j

~GjÞ2

are both negligible, which, however, might not be true in general.
Instead, we consider the case where E is replaced by ~E ¼

Q1n E ¼ E� E1n in (A2). In this case, the estimate of regression co-
efficient (A3) is
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b̂
013

3j
ð~E;GjÞ ¼

yTQð1n ;~EÞ
~Wj

jjQð1n ;~EÞ
~Wjjj2

¼
n�1yTQð1n ;~EÞ

~Wj

n�1jjQð1n ;~EÞ
~Wjjj2

; (A12)

and the corresponding model is l ¼ lð~E;GjÞ ¼ 1nb0j þ ~Eb1j þ
Gjb2j þ ðGj

�~EÞb3j (i.e., model (7)). By an argument analogous to
that which leads to (A11),

b̂
0123

3j
ð~E;GjÞ ¼

yTQð1n ;~E ;GjÞ
~Wj

jjQð1n ;~E ;GjÞ
~Wjjj2

¼
n�1yTQð1n ;~E ;GjÞ

~Wj

n�1jjQð1n ;~E ;GjÞ
~Wjjj2

¼

n�1yTQð1n ;~EÞ
~Wj �

ðn�1yT ~GjÞðn�1 ~W
T

j
~GjÞ

n�1 ~G
T

j
~Gj

n�1jjQð1n ;~EÞ
~Wjjj2 �

ðn�1 ~W
T

j
~GjÞ2

n�1 ~G
T

j
~Gj

þ opð1Þ:
(A13)

Here we focus on the quantity

n�1 ~W
T

j
~Gj ¼ n�1

Xn

i¼1

~EiGij
~Gij

¼ Eðn�1
Xn

i¼1

~EiGij
~GijÞ þ OpfVarðn�1

Xn

i¼1

~EiGij
~GijÞ1=2g:

By the independence between E and Gj,

Eðn�1
Xn

i¼1

~EiGij
~GijÞ ¼ n�1

Xn

i¼1

Eð~EiÞEðGij
~GijÞ ¼ 0;

where the last identity is due to the fact that Eð~EiÞ ¼ EðEi � EÞ ¼
0 for any i. As a consequence,

n�1 ~W
T

j
~Gj ¼ Opðn�1=2Þ;

and by substituting the above into (A13),

b̂
0123

3j
ð~E;GjÞ ¼

n�1yTQð1n ;~EÞ
~Wj þ ðn�1yT ~GjÞOpðn�1=2Þ

n�1jjQð1n ;~EÞ
~Wjjj2

þ opð1Þ: (A14)

This representation reveals that, if n�1yTQð1n ;~EÞ
~Wj dominates

ðn�1yT ~GjÞn�1=2, b̂
0123
3j ð~E;GjÞ (equation (A14)) is approximated by

b̂
013
3j ð~E;GjÞ (equation (A12)). In other words, the approximation

breaks down only if n�1=2ðn�1yT ~GjÞ cannot be ignored in com-
parison to n�1yTQð1n ;~EÞ

~Wj for large n, which is the case when

the jth variant has a large marginal effect on y while the GxE
interaction effect is weak or absent. Such variants should in
principle be captured by the marginal association scan. The
proposed algorithm thus implements the marginal associa-
tion scan in addition to the GxE interaction scan, which
avoids missing variants that have strong marginal effects.
Supplementary Figures S9–S16 confirm that the approxima-
tion works well in practice with real data, in which we can see
the importance of centering E (see “Prediction of real quanti-
tative trait” section).

Invariance of regression coefficient estimate
for GxE interaction
Here we show that the least squares estimate of regression coef-
ficient b3j in the model l ¼ lðE;GjÞ ¼ 1nb0j þEb1j þ Gjb2j

þðGj
�EÞb3j, model (6), is invariant if E is replaced by Ea ¼ E� a1n

and/or Gj is replaced by Gb
j ¼ Gj � b1n for any scalar values a and

b. Recall (A2),

b̂
0123

3j
ðE;GjÞ ¼

yTQð1n ;E;GjÞWj

jjQð1n ;E;GjÞWjjj2
;

where Wj ¼ ðE�GjÞ. Therefore,

b̂
0123

3j
ðEa;G

b

j
Þ ¼

yTQ
ð1n ;Ea ;G

b

j
Þ
W
a;b

j

jjQ
ð1n ;Ea ;G

b

j
Þ
W
a;b

j
jj2
; (B1)

where Wa;b
j ¼ ðEa�Gb

j Þ ¼ ðE� a1n Þ�ðGj � b1nÞ ¼Wj�
bE� aGj þ ab1n. Note that Qð1 n;Ea;Gb

j Þ ¼ I n� Pð1n ;Ea ;GjbÞ ¼ In �
Pð1n ;E�a1n ;Gj�b1nÞ ¼ In � Pð1n ;E;GjÞ ¼ Qð1n ;E;GjÞ, Hence,

Q
ð1n ;Ea ;G

b

j
Þ
W
a;b

j
¼ Qð1n ;E;GjÞðWj � bE� aGj þ ab1nÞ ¼ Qð1n ;E;GjÞWj;

in which the second identity is due to the fact that bE; aGj, and
ab1n are included in the linear span by ð1n; E;GjÞ. Therefore, by
(B1), for any scalar values a and b, the following identity holds:

b̂
0123

3j
ðEa;G

b

j
Þ ¼

yTQð1n ;E;GjÞWj

jjQð1n ;E;GjÞWjjj2
¼ b̂

0123

3j
ðE;GjÞ: (B2)

It is noteworthy that the invariance is essentially due to the
involvement of both E and Gj, so it is not guaranteed to hold in
the absence of either of the two terms.
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