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João M. Dias¤, Christophe Losberger, Maud Déruaz, Christine A. Power, Amanda E. I. Proudfoot,

Jeffrey P. Shaw*

Merck Serono Geneva Research Center, Merck Serono S.A., Geneva, Switzerland

Abstract

Background: Chemokines are a subset of cytokines responsible for controlling the cellular migration of inflammatory cells
through interaction with seven transmembrane G protein-coupled receptors. The blocking of a chemokine-receptor
interaction results in a reduced inflammatory response, and represents a possible anti-inflammatory strategy, a strategy that
is already employed by some virus and parasites. Anti-chemokine activity has been described in the extracts of tick salivary
glands, and we have recently described the cloning and characterization of such chemokine binding proteins from the
salivary glands, which we have named Evasins.

Methodology/Principal Findings: We have solved the structure of Evasin-1, a very small and highly selective chemokine-
binding protein, by x-ray crystallography and report that the structure is novel, with no obvious similarity to the previously
described structures of viral chemokine binding proteins. Moreover it does not possess a known fold. We have also solved
the structure of the complex of Evasin-1 and its high affinity ligand, CCL3. The complex is a 1:1 heterodimer in which the N-
terminal region of CCL3 forms numerous contacts with Evasin-1, including prominent p-p interactions between residues
Trp89 and Phe14 of the binding protein and Phe29 and Phe13 of the chemokine.

Conclusions/Significance: However, these interactions do not appear to be crucial for the selectivity of the binding protein,
since these residues are found in CCL5, which is not a ligand for Evasin-1. The selectivity of the interaction would appear to
lie in the N-terminal residues of the chemokine, which form the ‘‘address’’ whereas the hydrophobic interactions in the rest
of the complex would serve primarily to stabilize the complex. A thorough understanding of the binding mode of this small
protein, and its other family members, could be very informative in the design of potent neutralizing molecules of pro-
inflammatory mediators of the immune system, such as chemokines.
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Introduction

Chemokines (chemotactic cytokines) are a subset of cytokines

primarily responsible for controlling the cellular migration of

various inflammatory cells. They compose a large family

(approximately 40 known members in the human system)[1] of

small proteins which share a relatively low level of sequence

identity, but which display a remarkable structural homology,

since they all contain the same monomeric fold. Chemokines

control the migration of leukocytes through interaction with

members of the G protein-coupled receptor family which possess

seven transmembrane helices. The pairing of the chemokines to

their receptors has been carried out, mainly by receptor binding

assays, and has identified receptors that are specific (bind to a

single ligand) or shared (bind more than one ligand). The

association of certain receptors and ligands with disease has come

from many studies of their expression in biopsy samples and body

fluids, animal models and genetically engineered mice.

Dysregulation of the chemokine system can result in excessive

cellular recruitment, with dramatic implications in inflammatory

and autoimmune diseases[2]. Blocking the receptor-chemokine

interaction should have therapeutic value, since prevention of this

directional migration represents an effective anti-inflammatory

strategy. Numerous reports in animal models have provided

evidence to support this hypothesis using tools such as genetically

engineered mice, neutralizing antibodies, and receptor antago-
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nists[3]. However the most compelling data is in fact provided by

nature - efficient strategies are employed by viruses and certain

parasites to elude their hosts’ immune system, and hence, an

inflammatory response[4–9]. The strategies employed by viruses

in the guise of cytokine and chemokine binding proteins, such as

those directed against IFNc, IL-18 and various chemokines have

been fairly well documented[10–18].

Blood sucking parasites such as ticks can feed from several hours

to several days, and thereby evade the host immune response.

Anti-chemokine activity has been described in the extracts of tick

salivary glands[5,19,20], and we have recently described the

cloning and characterization of such chemokine binding proteins

from a tick salivary gland cDNA library, which we have named

Evasins[21,22]. The first to be identified, Evasin-1, was shown to

bind to a subpopulation of the chemokine family, contrasting with

most of the known viral chemokine binding proteins which

demonstrate broad selectivity profiles. Evasin-1 is a small 94-

amino acid protein which binds CCL3/MIP-1a and CCL4/MIP-

1b with very high affinity (0.16 and 0.81 nM, respectively), and

also displays lower affinity binding (3.2 nM) to a closely related

member of the CC chemokine family, CCL18/ PARC. This

chemokine-binding protein does not share any relevant sequence

or structural homology to any other known proteins, notably the

viral chemokine-binding proteins, and moreover, is considerably

smaller, being only 10 kDa compared to the viral proteins which

range in size between 30–40 kDa.

Here we present the crystal structure of a complex between the

chemokine CCL3 and the small tick-derived chemokine binding

protein, Evasin-1. The interactions are totally different from those

described for the viral chemokine binding proteins, and may lead

to an understanding of an efficient way to selectively inhibit the

chemokine system. The structure of the complex provides the

structural framework for the exquisite selectivity demonstrated by

Evasin-1, which displays a particularly high affinity for CCL3, but

has only negligible affinity for the closely related chemokine

CCL5, which shares the same receptors as CCL3. The binding

activity of chimeric chemokine constructs, consisting of the amino

terminal region preceding the CC motif of one of these

chemokines, followed by the sequence of the other, suggest that

the binding modality may follow a two-step process, with the

amino terminus determining the selectivity.

