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Abstract

Social networks have become ubiquitous in modern society, which makes social network

monitoring a research area of significant practical importance. Social network data consist

of social interactions between pairs of individuals that are temporally aggregated over a cer-

tain interval of time, and the level of such temporal aggregation can have substantial impact

on social network monitoring. There have been several studies on the effect of temporal

aggregation in the process monitoring literature, but no studies on the effect of temporal

aggregation in social network monitoring. We use the degree corrected stochastic block

model (DCSBM) to simulate social networks and network anomalies and analyze these net-

works in the context of both count and binary network data. In conjunction with this model,

we use the Priebe scan method as the monitoring method. We demonstrate that temporal

aggregation at high levels leads to a considerable decrease in the ability to detect an anom-

aly within a specified time period. Moreover, converting social network communication data

from counts to binary indicators can result in a significant loss of information, hindering

detection performance. Aggregation at an appropriate level with count data, however, can

amplify the anomalous signal generated by network anomalies and improve detection per-

formance. Our results provide both insights on the practical effects of temporal aggregation

and a framework for the study of other combinations of network models, surveillance meth-

ods, and types of anomalies.

Introduction

The availability of network data has increased dramatically in the last decade or so due to

developments in communication technology. The origins of these data vary greatly depending

on sources such as cell phone networks, social media, and other internet-based communica-

tions. Researchers face difficult challenges due to the velocity and the volume at which these

data are generated. Fittingly, statistical analysis of networks has recently received increased

emphasis in the statistics literature, leading to the development of a rich toolbox of network
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models and inference methods. Broad reviews of statistical network analysis can be found in

Kolaczyk [1], Goldenberg et al. [2], and Salter-Townshend et al. [3].

The fundamental goal of social network monitoring or surveillance is to detect sudden and

significant changes in the communication patterns of a group of individuals. This is a topic of

significant practical importance, since such significant changes can have serious implications

like societal change, predatory activity, disruptive or fraudulent behavior, etc. However, as

pointed out by Woodall et al. [4], how to best monitor social networks has received propor-

tionately less attention from the statistics community in spite of its exceptional relevance in

today’s interconnected world. In this article we aim to partially address this gap.

The goal of social network monitoring is to detect anomalous behavior in a network in a

timely fashion. In the social network monitoring methods reviewed by Savage et al. [5], Bindu

and Thilagam [6] and Woodall et al. [4], the data either consist of counts of communications

between pairs of individuals or indicator variables indicating the presence or absence of a spec-

ified threshold level of communication. Data are typically aggregated over a given time interval

such as day or week. The length of the aggregation interval affects the amount of information

that is contained within the reported data. Therefore, the level of temporal aggregation impacts

the performance of any monitoring technique. Zwetsloot and Woodall [7] provide a compre-

hensive review of the literature on the effect of temporal aggregation on process monitoring

performance, though they do not consider social network monitoring applications. In our

paper, we study the effect of temporal aggregation and the effect of conversion of count data to

binary data on social network surveillance using a particular model and surveillance method.

Zwetsloot and Woodall [7] stated that aggregating data over time results in a loss of infor-

mation and can slow detection of process changes. Our investigation shows that this informa-

tion loss can be substantial if the social network data are converted from communication

counts to binary indicators. The loss is, however, is not as severe when communication data

are recorded as count data. We provide insights and a framework for studies with more sophis-

ticated models. Additionally, we show that aggregation in certain situations can amplify the

anomalous events in the social network, thereby improving the detection sensitivity of the

method used. Nevertheless, our study reveals that too much aggregation can degrade the detec-

tion performance by delaying a signal of the presence of an anomaly, a finding which is consis-

tent with Zwetsloot and Woodall [7].

From a practical perspective, communication rates in a social network often vary regularly

over the course of a day or some other time period. Aggregating by hour when there is regular

seasonal variation within the day would require additional modeling. Aggregating the data by

day would greatly simplify the modeling and analysis by making the successive networks more

time-stationary. We assume in our paper that the most basic level of aggregation has removed

any seasonal variation.

Beginning from the pioneering work by Erdős and Rényi [8], there has been a progression

of increasingly more realistic random graph models in the statistics literature. Lorrain and

White [9] proposed the idea of blockmodels for networks with community structure, which

was fully developed by Holland et al. [10] and Fienberg et al. [11] leading to the formulation of

the stochastic blockmodel (SBM). In recent years, a comprehensive set of statistical estimation

and inference methods have been formulated using the SBM, with notable contributions from

many authors [12–16].

The SBM is based on the principle of stochastic equivalence, where any two nodes in the

same community have the same expected number of connections. This leads to unrealistic

constraints since empirical networks exhibit widely varying degrees even for nodes in the

same community. To address this issue, Karrer and Newman [17] developed the degree cor-

rected stochastic block model (DCSBM) that allows nodes in the same community to have
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different expected degrees. The DCSBM has now been established as the current state-of-the-

art blockmodel for networks, with notable contributions from Zhao et al. [18], Qin and Rohe

[19], Lei and Rinaldo [20], and Jin [21], to name a few. This model has been used by other

researchers in network surveillance applications, see Wilson et al. [22] and Yu et al. [23].

The main contribution of our paper is that we carry out a systematic investigation of the

effect of aggregation level on social network monitoring. We consider a popular network

model, namely the DCSBM model, in conjunction with a popular monitoring method, namely

the Priebe scan method of [24] to carry out this investigation. Using this combination, we dis-

covered that the level of temporal aggregation has a significant impact on the effectiveness of

anomaly detection. It is important to add the caveat that our specific findings are under this

particular combination of network model and monitoring method. However, in general the

effect of temporal aggregation level is likely to be significant for social networks generated

from any network model, as well as any monitoring method that is used for anomaly detection.

The conceptual framework of this paper can be readily extended to study the effect of temporal

aggregation under other network models or other monitoring methods.

The rest of the paper is organized as follows: we provide a brief review of some network ter-

minology, followed by a description of the DCSBM model used to simulate the social network

data, as well as the scan method used to monitor the networks. Then we introduce the simula-

tion scenarios studied and present the false alarm rates resulting from data aggregated at differ-

ent levels. Simulation results showing the effect of aggregation level are then presented, as well

as the results from studying the conditional signal delays resulting from different levels of tem-

poral aggregation. At the end of the paper, we draw our conclusions and discuss future direc-

tions for new work.

Some network terminology

Here we provide an overview of relevant network terminology and notation to aid readers for

whom this is unfamiliar. A social network can be represented by a graph G = (V,E) that con-

sists of a set of nodes V and a set of edges E. In a social network, a node usually represents an

individual or the origin/destination of a communication. When the nodes in a social network

contain information that makes them readily identifiable, such as a name or an e-mail address,

the social network is said to be labeled. If no identifying information is available, it is an unla-
beled social network. Depending on the type of network data, the edges in the social network

specify the level of communication between each pair of nodes over a given period of time. For

network count data, the edges represent the number of communication instances between

each pairs of nodes. For network binary data, each edge indicates whether or not communica-

tion between a pair of nodes exceeds a certain threshold. We denote the number of nodes and

edges by |V| and |E|, respectively. The number of nodes, |V|, is referred to as the order of the

network. The number of edges, |E|, is referred to as the size of the network.

The communication levels between all pairs of nodes at time t for a network Gt = (V,Et) are

summarized by an adjacency matrix Ct of dimension |V|×|V|. The matrices Ct are available at

the current time (t = T) and all previous time points, t = 1,2,. . .,T−1, each representing a snap-

shot of the social network structure at these specific times. The entry of Ct in row i and column

j, denoted by Ct(i,j), is a record of the communication level between nodes i and j at time point

t. Note that we do not accommodate self-loops and so the values on the diagonal are set to

zero. Networks for which the direction of communications are known are referred to as

directed networks. When the direction of communication is not specified or unknown, we

have Ct(i,j) = Ct(j,i) and Ct is a symmetric matrix. Networks in this case are referred to as undi-
rected networks, which are the focus of our investigation. When only the presence or absence

Temporal aggregation in social networks
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of a specified level of communication is measured, each Ct(i,j) value is restricted to 1 (pres-

ence) or 0 (absence). When the total number of communications is measured, Ct(i,j) can take

non-negative integer values.

The kth neighborhood of node i contains all nodes and edges that are within k edges of node i,
k = 1,2,3,. . .. The size of the kth neighborhood of node i is the count of all edges between nodes in

the kth neighborhood of node i. At time t, this quantity is denoted by Ok
t;i. We use the quantity O0

t;i

to represent the degree of node i, i.e., the number of communications to or from node i at time t.
During normal communication, a stream of adjacency matrices can be used to quantify the

baseline level of communication among nodes or communities. Any significant deviations in

either direction from these baseline levels thereafter is defined as an anomaly. The presence of

any anomaly involving node i at time t is directly reflected by a change in the quantity Ok
t;i.

More often than not, unexplained increases in network activities are of interest. These anoma-

lies can represent an uptick in terrorist communications in military or police applications, or

opportunities for targeted advertising to a particular social network community for an adver-

tising agency. Although detecting increases in communication among nodes in a sub-network

is often of interest, network surveillance techniques may also be used to identify significant

decreases in communication if this is of interest.

Priebe’s scan method [24] compares newly observed communications to the established

baseline levels in the network. Furthermore, it uses moving windows, in which our under-

standing of “baseline” behavior is updated as time progresses, to account for the natural

dynamic behavior of the network.

Network model and surveillance method

In this section we describe the network model and surveillance method we use to evaluate the

effects of aggregation on social network monitoring.

Degree corrected stochastic block model

Under the DCSBM model, the node set V of a social network is partitioned into R disjoint

communities where community r,r = 1,2,. . .,R, contains |Vr| nodes and V = V1[V2[. . .[VR.

For the DCSBM model the parameters θi>0, i = 1,. . .,|V|, define the propensity of node i to

communicate with any other node. The R×R matrix P defines the propensity for communica-

tion between the different communities over a given period of time, where element Pr,r0,

{r = 1,. . .,R and r0 = 1,. . .,R} is the communication propensity between communities r and r0.
Conditional on community membership, the number of communications between nodes i
and j is assumed to be Poisson distributed with mean

li;j ¼ yiyjPr;r0 ; ð1Þ

provided one of the nodes is in community r and the other node is in community r0. It is

important to note that constraints on either the θi values or the matrix P are required in order

to make the model identifiable. Here we use the constraint

PjVj
i¼1
yi � Ifnode i 2 community rg ¼ jVrj ð2Þ

r = 1,2,. . .,R. Thus the (i, j) element in the adjacency matrix Ct at time t is generated such that

Ctði; jÞ � Poissonðli;jÞ: ð3Þ

The adjacency matrix Ct summarizes communications within the social network aggregated

over the time period (t-1, t).

Temporal aggregation in social networks
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Links in a social network often form as a result of communications taking place

between pairs of nodes on a continuous time scale. However, the Priebe method is

designed for dynamic networks where network communications are aggregated over

sequential time increments. It is interesting to note that if communications occurring in

continuous time between nodes i and j follow a homogeneous Poisson process with an

average time between communication of 1/λi,j, then the number of communications dur-

ing a unit interval of time will follow a Poisson distribution with mean λi,j, which leads to

the model in Eq (3). Therefore, even when the underlying communications happen in

continuous time, the DCSBM can be interpreted as a discretized version of the resultant

network being formed as a result of such communications.