Results

Architecture of Evasin-1
We have determined the crystal structure of both non-

glycosylated (accession code: 3 fpr) and glycosylated Evasin-1

(accession code: 3 fpt), to 1.7 Å and 2.70 Å respectively. The

structures are very similar, and the Ca can be superimposed with

an rmsd of 0.97 Å, considering 83 of the 100 amino acid residues

(segment aligned Asp8-Arg90). The structure of the non-

glycosylated form of Evasin-1, which was determined at higher

resolution, will be described below.

The crystal structure of the non-glycosylated Evasin-1 contains

two molecules per asymmetric unit, monomer A (Asp5-Asp91) and

monomer B (Gly10-Trp89). The terminal amino acid residues

Asp5 and Asp91 for monomer A, as well as Trp89 for monomer B

were modelled as alanines, as there is no unambiguous electron

density for their side-chains. In both monomers, the extreme N-

terminal and C-terminal regions, comprising the six-histidine tag,

are flexible and were not seen in the electron density maps.

The overall structure of the Evasin-1 molecule is boat shaped,

with approximate dimensions of 35 Å620 Å613 Å. The largest

dimension corresponds to the distance comprising the N-terminal

region, which is exposed to the solvent and is involved in the

chemokine binding, as shown later in the structure of the complex

with CCL3. A stereo view of the overall structure of the non-

glycosylated form of Evasin-1 is presented in Figure 1. This

tertiary structure of Evasin-1 represents a new fold of the a/b type.

A search against all the PDB structures deposited and currently

available in the PDB did not identify any related structure, as will

be discussed later in this paper.

The Evasin-1 secondary structure is composed of seven beta

strands forming three anti-parallel beta sheets, one short alpha

helix, and contains four disulfide bridges (Figure 2). The four

disulfide bridges consist of: Cys12-Cys33 connecting the N-

terminal region of strand b1with b3; Cys29-Cys70 connecting

the beginning of b3 with b6; Cys46-Cys75 connecting the strands

b5 with b7 in the beta sheet b5-b6-b7 and finally Cys65-Cys84

connecting the other two strands b6 with b7 in the same beta

sheet. The disulfide bridges are positioned along the interior of the

protein, forming a central core, and undoubtedly conferring

structural rigidity by stabilization of the protein core.

The overall architecture can be divided into two subdomains

(Figure 2). The first subdomain (the N-terminal subdomain) is

formed by two non-contiguous segments comprising the N-

terminal residues Asp5-Pro13, and the anti-parallel beta-pleated

sheet formed by b3 and b4 consisting on the segment from

residues Lys30-Thr39. The beta sheet formed by b3 and b4

contains a beta-hairpin of type I’. A hydrogen bond network

formed by Gln31-Glu38, Asp32-Gly35, Cys33-Gly35 and Cys33-

Thr36 holds this beta sheet together.

The N-terminal segment is extended through the surface of the

monomer and is covalently bound to the b3 strand via the disulfide

Figure 1. Overall structure of Evasin-1. A stereo view of the overall structure of the non-glycosylated form of Evasin-1 is presented.
doi:10.1371/journal.pone.0008514.g001

Structure of Evasin-1
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bridge between Cys12-Cys33, which is exposed to solvent. The N-

terminal region is anchored not only by the disulfide bridge, but

also by an intricate hydrogen bond network that places the N-

terminal segment in an exposed and favourable position for

chemokine binding. This hydrogen bond network comprises the

N-terminal region interactions with b4 through Gly11-Glu38,

Cys12-Glu38, and with b3 through Pro13-Gln31. Residues Gln31

and Glu38 as well as Cys33, anchors the flexible N-terminal area.

The Gln31 side-chain interacts with the carbonyl atom of Pro13

and also establishes main-chain and side-chain hydrogen bonds

with Glu38, thereby stabilizing the beta sheet formed between b3

and b4.

The second, C-terminal, subdomain is also composed of two

non-contiguous segments comprising residues Phe14-Cys29 and

Ala40-Asp91. This subdomain is composed of five beta strands

(b1-b2-b5-b6-b7), and one alpha helix (a1). This subdomain

undoubtedly constitutes the central core of the protein, as

evidenced by the lower B-factors observed in this extended b-

sheet. The beta strands b1 and b2 form an anti-parallel beta sheet

containing a beta turn of type 1. The beta strands b5, b6 and b7

also form a twisted anti-parallel beta sheet. The two beta sheets

formed by b1-b2 and b5-b6-b7 interact together to form the

twisted beta-barrel (b1-b2-b5-b6-b7-b1), which is pointing to the

alpha helix on the top. b1 and b2 are bridged through the main-

chain hydrogen bond interactions between Ala17 and Thr25.

Asn19 plays an important function by holding the beta turn of type

I, due to the six hydrogen bonds that it makes with neighbouring

residues Thr21, Gly22, Tyr23. Remarkably the ND2 atom is not

involved in these interactions, which is consistent with it being a

glycosylation site, an observation that is confirmed in the

glycosylated structure of Evasin-1, as described later.

The a1 helix is positioned opposite of the twisted beta barrel

vortex subdomain (as depicted in Figure 1). This helix is placed in

a solvent exposed area and is held to the vortex through three

hydrogen bonds, one between the start of the helix and the end of

b2 Gly50-Val27, one between the middle of the helix and the C-

terminal Arg55-Arg86, and one at the end of the helix and the C-

terminal Met58-Arg86. The C-terminal loop points to the solvent,

presenting the aromatic residue Trp89 totally exposed and located

in a flexible region with a Ca B-factor = 50.0 Å2, much higher

than the average B-factor = 34.8 Å2 for the whole protein chain of

monomer A (B-factor for the Ca of monomer A = 32.8 Å2,

calculated with BAVERAGE from CCP4, 1994).

Glycosylated Form of Evasin-1
Three glycosylation sites were initially predicted by primary

sequence analysis through a PROSITE search used for pattern

identification (http://www.expasy.org/prosite)[23]. A typical N-

glycosylation consensus pattern Asn-Xxx-Thr[24] was found for

Asn19-Lys20-Thr21, Asn34-Gly35-Thr36 and Asn42-Gly43-

Figure 2. Secondary structure of Evasin-1. The secondary structure, disulfide bridges, and glycosylation sites of Evasin-1 are shown.
doi:10.1371/journal.pone.0008514.g002

Structure of Evasin-1
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Thr44, which are located in external loops, not involved in

chemokine binding (see Figure 2).

Crystals of the glycosylated tick chemokine binding protein

produced in Sf9 insect cells using the baculovirus expression

system were obtained as described in the Methods section. The

structure was solved by molecular replacement using the

previously determined structure of the non-glycosylated form of

Evasin-1. The unit cell contains 3 molecules per asymmetric unit:

monomer A (Asp8-His95), monomer B (Gly11-Trp89) and

monomer C (Asp8-Trp89). The corresponding solvent content of

67%[25] and the glycosylation content may explain the 2.70 Å

diffraction limit of the crystals. The three crystallographic distinct

molecules are very similar with a rmsd for Ca atoms superposition

of 0.68 Å for the superposition of monomers A and B, 0.77 Å for

monomers B and C, and 0.95 Å for monomers B and C, with the

greatest differences being observed for the residues at the termini.

Monomer A had the lowest overall B-factor (53.9A3) compared to

the other two monomers, had the largest stretch of visible amino

acids (8 to 95), and will thus be used as the reference glycosylated

structure in the discussion below.

Residue Asn19 was the only one of the three predicted

glycosylation sites, which displayed clear electron density for a

sugar moiety. Only one saccharide unit, built as an N-acetyl D-

glucosamine, could be successfully modelled into all three

monomers of Evasin1-glycosylated on residue Asn19. There was

some unclear electron density visible for the next monosaccharide

in monomer A, and it was thus not modelled. Asn19 is at the C-

terminal end of the 1st b-strand (b1) and is well exposed to solvent.

There is a clear hydrogen bond interaction between the acetamide

group of the glucosamine and the side chain of Thr22.

Architecture of the Complex between Evasin-1 and CCL3
In order to understand the structural basis of the chemokine

binding mechanism by Evasin-1, we have crystallized the complex

(accession code: 3 fpu) between Evasin-1 and a variant of the

human chemokine CCL3 (Figure 3). The crystal structure was

refined up to 1.9 Å resolution, and it helps to clarify the structural

features of the binding mode of a new class of chemokine binding

proteins. One single complex of Evasin-1 and CCL3 crystallised in

the asymmetric unit.

One monomer of Evasin-1 binds one monomer of CCL3

displaying a 1:1 stoichiometry. Upon complex formation, the N-

terminal region of CCL3 interacts with both the N-terminal and

C-terminal regions of Evasin-1. These extremities, which are not

completely visible in the isolated crystal structures due to their

intrinsic disorder and flexibility, become more rigid due to a

network of interactions between the two proteins when the

complex is formed. As a consequence, some additional secondary

structure elements become visible. In the refined structure of the

complex, it is possible to identify the entire Evasin-1 molecule in

the electron density, as well as the CCL3 structure with the

exception of the last 2 residues of the C-terminus. The crystal

structure reveals the C-terminal polyhistidine tag, and includes

two metal ions, modelled as Ni2+ atom (believed to be leached

from the IMAC resin during purification) and which play an

important role in establishing the crystal lattice.

The overall topologies of both Evasin-1 and CCL3 in the

complex are similar to the isolated crystallographic structures. The

Ca superposition of the isolated Evasin-1 (monomer A) with the

respective structure in the complex gives an overall rmsd of 1.0 Å.

The Ca superposition of the crystallographic structure of the

CCL3 (J. Dias, unpublished results) and the respective structure of

CCL3 in the complex also gives an overall rmsd of 1.0 Å,

considering only the C-terminal 50 amino acid residues.

The complex formation induces the stabilization of the entire N-

terminal and C-terminal areas of Evasin-1 and of the N-terminal

segment of CCL3, which becomes visible in the electron density

maps, showing the rearrangement of both N-terminal ends upon

binding. Due to interactions in the complex, the CCL3 N-terminal

region (residues Ser2-Thr10) moves by almost 90 degrees with

5AlaB moving circa 20 Å (Figure 4). This difference in the

structure of the free and Evasin-1 bound structure is due essentially

to rotation around the Pro8-Thr9 and Thr9-Thr10 peptide bonds.

Three additional secondary structure elements are formed upon

binding: the a2 3-10 helix at the C-terminal of Evasin-1; and the

a0 3-10 helix and b0 strand at the N-terminal region of CCL3.

The additional CCL3 b0 strand interacts with the Evasin-1 b1

forming an antiparallel beta-sheet, which extends to Evasin-1 b2.