Priebe’s scan method

The goal of social network monitoring is to detect significant changes in communication pat-

terns in social networks, e.g., whether there has been a significant increase/decrease in the rate

of communication among certain groups of individuals. Priebe’s scan method [24] is a popular

network monitoring tool for detecting such changes in social networks. This method is based

on three sequences of moving window-based scan statistics, the degree, O0
t;i, and the first two

neighborhood sizes, O1
t;i and O2

t;i; across all nodes. The statistics are calculated using a two-step

standardization procedure within moving windows of width 20. The standardized statistics of

the degree and the first two neighborhood sizes, Ok�
t;i ; are calculated in the first standardization

procedure as

Ok�
t;i ¼

Ok
t;i � avgðOk

t;iÞ

maxðsdðOk
t;iÞ; 1Þ

where

avg Ok
t;i

� �
¼

1

20

X20

j¼1
Ok

t� j;i; and

sd Ok
t;i

� �
¼

1

19

X20

j¼1
fOk

t� j;i� avgðO
k
t;iÞg

2

� �1
2

for k = 0,1,2, and i = 1, 2, . . ., |V|. Following this, the statistics M0
t ; M

1
t , and M2

t are calculated

as the respective maxima of O0�
t;i ; O

1�
t;i , and O2�

t;i , i.e., Mk
t ¼ maxfOk�

t;1;O
k�
t;2; . . . ;Ok�

t;jVjg. Then

M0�
t ; M

1�
t , and M2�

t are calculated from M0
t ; M

1
t , and M2

t values using the following equations

in a second round of standardization:

Mk�
t ¼

Mk
t � avgðMk

t Þ

maxðsdðMk
t Þ; 1Þ

;

where

avg Mk
t

� �
¼

1

20

X20

j¼1
Mk

t� j; and

sd Mk
t

� �
¼

1

19

X20

j¼1
fMk

t� j � avgðMk
t Þg

2

� �1
2

;

for k = 0,1,2. The network is monitored over time using M0�
t ; M

1�
t , and M2�

t . The presence of
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an anomaly is signaled when maxðM0�
t ; M

1�
t ; M

2�
t Þ exceeds a pre-specified signaling threshold.

The intuition behind this decision rule is that increased communication rates in the network

should lead to significant increases in node degrees and neighborhood sizes, resulting in high

values of the statistics M0�
t ; M

1�
t , and M2�

t .

Zhao et al. [25] have shown that 4, rather than the value 5 recommended by Priebe et al.

[24], is a reasonable signaling threshold. Thus, a signal indicating the possible presence of an

anomaly is generated at time t if maxðM0�
t ; M

1�
t ; M

2�
t Þ � 4. Although Priebe’s scan method

was proposed for binary data, we also use it with count data where we show it can be more

effective. Because this method is based on a moving window approach, anomalies become

harder to detect if not detected immediately. If any anomaly is not detected within twenty

adjacency matrices (i.e., time aggregation periods), the anomalous behavior effectively

becomes the new baseline behavior.

Description of simulation

Woodall et al. [4], Savage et al. [5], Zhao et al. [25] and Fricker [26] all argued that the use of

synthetic data is necessary when studying network monitoring methods. We agree with this

argument because the temporal information of network anomalies within any existing set of

network data can be difficult to determine at best. On the other hand, by using simulations, we

have precise control over network size, expected communication rates, the aggregation levels

applied to the network data, as well as the severity of the anomaly, which enables us to carry

out a systematic investigation. Therefore, following a simulation strategy is better suited than

the use of real data for investigating the impact of temporal aggregation on social network

monitoring.

Community structure is a prominent feature of the DCSBM, and there are several well-

studied community detection methods for estimating this community structure [18, 19, 21,

27]. However, in our investigation, community detection would add noise to the estimated

model, which would make it harder to interpret our conclusions regarding the impact of tem-

poral aggregation. Therefore, for simplicity, we assumed in our simulations that the social net-

works have known community structure. For each node i the unscaled value of parameter θi,
denoted as y

0

i, was generated from a Pareto distribution at the beginning of each simulation

run and then held constant during the run, i.e.,

y
0

i � iid PARðm ¼ 1; s ¼ 3Þ

for i = 1,. . .,|V|, where m denotes the scale parameter and s denotes the shape parameter. The

Pareto distribution was chosen for its ability to represent degree heterogeneity with skewed

degree distributions, as observed in many empirical networks [28, 29]. These values were then

scaled to θi using the following constraint for nodes within the same community,

yi ¼
y
0

i
PjVr j

i¼1
y
0

i

� jVrj:

Studies, such as McPherson et al. [30] and Krivitsky et al. [31], have shown that social networks

often exhibit homophily, meaning that an individual has a greater tendency to communicate

with similar individuals than with dissimilar individuals. We model this in our simulated net-

works by ensuring that nodes within the same community have a higher propensity to com-

municate with one another than with nodes in other communities. Thus, the values of the

diagonal elements of P, Pr,r are larger than the values of the off-diagonal elements, Pr,r0. The

ratio between Pr,r and Pr,r0 was kept constant at 2:1 in the simulations, meaning that communi-

cations within the same community are twice as likely as communications between different

Temporal aggregation in social networks
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communities. Moreover, low λi,j values result in networks with low communication levels, or

sparse networks. Non-sparse networks with high communication levels are generated by val-

ues of λi,j that are larger.