The newly formed CCL3a0 (Ala4A-Asp6A) interacts with the

newly formed Evasin-1 a2 3-10 suggesting that this stabilization

occurs in a cooperative manner.

Due to stabilization of the structures promoted by the

interaction within the complex, and due to the crystal packing,

the C-terminal of Evasin-1 becomes visible and the 3–10 helix

formed by Trp89A-Lys92A is revealed. The Trp89A is perfectly

visible (see Figure 5c) in the electron density map for the complex,

and the interacting residue Phe29B goes through a rotamer

change in order to accommodate this hydrophobic interaction.

Domain Interactions at the Interface of the Complex
The total buried surface area at the interface of the complex is

2650.58 Å2 as determined by CNX[26] or 2923.5 Å2 as

Figure 3. Stereo diagram of the complex between Evasin-1 and CCL3. The Evasin-1 is colored in cyan and CCL3 in green.
doi:10.1371/journal.pone.0008514.g003

Structure of Evasin-1
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determined by the CCP4 program AREAIMOL[27]). The shape

complementarity of the Evasin-1 /CCL3 interface was calculated

with SC from CCP4 to be Sc = 0.76 using a 1.7 Å probe sphere

radius[28].

The chemokine-binding region of Evasin-1 is an extended

region comprising both the N-terminal and C-terminal regions,

which embrace the chemokine. The interface of the complex was

calculated with CNX and LIGPLOT/HBPLUS and followed by

visual inspection and is summarized in Table S1). This interface

comprises 35 residues from the Evasin-1 and 27 residues of CCL3.

The hydrogen bond network at the interface of the complex is

composed of 25 hydrogen bonds, consisting in the interaction of

18 residues from the Evasin-1 and 12 residues of CCL3

(CONTACT from CCP4[29]).

Three specific residues of CCL3, Thr16B-Ser17B-Arg18B, are

targeted by the N-terminal region of Evasin-1, through 7 hydrogen

bonds (Figure 5a). The main-chain of the N-terminal residues

Asp3A-Leu9A of Evasin-1 interacts with the side-chain of this

unique segment of CCL3. This interaction is very specific since it

targets mainly the side-chains of this Thr16B-Ser17B-Arg18B

motif, which is unique to CCL3. A sequence alignment of

chemokines revealed a maximum of two identical residues, but

never the exact three-residue motif. The region of CCL3 may thus

be an important determinant of the unusual selectivity of Evasin-1.

The N-terminal b1 strand of Evasin-1 interacts with the Thr9B-

Cys11B N-terminal region of CCL3 through 3 hydrogen bonds,

inducing a short anti-parallel beta strand conformation upon

complex formation, assigned as strand b0 and formed by Thr10B-

Cys11B. The N-terminal contacts include several hydrophobic

interactions, one of which is an important edge-to-face p-p
interaction between Phe14A from Evasin-1 and Phe13B from

CCL3. This hydrophobic interaction is strengthened by a main-

chain hydrogen bond interaction between Evasin-1 Phe14A and

CCL3 Cys11B, connecting both N-terminal regions and holding

Phe14A in the appropriate environment (Figure 5b). Surrounding

the Phe14A-Phe13B interaction, there is a hydrophobic patch in

Evasin-1 formed by residues: Pro13A, Phe14A Tyr23A, Pro24A,

Ile26A, Ala40A, Pro41A, while the corresponding CCL3 adjacent

‘‘hydrophobic’’ region is formed by the disulfide bridges between

Cys11B-Cys35B and Cys12B-Cys51B, which lie in the vicinity (less

than 4 Å) of Pro24A and Pro13A, respectively.

The C-terminal of Evasin-1 embraces the N-terminal part of

CCL3 due to an important network of hydrogen bonds and

comprising a very important hydrophobic stacking interaction

between the Trp89A from Evasin-1 and Phe29B of CCL3 (see

Figure 5c). The aromatic side chains of Trp89A from Evasin-1,

and Phe29B CCL3 are arranged parallel but slightly off centre, as

observed in Figure 5c. Trp89A NE1 of Evasin-1 also interacts with

Gln49B OE1 from CCL3, which anchors the Trp89A in a

favourable position for the aromatic stacking with Phe29B from

CCL3. The N-terminal domain of CCL3 plays a major role in the

interaction with Evasin-1 by forming a lid to the pocket that

anchors Trp89A from Evasin-1. The segment after the N-terminal

helix of CCL3 composed by the residues: Ala5B-Asp6B-Thr7B-

Pro8B-Thr9B-Thr10B encloses the Trp89A (Evasin-1) – Phe29B

(CCL3) interaction. CCL3 Pro8B fits in the pocket of Evasin-1

defined by: strands b1 (Leu15A) and b7 (Arg86A, Asn88A,

Trp89A), with some side-chains from helix a1 (Leu54A, Arg55A),

interacting with Gln49B via a bridging water, contributing to the

positioning the hydrogen bond Gln49B OE1-NE1 Trp89A

Evasin-1.

Electrostatic Complementarity
The relatively small difference in the isoelectric points (pI) of

Evasin-1 (pI = 6.0) and CCL3 (pI = 4.9), compared to more basic

chemokines like RANTES (pI = 9.3), may suggest that hydropho-

bic interactions are the main driving forces for the complex

formation between Evasin-1 and CCL3. Nevertheless, and despite

the relatively small difference in the overall protein charge, there is

a remarkable electrostatic surface complementarity at the contact

interface of the complex that enhances the complex interactions

(Figure 6). A remarkable feature at the interface of the complex is

the electrostatic complementarity observed surrounding the

aromatic stacking interaction between Trp89A-Phe29B, in which

the Phe29B belonging to CCL3 is buried in a negatively charged

pocket due to the presence of Glu30B and to the proximity of

Asp6B from CCL3 N-terminal region. On the other hand, the

Trp89A is enclosed in the positive C-terminal of Evasin-1. The

Trp89A-Phe29B interaction is surrounded by an electrostatic ring

that helps to orient both partner molecules, guiding the protein

docking through an electrostatic field.

Discussion

Novelty of the Evasin-1 Structure
Several aspects of the structure of the complex between Evasin-

1 and CCL3 are striking. A preliminary analysis of the amino acid

sequences of Evasin-1 by BLAST and PHI-BLAST had revealed

Figure 4. Stereo diagram of the comparison of unbound CCL3 with CCL3 bound to Evasin-1. The unbound form of CCL3 is shown in red,
the bound form displayed in green.
doi:10.1371/journal.pone.0008514.g004

Structure of Evasin-1
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Figure 5. Close-up of the interactions between Evasin-1 and CCL3. The Evasin-1 is colored in cyan and CCL3 in green. (A) Interaction between
the Thr16-Ser17-Arg18 loop of CCL3 with Evasin-1 (B) Interaction between Phe13 of CCL3 and Phe14 of Evasin-1 (C) Interaction between Phe29 of CCL3
and Trp89 of Evasin-1 (D) 2Fo-fc electron density map, contoured at 1.5s of the interaction of the N-terminal region of CCL3 with Evasin-1.
doi:10.1371/journal.pone.0008514.g005

Structure of Evasin-1
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the absence of any protein with a similar amino acid sequence. We

have recently identified two other chemokine binding proteins

from tick saliva, Evasin-3, a highly selective CXC chemokine

binding protein and Evasin-4, a CC chemokine binding protein,

cloned by cross-linking to CCL5 and CCL11/Eotaxin[30].

Similarly, these proteins have unique sequences, but Evasin-4

has the same pattern of cysteine residues as Evasin-1, suggesting

that these two proteins will share a common fold. The resolution of

the structures of Evasin-1 and Evasin-3[30] has confirmed the

novelty of the structure of these proteins. An analysis of the

secondary structure pattern of Evasin-1 depicted in Figure 2 has

revealed no significant similarities with other known proteins.

Comparison of the Mode of Binding of Evasin-1
Compared to That of Other Chemokine Binding Proteins

Herpes or poxviruses express most soluble chemokine-binding

proteins identified or characterized to date. These proteins are

believed to disrupt chemokine interactions with host cell receptors or

glycosaminoglycans, the latter interaction being required for their

immobilization in the circulation. Among the best characterized of

these viral chemokine-binding proteins are the leporipoxvirus and

orthopoxvirus encoded viral CC chemokine inhibitor (vCCI) family,

which display selectivity towards CC chemokines[31]. These proteins

have been shown to not only have potent anti-chemokine activity in

vitro, but also to display anti-inflammatory activity in vivo [32]. The

binding mode of the small tick-derived Evasin-1 to CCL3 can be

compared to that of a much larger poxvirus-encoded CC chemokine-

binding protein to CCL4, a very close homologue of CCL3, since the

NMR solution structure of the complex has been determined (pdb

entry 2 ffk and 2 fin)[33,34]. The CCL3 and CCL4 sequences in the

complex structures are very similar, with over 60% identity and 70%

similarity, and the structures are very similar, as can be expected, with

the exception of the extreme N-termini of CCL3 and CCL4, with the

main chains displaying an important difference in position between

residues 1 and 10. The N-terminus of CCL4 in the vCCI:CCL4

complex closely resembles that of the uncomplexed crystal structure

of CCL3 (J. Dias, unpublished results), and the important movement

observed around the peptide bond between Pro8-Thr9 and Thr9-

Thr10 of CCL3 in the Evasin-1:CCL3 complex remains unique. The

chemokine-binding proteins are very different, however, in structure

(see Figure 7 ab), size (vCCI is 26 kDa compared to 10.4 kDa for

Evasin-1), and selectivity[31], but they both interact with a similar

region of the chemokine ligand (see Figure 7c). The complexes are

thus also very different in size, shape, and also in buried surface area

(2650 Å2 for the Evasin-1:CCL3 and only 1980 Å2 for the much

larger vCCI:CCL4 complex). Whilst the region of the chemokine that

interacts with the chemokine-binding protein is the same, many of the

specific amino acids involved in the interactions are not. The 6

important hydrogen bonding interactions between CCL3 Thr16-

Ser17-Arg18 and Evasin-1 are not reproduced in the vCCI:CCL4

complex, despite the close sequence similarity of CCL4 with CCL3

(identical except for residue 17, which is an Ala instead of a Ser).