We performed our simulations using temporal aggregation at five different levels, W = 1, 2,

5, 10, and 20, where we simply summed sequences of adjacency matrices appropriately. For

temporal aggregation at level W, the aggregated communications between node i and j are

CðWÞt ði; jÞ ¼
Xt

k¼t� Wþ1

Ckði; jÞ; t ¼W; 2W; 3W . . . :

In order to establish the moving windows, Priebe’s scan method requires a minimum of 40

adjacency matrices. To ensure that there are enough data for Priebe’s scan method, which

requires a minimum of 40 adjacency matrices, a total of 860 Ct adjacency matrices were gener-

ated for each round of simulation, where for W = 20, these were then reduced to a sequence of

43 Cð20Þ
t aggregated matrices. Of course, we could have generated the aggregated adjacency

matrices directly using the appropriate Poisson distribution, but our approach of summing

adjacency matrices removes the possibility that observed performance differences are due to a

stochastic variation. In network surveillance, the time period where the network communica-

tion baseline is established is referred to as Phase I. The Phase I in our simulations contain a

minimum of 40 adjacency matrices due to the two moving windows required by Priebe’s scan

method. Phase II refers to the period where real time monitoring occurs. During Phase II, a

signal is given if communication behavior in the network appears to have deviated signifi-

cantly from the baseline level. Recall that Priebe’s scan method involves a moving window,

which corresponds to a moving baseline. When network data are aggregated, anomalies can

occur at any point in time. However, it is important to note that the only time any network

surveillance method can signal the presence of an anomaly is at the end of an aggregation

period.

We refer to P0
r;r and P0r;r as the baseline and anomalous propensities of communication

within community r, respectively. All nodes within the network follow baseline behavior at the

start of the simulation, where Pr;r ¼ P0
r;r. The anomalies are introduced in only a single com-

munity which is referred to as Community #1. Following this point, the propensity of commu-

nication among the nodes within Community #1 increases and P1;1 ¼ P0
1;1

. We refer to the

time period at which the anomaly is introduced as the shift time. In our simulation study, the

increase in P1,1 is sustained, meaning once P1,1 increases to P0
1;1

it does not return to P0
1;1

. Our

simulations included shifts of P0
1;1
¼ ð1þ sÞ � P0

1;1
, where s represents the relative shift magni-

tude with s = 0.5 or 1.5. The degree heterogeneity parameters θi were randomly generated and

then kept fixed in each of the individual simulations used to estimate each detection rate.

For aggregation levels higher than W = 1, an equal number of simulations were performed

for all possible shift times associated with an aggregation period. The anomaly was introduced

at shift times ranging from t = 840 to t = 859 to simulate situations where anomalies can occur

at any point within an aggregation period. Taking W = 20 aggregation as an example, Cð20Þ

t¼42 is

calculated from 1 baseline and 19 anomalous Ct matrices if the anomaly occurs at t = 841. Sim-

ilarly, 5 baseline and 15 anomalous Ct matrices make up Cð20Þ

t¼42 when the anomaly occurs at

t = 845. In the context of Priebe’s scan method, a false alarm is defined as a signal within 20

time periods after an assumed random shift time when in truth no such shift occurs. We refer

the proportion of simulations which resulted in least one false alarm as the false alarm rate

(FAR).

Temporal aggregation in social networks
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Timely detection of any anomalies is an important consideration as well, thus we limited

our simulation to 20 networks post-shift for the detection of an anomaly. If Priebe’s scan

method correctly detected the presence of an anomaly within these 20 time periods, the simu-

lation run is designated as a success, otherwise it is designated as a failure. The proportion of

the simulations which resulted in the successful detection of the anomaly is referred to as the

detection rate. The detection rates directly reflect any change in the method’s performance

due to different data aggregation levels. Other metrics such as true positive detection rates are

appropriate as well, although these are more appropriate if the researcher’s main interest is to

directly evaluate a method’s detection performance.

Given an anomaly has been successfully detected, we call the time it takes for the method to

signal the conditional signal delay. The goal of prospective social network surveillance is to

detect anomalies quickly. Practitioners are affected by both detection rate and the time it takes

for the method to detect the anomaly. We note that the false alarm rate, the detection rate, and

the conditional signaling delay are widely used performance metrics in the field of process

monitoring.

Both network count data and binary data were included in our investigation. In general,

binary data may be generated by converting counts into indicator variables equal to 1 in adja-

cency matrix cell (i, j) if the communications count at time t is greater than some threshold

and zero otherwise. In our simulations, the conversion threshold was chosen to be 1, simply

indicating whether communication had occurred or not. One could use a larger threshold to

indicate whether or not a specified level of communication had occurred. The corresponding

binary adjacency matrix is denoted by Bt or Bt
(W). As with aggregating the count data, convert-

ing the observed counts into binary indicators directly removes the possibility that observed

performance differences are due to simulation variation.

False alarm rates

It is not meaningful to compare the anomaly detection ability of methods which do not have

similar baseline performance, since it is always possible to improve the anomaly detection rate

at the expense of more false alarms by decreasing the signal threshold. In order to be certain

that the cause of any performance differences is only attributable to the aggregation levels, we

need to be sure that the FAR is at least roughly the same under different levels of aggregation.