Surprisingly, vCCI does have complementary residues in the vicinity

of CCL4, but the hydrogen bonds would appear to be rather weak

Figure 6. Electrostatic surface complementarity between Evasin-1 and CCL3. (A) The CCL3 molecule is displayed as a cyan-colored ribbon,
while the Evasin-1 is displayed as a molecular surface colored by surface electrostatic potential. (B) The complex in (A) is rotated 180u along a central
vertical axis and the Evasin-1 is displayed as a green ribbon and the CCL3 molecule as a molecular surface colored by surface electrostatic potential.
doi:10.1371/journal.pone.0008514.g006
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(3.2 Å between Asp141 Od2 of vCCI and the Ne of Arg18 of CCL4

and between the Oe1 of Glu143 and the Oc of Thr16 of CCL4). The

b-strand at residues 10-11 of CCL3 induced by binding of Evasin-1 is

not present in the vCCI:CCL4 complex, due to the important

differences in the structure of the N-terminal regions of the two

chemokines. The interesting edge-to-face p-p interaction observed

between Phe13 of CCL3 and Phe14 of Evasin-1 is not present in the

vCCI:CCL4 complex, where the corresponding hydrophobic pocket

is composed, for the most part, of aliphatic hydrophobic side chains.

This is interesting because of the role attributed to the side chain of

Phe13 of CCL4 in receptor binding[35]. The important stacking

interaction between Phe29 of CCL3 and Trp89 of Evasin-1 is not

present in the vCCI:CCL4 complex, where the Tyr14 side chain of

CCL4 is found pointing into solution, and making no contact with

vCCI. It would thus appear that the interactions between the

chemokines with Evasin-1 or vCCI are not conserved.

The other class of virally-encoded chemokine binding proteins

for which a complex structure has been determined is the M3

decoy receptor from murine herpesvirus-68, whose structure with,

and without CCL2, a member of the CC chemokine family has

been determined[36]. The structure of this chemokine-binding

protein is quite different from that of either Evasin-1 or vCCI, as

shown in Figure 7c. The M3 protein is even larger than vCCI

(42 kDa), and appears to be a dimer in solution, the dimer binding

two molecules of chemokine to form a complex with a

stoichiometry of 2:2. The buried solvent accessible surface area

of the complex of approximately 2600 Å2 is similar to that

observed for the Evasin-1:CCL3 complex.

The chemokine that was initially used to determine the structure of

this complex was an obligate monomer version of CCL2, with the

Pro8 mutated to Ala; but the solution of the structure of the complex

containing the wild type CCL2 showed no differences [37]. In both

Figure 7. Stereo diagram comparing the structure of the complexes of CC chemokines with different CC chemokine binding
proteins. (A) Ribbon diagram of the complex of CCL3 with Evasin-1. CCL3 is displayed in cyan and Evasin-1 in green. (B) Ribbon diagram of the
complex of CCL4 with vCCI. CCL4 is displayed in cyan and vCCI in violet, (C) Ribbon diagram of the complex of CCL2 with M3 decoy receptor. CCL4 in
cyan and the M3 decoy receptor in mauve.
doi:10.1371/journal.pone.0008514.g007
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structures, as well as that of the complex with another chemokine,

XCL1, the N-terminal areas of the chemokines were not observed in

the crystal structure. The M3 proteins make no interaction with the

Thr16-Ser17-Arg18 region that is so important in the case of the

CCL3-Evasin-1 complex, and a tyrosine residue in CCL2 replaces

the Phe13 residue in CCL3. It is interesting to note that an edge-to-

face p-p interaction would appear to take place between this Tyr13

and Tyr266 of M3, reinforcing the possibility that this residue plays

an important role in chemokine-receptor interaction. The important

stacking interaction observed between CCL3 Phe29 and Evasin-1

Trp89 is also not observed in the M3:CCL2 complex, since this part

of the chemokine is not in close proximity to the M3 protein.

The examination of these three complexes, all of which contain

similar chemokines of the CC sub-class, highlights the amazingly

different ways in which nature has evolved binding modes to

neutralize chemokines. The most striking difference amongst the

chemokine binding proteins is, of course, their different sizes, and

binding modes. It is interesting to note that they all contain folds that

are unrelated to known protein folds. It would appear that the binding

to chemokine molecules has requirements that cannot be met by the

known classical protein folds commonly found in higher species.

Structural Basis for the Selectivity of Evasin-1
The tick Rhipicephalus sanguineus, also known as the common

brown dog tick, is usually found feeding on dogs but is known to

infest other mammalian species. In view of this broad host range of

it is likely that Evasin-1 is also able to inhibit CCL3 from other

species. We have shown that Evasin-1 is indeed able to bind to

mouse CCL3 with a comparable affinity to that measured for

human CCL3, but binding to CCL3 from other species has not

been tested. It was therefore interesting to determine how similar

the sequence of CCL3 is between species. The amino acid

sequence of CCL3 is remarkably conserved in mammals

(Figure 8a). For example, the Phe29 residue, which makes the

stacking interaction with Trp89 of Evasin-1, is conserved in all

mammalian species. The Thr16-Ser17-Arg18 region of CCL3 is

less well conserved between species. The Arg18 residue is replaced

by lysine in several mammalian species (notably dog), but this is a

conservative substitution that should not affect the selectivity of

Evasin-1, though it may affect the binding affinity. The Thr16

residue is far less well conserved in mammals, being replaced by

substantially different amino acids (Ile, Val, Ala and Tyr). In fact,

this is one of the least well-conserved residues in the mammalian

CCL3 family, and yet would appear to play an important in the

interaction between the two proteins, notably forming a hydrogen

bond with the peptide oxygen of Leu9 of Evasin-1. Ser17 is also

not particularly well conserved throughout the CCL3 family

either, despite its side chain forming several interactions with

Evasin-1. This loop cannot be responsible for the high selectivity

displayed by Evasin-1.

We believed that the solution of the structure of the complex of

Evasin-1 with CCL3 would reveal the reason for the surprising

Figure 8. Amino acid sequence alignments. (A) Alignment of mammalian CCL3 sequences. Fully conserved residues are background colored in
blue, highly conserved (.80% identity amongst the species shown) in dark grey, and poorly conserved (.60% identity) in light grey. (B) Alignment of
chemokines towards CCL3. The blue background identifies amino acids that are identical to CCL3. (C) Amino acid sequences of the chemokine chimera.
doi:10.1371/journal.pone.0008514.g008
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selectivity of the former for the latter. We were therefore surprised

by the fact that modelling the sequence of CCL5 into the structure

of the complexed CCL3 suggested that Evasin-1 should bind this

chemokine, contrary to the experimental results, in which we were

never able to demonstrate CCL5 binding by cross-linking or by

surface plasmon resonance (Fig. 9a). CCL5 has the two

hydrophobic residues in the correct position that could bind to

F14 and W89 of Evasin-1, but no binding to CCL5 was observed

by the different assays we used. However our initial conclusion

that the two ‘‘p-p’’ interactions were the major binding forces

appeared to be incorrect, since the mutation of these hydrophobic

residues to Ala had only a small impact on the affinity for CCL3

(Fig. 9b). It should be noted that the affinity of the WT and the

F14AW89A Evasin-1 proteins was measured on immobilized

chemokine for a direct comparison, which consistently results in

significantly lower affinities (results not shown). Mutation of these

two residues had no impact on kon, but did affect koff, suggesting

that they play a role in the stability of the complex, rather than in

the selectivity of the binding protein for CCL3.

The next surprising finding was that Evasin-1 was capable of

binding a CCL3/CCL5 chimera (see Figure 9), in which the first

10 amino acids at the N- terminus were from CCL3, and the

subsequent 59 are from CCL5, with an affinity similar to the wild-

type CCL3. This was unexpected since the full-length CCL5 did

not show any affinity towards Evasin-1. Furthermore, the opposite

chimera, CCL5/CCL3, did not bind at all, thus illustrating the

importance of the amino terminal region. Moreover, the fact that

the affinity is unchanged for the D4 form of CCL3, the truncated

form found in biological fluids[38] indicates that the selectivity

resides in the 6 residues immediately preceding the CC motif.

These 6 amino acids are, not surprisingly, highly conserved

amongst the CCL3 of different species (Figure 8a). Of the six

amino acids immediately upstream of the CC motif, 4ADTPTA10,

Asp6, Thr7 and Pro8 are extremely highly conserved in all

mammalian species and play an immediately identifiable role in

the structure of the complex; the side chain of Asp6 forming

important hydrogen bond interactions with the side chain of

Arg90 from Evasin-1, the main chain carbonyl of Thr7 by

interacting with the main chain nitrogen of Trp90 of Evasin-1, and

it would thus appear that Evasin-1 recognizes its target chemokine

through this sequence, and subsequently binds the rest of the

protein.

The major difference in the N-terminal amino acid sequence of

CCL5 when compared to CCL3 is the lack of a residue equivalent

to the Pro8 in CCL3. An insertion has to be made in the

alignment of the two sequences, since the residues Asp6 and Thr7

are conserved, and both make important contributions to the

complex interface. The lack of this residue could therefore be

responsible for the lack of affinity of Evasin-1 for CCL5. The Ka

for the CCL3/CCl5 chimera is reduced 3-fold compared to

CCL3, while the Kd is not particularly affected, suggesting that

CCL5 may play a negative role in the binding event, whilst not

unduly influencing the stability of the complex. It is thus probable

that the preferred ligand for Evasin-1 is actually CCL3 in which

the amino terminus serves as the ‘‘address’’ but that Evasin-1 is

capable of binding closely related family members albeit with a

slower on-rate, since the body of the chemokine will compensate

for the remainder of the binding interactions. It should be noted

that these hypotheses are drawn in an attempt to explain the

exquisite and perplexing selectivity of this binding protein and

remain to be substantiated with experimental evidence. However,

this current hypothesis is not supported by the affinity of Evasin-1

towards CCL18, since the sequence of the N-terminus of this

chemokine bears no resemblance to that of CCL3. However,

CCL18 was apparently derived through gene duplication of the

CCL3 gene[39], and whilst the structure of this protein is

unknown, there may be other structural features in CCL18 that

explain its affinity for Evasin-1.

There is evidence that ticks produce different chemokine

binding proteins at different times during the feeding cycle, in

contrast to the more non-selective strategy employed by viruses.

The reason for this is open to speculation, but may be associated

with the fact that ticks harbour a large genome (.16109 bases)

with the potential of encoding multiple CK binding proteins,

unlike viruses, which are limited by much smaller genomes.

Nevertheless it is of interest that although both Evasin-1 and

Evasin-3, which are distinct in terms of structure and sequence, are

both small proteins (,10 kDa) similar in size to protein binding

scaffolds such as single chain camelid antibodies, named

nanobodies[40] or scaffolds such as ankyrins[41,42] etc, that are

increasingly being developed as protein therapeutics. Parasites

such as ticks have apparently developed this strategy before

mankind, and the novelty of this chemokine-binding fold may

reveal features for neutralization of important immunomodulatory

proteins such as chemokines that could help us design improved

biological therapeutics. We are currently investigating the

importance of the different residues in the interaction between

Evasin-1 and CCL3, and the role this plays in the selectivity of

Evasin-1, by site-directed mutagenesis of both partners. Informa-

tion gained from such studies may enable the design of Evasins

with defined chemokine binding specificity that could be

therapeutically useful in inflammatory and infectious diseases,

and cancer.