Using the signal threshold of 4, we generated T = 860 networks of order |V| = 20 with nodes

evenly distributed into R = 2 communities. The P matrix has diagonal values ranging from

P0
r;r ¼ 0:2 to P0

r;r ¼ 5, representing various levels of network sparsity. The off-diagonal values

were P0
r;r0 ¼ 0:5� P0

r;r. Times ranging from t = 840 to t = 859 were designated, and P1,1 was

kept at the baseline value P1;1 ¼ P0
1;1

for the entire simulation. A total of 1000 simulations were

performed at each aggregation level. We found that the estimated FARs were low for all aggre-

gation levels and sparsity levels. There were only relatively small differences in the FARs for

count versus binary data. These results imply that any variations in anomaly detection perfor-

mance in our study are due to the aggregation levels. The detection rate results that we obtain

from networks with different sparsity levels and network data types are thus comparable. It is

important to note that practitioners can adjust the signaling threshold to achieve their pre-

ferred false alarm rate. Establishing the false alarm rate or some other measure of baseline per-

formance is crucial in designing a monitoring method.

Evaluation of detection rates

In this section, we describe the results of a simulation which evaluated the effect of temporal

aggregation using both count and binary data, combined with a range of network sparsity

Temporal aggregation in social networks
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levels and shift magnitudes. We considered networks of order |V| = 20, 50, and 100. Recall that

for each combination of |V| and W, we carried out 1000 simulations, and each simulation

involves 860 synthetic networks. This makes the simulation study computationally expensive,

even after employing a distributed parallel architecture for scalability. It is mainly due to the

computational burden that we did not use larger networks in our investigation.

Effect of network sparsity level

The effect of aggregation can vary significantly between sparse networks and ones that are rela-

tively non-sparse. To explore the relationship between aggregation and sparsity levels, we per-

formed simulations using a wide range of P0
r;r and P0

r;r0 values. As described earlier, anomalous

shifts to be detected were fixed at P0
1;1
¼ ð1þ sÞ � P0

1;1
, where s = 0.5 and 1.5. The networks

simulated were of order |V| = 20 with two communities, each containing 10 nodes. The signal-

ing threshold was set to 4.

Fig 1 shows the detection rates at different temporal aggregation levels using count data

with the shift P0
1;1
¼ ð1þ 0:5Þ � P0

1;1
. Each point represents the detection rate estimated from

2000 simulations. Fig 1 shows that Priebe’s scan method performs poorly for the case when

P0
r;r ¼ 0:2, where detection rates are less than 10% regardless of the aggregation level. For all

aggregation levels, detection rates increase as P0
r;r increases. Overall, the performance of

Priebe’s scan method is better for relatively non-sparse networks than sparse networks.

The most substantial improvement in performance is seen when the aggregation level

increases from W = 2 to W = 5, with an increase of 50 percentage points in detection rates in

some cases. Increasing the aggregation level from W = 5 to W = 10 also results in modest

improvement in performance where the detection rate can increase by 20 percentage points.

The detection rate is generally better for higher levels of temporal aggregation, with the excep-

tion of W = 20, where the performance is generally poorer than that at W = 10. In cases where

the network is relatively non-sparse (i.e., when P0
r;r � 1:5), the performance can be lower than

that of the W = 5 aggregation level. When P0
r;r � 1:0 and specifically for W = 20, the detection

Fig 1. Detection rates against P0
r;r for count communication data with |V| = 20 and two communities.

P0
1;1
¼ ð1þ 0:5Þ � P0

1;1
.

https://doi.org/10.1371/journal.pone.0209075.g001
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rates are 20 percentage points lower than that for W = 10. When P0
r;r � 1:5, detection rates for

the highest level of temporal aggregation are 10 to 20 percentage points lower than those for

W = 5. For levels of aggregation higher than W = 20, the performance will continue to deterio-

rate under our assumptions.

An anomaly needs to be detected quickly after its occurrence so that practitioners can inves-

tigate the situation as soon as possible. The ability to detect anomalies in a timely manner is a

quality that is as important as the detection rate performance for any network surveillance

method. By design, our simulations extend past t = 840 by 20 adjacency matrices to reflect this

practical scenario. Thus, as the aggregation level increases, the number of available post-anomaly

adjacency matrices diminishes quickly. At the W = 20 aggregation level, Priebe’s scan method

only has a single opportunity to detect the presence of an anomaly within the specified 20 time

periods whereas the method has ten, four, and two chances for detection when W = 2, 5, or 10,

respectively. Therefore, temporal aggregation at the highest W = 20 level has a distinct disadvan-

tage. The resulting performance drop is not a direct result of aggregation at the W = 20 level, but a

consequence of the limited data availability post-shift and the lack of signaling opportunity. We

would see similar deterioration in performance for W = 5, or W = 10 if we required detection

within 5 or 10 time periods. Additionally, the need to wait until the end of an aggregation period

to signal an anomaly can delay detection. We explore conditional signal delays in Section 6.

We also studied the detection rates when binary data were used instead of count data.

Although not shown here, the performance of Priebe’s scan method is significantly worse than

the results shown in Fig 1. Priebe’s scan method was unable to detect any anomalies regardless

of the sparsity or aggregation level. Detection rates were nearly 0% for all simulations with the

poor performance attributed to the P0
r;r values used in the simulations. Our simulations using

P0
r;r ¼ 0:2 or larger result in relatively non-sparse Bt matrices for the networks generated; in

other words, at any given time t we have Bt(i,j) = 1 for nearly all i and j in the baseline net-

works. When an anomaly occurs, a high percentage of the elements in the Bt matrices repre-

senting communications among the anomalous nodes remain unity. Priebe’s scan method

performs poorly in this case since there are no discernable differences between the baseline

and anomalous Bt matrices.

We also performed simulations with substantially more severe anomalies using s = 1.5. Fig

2 shows a similar pattern compared to Fig 1, where the detection rates increase as network

sparsity level decreases. The performance is significantly better for all aggregation and sparsity

levels in these simulations due to the larger shift. When comparing aggregation levels, the larg-

est improvement is again seen when aggregation level increases from W = 2 to W = 5. In this

case, detection rates increase by as much as 30 percentage points for relatively sparse networks.

For data aggregated at W = 20, the detection rates, similar to Fig 1, are lower than those for

W = 10 by 10 percentage points. They are, however, higher than the values for W = 5 across all

sparsity levels. We see again that increasing the level of aggregation can improve performance

up to a certain point, but the diminishing data availability post-anomaly from too much aggre-

gation quickly leads to a decrease in performance. Although not shown here, our simulations

also revealed that for the shift P0
1;1
¼ ð1þ 1:5Þ � P0

1;1
, the detection rates for |V| = 50 networks

are comparable to those in Fig 2.

We obtained detection rates with the use of binary data as well for the shift of P0
1;1
¼

ð1þ 1:5Þ� P0
1;1

. The overall detection rates improved slightly due to the larger shift, ranging

between 2% to 10% across all aggregation and network sparsity levels. However, for both shift

magnitudes the results showed that there is a significant loss of information in situations

where binary data were used in place of count data. Performance may have been improved if a

higher threshold had been used to define the binary data.
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In addition to simulating networks of order |V| = 20, we simulated larger networks of order

|V| = 50 and |V| = 100. Fig 3 illustrates the detection rates at different temporal aggregation lev-

els for count data with the shift P0
1;1
¼ ð1þ 0:5Þ � P0

1;1
where the networks are of order |V| =

50. The networks contain two equally sized communities each made up of 25 nodes. Each

point represents the average detection rate from 2000 simulations. Fig 3 shows a similar detec-

tion rate pattern compared to that of the |V| = 20 networks. Priebe’s scan method again per-

forms poorly for P0
r;r ¼ 0:2 with the detection rates for W = 1, 2, and 5 less than 10% and at

Fig 2. Detection rates against P0
r;r for count communication data with |V| = 20 and two communities.

P0
1;1
¼ ð1þ 1:5Þ � P0

1;1
.

https://doi.org/10.1371/journal.pone.0209075.g002

Fig 3. Detection rates against P0
r;r for count communication data with |V| = 50 and two communities.

P0
1;1
¼ ð1þ 0:5Þ � P0

1;1
.

https://doi.org/10.1371/journal.pone.0209075.g003
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50% compared to W = 10, 20. The performance improves across all aggregation levels as net-

work sparsity level decreases. When comparing the aggregation levels, the most significant

improvement in performance, with detection rates as much as 40% higher, is now observed

when the aggregation increases from W = 1 to W = 2. The detection rates for W = 20 are con-

sistently lower than that for W = 10, for all sparsity levels. When P0
r;r � 1:0, detection rates for

W = 10 are lower than those for W = 5.

Fig 3 shows somewhat different patterns for the detection rates compared to Fig 2. Note

that a node within a larger network (e.g., with |V| = 50) can be in communication with consid-

erably more nodes compared to a node within a smaller network (e.g., |V| = 20) at any given

time t. Thus, when |V| = 50, there is a significant increase in baseline numbers of communica-

tions among nodes during Phase I since an individual node has 49 potential targets with which

to establish a connection. For shifts of identical magnitude, it is more difficult for Priebe’s scan

method to detect the presence of an anomaly relative to when |V| = 20. For the |V| = 50 net-

works in our simulations, W = 5 represents the most reasonable balance between amplifying

the severity of the anomaly and giving the method ample opportunity for detection.

The detection rates from the use of count data in networks with order of |V| = 100 are

shown in Fig 4 with the shift set at P0
1;1
¼ ð1þ 0:5Þ � P0

1;1
. In this case the networks contain

four equally sized communities with 25 nodes each. We observe similar patterns in detection

rates when compared to Fig 2 and Fig 3. However, regardless of the aggregation level or net-

work sparsity, the detection rates in Fig 4 never approach 100%. Clearly, the relative order of a

community within a network affects the performance of the method. This is consistent with

the findings in Zhao et al. [25], where the performance of Priebe’s scan method can be poorer

for small anomalous sub-networks.

To summarize, our results show that there is a notable drop in performance when W = 20.

The decrease in performance can be attributed to the lack of availability of post-shift adjacency

matrices and the long aggregation period. While aggregating network data can increase the

detection rate, the optimal aggregation level should be chosen by considering factors such as

data availability and the speed of detection. The performance of Priebe’s scan method is much

Fig 4. Detection rates against P0
r;r for count communication data with |V| = 100 with four communities.

P0
1;1
¼ ð1þ 0:5Þ � P0

1;1
.

https://doi.org/10.1371/journal.pone.0209075.g004
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better when count data are used. Use of count data offers practitioners a clear advantage over

the use of binary data. Even still, we further examine the influence of data aggregation on the

performance of Priebe’s method in the binary situation in Section 5.3.

Effect of anomaly magnitudes

The severity of the anomaly is modeled by the shift magnitude, a factor that can significantly

affect the performance of Priebe’s scan method. We study how shift magnitudes change the

effects of aggregation in this section. Using the shift P0
1;1
¼ ð1þ sÞ � P0

1;1
, where

s = 0.05,0.25,0.5,1, and 1.5, networks of order |V| = 20 were generated, again with the nodes

evenly divided into two communities. The baseline diagonal value of P is fixed at P0
r;r ¼ 1.

Fig 5 shows detection rates for network count data aggregated at various levels for different

values of s, where s represents the relative shift magnitude in the value of P0
1;1

in our simula-

tions. When s�0.25, the detection rates are low for all aggregation levels. When s>0.25, aggre-

gation increases the detection rate. Generally, the detection rates are higher for larger shifts.

Studying the results from using data aggregated at different levels reveals that increasing W

from 2 to 5 leads to the biggest improvement in detection rates, echoing the results in Fig 3

and Fig 4. Similar to results discussed in Section 5.1, when 0.50�s�0.75, detection rates for

W = 20 are 20 to 40 percentage points lower than those for W = 10. When s�1, the detection

rates for W = 20 are 10 to 20 percentage points lower than those for W = 5. Aggregating at the

W = 20 level again shows lower performance resulting from the limited post-shift data avail-

ability and the single opportunity for detection. While results from the use of binary data are

not shown here, detection rates were nearly 0% regardless of the aggregation level after con-

verting the network data to binary form, reinforcing the point that using binary data can lead

to a significant loss of information when networks are not sparse.

Simulations for binary network data

The results discussed in Sections 5.1 and 5.2 indicate that converting network count data into

binary data results in considerably lower detection rates. Use of binary data is not as efficient

Fig 5. Detection rates against shift magnitudes for network count communication data. W = 20, Pr,r = 1.

https://doi.org/10.1371/journal.pone.0209075.g005
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compared to the use of count data in network surveillance applications. The simulation set-

tings used, however, were not helpful for studying the effect of aggregation using binary net-

work data so we consider other settings in this section. Because the conversion from network

count data to binary data is not linear, the same anomaly severity specified in the simulation

for count data does not yield the same effect on binary data. In this section, we compare the

expected change in Bt pre- and post-shift in order to find applicable simulation settings for the

study of the use of binary data. Specifically, network densities are used for comparison, where

density is defined as the proportion of the potential connections in a network that are actual

connections.

We generated 2000 networks of order |V| = 20 each with two equally sized communities,

where P0
1;1
¼ ð1þ 1:5Þ � P0

1;1
, and P0

1;1
¼ ð1þ 4Þ � P0

1;1
. Fig 6 shows the distribution of net-

work densities for Bt pre- and post-shift and at two different sparsity levels. In both cases, the

changes in network densities are not affected by the sparsity level. The pre- and post-shift val-

ues only differ by up to about 15%, not the +150% as specified in the simulation for the P1,1

component. Fig 7 shows the distribution of network densities for Bt pre- and post-shift and at

two different sparsity levels in the case of P0
1;1
¼ ð1þ 4Þ � P0

1;1
: The difference in the densities

Fig 6. Network densities pre- and post-shift. Binary networks with |V| = 20 and two communities. Shift magnitude is +150%.

https://doi.org/10.1371/journal.pone.0209075.g006
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are only up to slightly more than 25%. In order to detect anomalies reliably with binary data,

the difference between the pre- and post-shift densities needs to be significantly higher. As

such, P0
r;r has to be much smaller while s needs to be much larger. In other words, the relative

severity of the anomalies needs to be much stronger with the use of network binary data in

order for Priebe’s scan method to detect the anomalous behavior.

Consequently, we simulated networks with P0
r;r ranging from 0.02 to 0.2. Anomalies were

simulated with much larger shift magnitudes for the propensity of communication within

community #1, with P0
1;1
¼ ð1þ sÞ � P0

1;1
. We set a fixed value for P0

1;1
¼ 1 and this results in s

ranging from 5 to 50 with the various values of P0
1;1

. A total of 2000 simulations were per-

formed for each combination of s value and aggregation level. By adopting a wide range of s
values in our simulations, we are able to vary the difference between the pre- and post-shift

network density significantly. Fig 8 shows the detection rates by aggregation levels at different

P0
r;r values. When P0

r;r ¼ 0:02, Priebe’s scan method is able to detect the presence of an anomaly

Fig 7. Network densities pre- and post-shift. Binary networks with |V| = 20 and two communities. Shift magnitude is +400%.

https://doi.org/10.1371/journal.pone.0209075.g007
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with a reliable consistency. Detection rates range from 80% to 100% depending on the aggre-

gation level. When 0:04 � P0
r;r � 0:12, detection rates decrease significantly, by as much as 50

percentage points. The same effect is observed regardless of the aggregation level. This is

because as P0
r;r increases, there are more baseline node-to-node interactions, i.e. Bt(i,j) = 1

occurs more often pre-shift. The change in the network densities post-shift in turn is small,

making anomaly detection more difficult. When comparing different aggregation levels, we

see that there is little difference in detection rates among different aggregation levels. Aggrega-

tion in this situation often results in CðWÞt ði; jÞ � 1, which is then converted to BðWÞt ði; jÞ ¼ 1

using our conversion threshold. The resulting BðWÞt matrices are very similar regardless of the

aggregation level. This similarity reduces the effect of aggregation. We performed simulations

using network count data as well. While not shown, the performance with the use of count

data for all s values is much higher with detection rates that are generally at 95% and frequently

above 99%.

Distribution of conditional signal delay

In this section we investigate the inherent delay due to temporal aggregation by studying the

conditional delays when monitoring aggregated count data. Performing the same simulations

as described in Section 5, we generated networks of order |V| = 20 with nodes evenly distrib-

uted into two communities. While simulating anomalies using P0
1;1
¼ ð1þ 1:5Þ � P0

1;1
; we

recorded the conditional signal delay from the proportion of 1000 simulations where the

anomalies were detected successfully. Fig 9 shows the distribution of conditional signal delay

for the W = 1 aggregation level. We see that there is most often no delay in signaling. Detection

is almost immediate because there is no need to wait until the end of a long aggregation period.

A large majority of signals occur within two time periods following the shift given that there is

a signal.

Larger conditional signal delays can be unavoidable at higher aggregation levels. Fig 10

shows the conditional signal delay for W = 2, 5, 10, and 20. For W = 2, anomaly detection took

Fig 8. Detection rates against Pr,r for |V| = 20 binary networks with two communities. P0
1;1
¼ ð1þ sÞ � P0

1;1
, s =

(5,50).

https://doi.org/10.1371/journal.pone.0209075.g008
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slightly longer in a few cases. For even higher aggregation levels, we see that signaling progres-

sively took longer as aggregation levels increased. For W = 20, over half of the signals occur

more than ten time periods following the shift. Aggregation levels that are higher than 20 will

cause even greater signaling delays when signals occur. Fig 9 and Fig 10 reflect the fact that if

the scan method signals an anomaly, then it tends to do so at the first opportunity after the

anomaly occurs.

It is important to stress that for immediate detection with Priebe’s scan method, a large

amount of the aggregated data within an aggregation period must be anomalous. Depending

on when an anomaly occurs within an aggregation period, performance could be negatively

affected, especially for W = 20. With W = 20, there are 20 possible shift times within an aggre-

gation period. If the shift occurs during the latter part of the aggregation period, only a small

portion of the aggregated data will be anomalous. Fig 11 shows how shift times affect the per-

formance with respect to each aggregation level. Both W = 5 and W = 10 result in lower detec-

tion rates if anomalies occur during the second half of the aggregation period compared to the

beginning of the aggregation period. Moreover, we see a slight increase in detection rates

Fig 9. Distribution of conditional signal delay for network count data aggregated at W = 1 level. P0
1;1
¼ ð1þ 1:5Þ � P0

1;1
.

https://doi.org/10.1371/journal.pone.0209075.g009
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immediately after the performance drop. The recovery in performance is attributed to the fact

that the aggregation period immediately after consists entirely of anomalous data, giving the

method another chance to signal. At W = 20, we see that if anomalies occur at or after the 12th

adjacency matrix in a window of 20 within the aggregation period, the performance starts to

decrease, and continues to do so until the detection rate drops to 25%. In this case, Priebe’s

scan method only has one chance to signal within 20 time periods due to the high level of

aggregation and cannot detect the anomalies reliably when less than 40% of the data within the

aggregation period are anomalous. This phenomenon will be more pronounced with higher

aggregation levels.

Conclusions and directions for research

We have demonstrated how aggregating social network data at different levels affects the per-

formance of Priebe’s scan method. Our results show that aggregating network data at higher

levels can be beneficial to the detection rate performance of Priebe’s scan method up to a

Fig 10. Distribution of conditional signal delay for network count data aggregated at (a) W = 2 (b) W = 5 (c) W = 10 and (d) W = 20 level. P0
1;1
¼ ð1þ 1:5Þ � P0

1;1
.

https://doi.org/10.1371/journal.pone.0209075.g010
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certain point before becoming detrimental. Additionally, the simulation studies show that

there is a significant decrease in performance due to information loss in situations where

binary data are used in place of count data.

By studying the conditional signal delay and the relationship between detection perfor-

mance and shift time, we are able to attribute the poor performance for high levels of aggrega-

tion to two causes. First, when there is a limited time window allowed for detection post

anomaly, the number of available adjacency matrices diminishes quickly as the aggregation

level increases. At a certain level, it is likely that the network surveillance method used only has

a single opportunity to detect the presence of an anomaly within a specified time window. Sec-

ond, depending on the aggregation level, there are a number of possible shift times within an

aggregation period. If an anomaly occurs during the latter part of an aggregation period, only

a small portion of the aggregated data are anomalous. Successful immediate detection is made

very difficult in these situations. Practitioners must wait until the end of the next aggregation

period to determine if an anomaly is present.

We recommend the use of count data to summarize the level of interaction between nodes

in a network, if available, rather than binary data. Moreover, we recommend the use of aggre-

gation at an appropriate level for network surveillance applications. The specific aggregation

level used depends to a large extent on the signal delay that can be tolerated in the particular

monitoring situation.

We consider only one combination of network model, surveillance method, and anomaly

in our study, but other combinations should be studied. Network anomalies might be transient

instead of sustained, as we assumed, with an expected large effect on the appropriate level of

aggregation. In addition, further investigation is needed into the performance of network sur-

veillance techniques when count data are converted to binary data using a higher conversion

threshold.

Our investigation is based on synthetic networks. In application data, there can be addi-

tional practical challenges related to temporal aggregation, and here we briefly discuss a few of

them. Depending upon the origin of the data, a practitioner might not have the option of

Fig 11. Detection rates against shift time within the aggregation period for communication count data from |V| =

20 networks with 2 communities. P0
1;1
¼ ð1þ 1:5Þ � P0

1;1
.

https://doi.org/10.1371/journal.pone.0209075.g011

Temporal aggregation in social networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0209075 December 19, 2018 19 / 21

https://doi.org/10.1371/journal.pone.0209075.g011
https://doi.org/10.1371/journal.pone.0209075


using aggregation levels smaller than a certain width. Also, in this paper we assumed that the

most basic level of aggregation has removed any seasonal variation, which might not be true in

practice. We also assumed that the community structure is known, which may not hold true in

practice. Finally, we generated temporal sequences of social networks as independent realiza-

tions from the DCSBM model. In practice, there can be dependence in the temporal sequence

of social networks.

Communications in social networks often take place on a continuous time scale rather than

a discrete time step. But currently available methods for social network surveillance are largely

designed for discrete time steps, which implies that the network data must be aggregated over

some time period before surveillance can be conducted. This step of aggregation can lead to a

costly loss of information. In future work, we aim to address this issue by developing methods

for social network surveillance that can be implemented on a continuous time scale.

In future work, we also plan to investigate networks with larger orders than the ones studied

in this paper, and consider anomalous events where the nodes affected are not necessarily in

the same community.
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