Material and Methods

Baculovirus Production of Evasin-1
Evasin-1 was expressed in insect cells and purified by

chromatography as described elsewhere[43]. We amplified and

subcloned the full-length Evasin-1 cDNA, including its signal

peptide for secretion, into a pDEST8 expression vector (Invitro-

gen) with a 6-histidine tag sequence at the COOH-terminus.

Spodoptera frugiperda (Sf9) cells were transfected and the recombinant

virus was amplified using standard methods. Evasin-1 was

expressed using the baculovirus system in insect cells (Bac-to-

Bac, Life technologies/Invitrogen). Baculovirus harbouring full

length C-terminal His-tagged Evasin-1 ORF were then used to

infect either Sf9 insect cells in SF900 II medium (Invitrogen), or

Trichoplusia ni (High Five) (Tn5) insect cells in Ex-cell 405 medium

(JRH Biosciences), at 27uC (the yield obtained with Sf9 cells was

10 times lower, so Tn5 cell expression was used for scale-up). For

large-scale production, several 2-L flasks of Tn5 cells were grown

to a density of 2.06106 cells per mL, which were then infected

with recombinant virus at a multiplicity of infection (MOI) of 10.0.

Cultures were allowed to grow for 64 hours post-infection, before

the cells were harvested by centrifugation. The mature protein,

with its signal peptide cleaved, is secreted into the supernatant.

The supernatant was filtered and the volume of the supernatant

was reduced to 500 ml by tangential flow concentration and

dialyzed against 50 mM phosphate buffer pH 7.5, 0.3 M NaCl,

and 5 mM imidazole, and was immediately purified.

In order to obtain non-glycosylated protein, Evasin-1 was

expressed in the presence of tunicamycin, a known inhibitor of N-

linked glycosylation[44]. Tunicamycin (0.2 mg/ml) was added to

the culture media immediately before infection, and the expression

of the protein was followed by Western-blot. The non-glycosylated

protein was purified by methods identical to those used for the

glycosylated form.
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Figure 9. The N terminus of CCL3 is involved in the selectivity of Evasin-1 binding. Upper panels: sensograms obtained for binding
experiments, lower panels: kinetic parameters relative to binding experiments. A) Chemokine binding to immobilized Evasin-1. Sensogram
corresponding to CCL3/CCL5 (green) shows similar binding properties to CCL3 (red) and D4CCL3 (cyan); CCL5/CCL3 (light green), and CCL5 (blue) are
unable to bind, as is CXCL8. nd = not determined; the affinity of the chemokine was too low for accurate measurement. B) Evasin-1 WT (Black) or
F14A W89A (brown) to immobilized CCL3.
doi:10.1371/journal.pone.0008514.g009
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Evasin-1 Protein Purification
Both the glycosylated and non-glycosylated proteins were

soluble and were purified to homogeneity in three steps, using a

similar protocol. The his-tagged protein was captured initially

using an affinity column (Ni-NTA), which was followed by anionic

exchange (Q resource) and finally gel filtration (Superdex 100) on

a Pharmacia FPLC system. The final sample was concentrated up

to 10 mg/ml, in the final buffer (100 mM Tris-HCl, 100 mM

NaCl, pH 7.5) ready for crystallization purposes. The homogene-

ity of the sample was followed through all steps of the purification

by SDS-PAGE.

The glycosylated protein was heterogeneous; presenting a

smeared band in SDS-PAGE, corresponding to different species

of glycosylated protein, which was confirmed by isoelectric

focusing.

The non-glycosylated protein showed a single band on SDS-

PAGE, but the isoelectric focusing revealed two major bands,

which were separated in the anionic exchange (Q-Resource) step.

The two fractions were analysed by N-terminal sequencing and

mass spectrometry, which revealed that they had molecular masses

of 11286 Da and 11362 Da, respectively. The first fraction

(pI = 6.0), which corresponded to the mass of the non-glycosylated

protein, yielded crystals, while the second fraction (pI = 5.8) with

an extra 76 Da did not crystallize.

Crystallization and Structure Determination of the
Non-Glycosylated Evasin-1

Glycosylated Evasin-1 was submitted to deglycosylation studies

using different endoglycosidases (Endoglycosydase Hf, PNGaseF –

Peptide-N-Glycosydase F from New England Biolabs), and the

extent of digestion was followed through SDS-PAGE. After

deglycosylation the protein was re-purified and crystallization

was attempted. All the crystallization attempts using the

enzymatically de-glycosylated Evasin-1 produced only microcrys-

tals. We therefore decided to express the Evasin-1 in Tn5 cells in

the presence of tunicamycin, a N-glycosylation inhibitor [44].

Crystals of non-glycosylated Evasin-1 were obtained by vapour

diffusion, using hanging drops, in the presence of 3% PEG 4K,

0.2 M (NH4)2SO4 and 10% methylpentanodiol (MPD). These

crystals grow in one week at room temperature up to a maximum

size of 0.360.360.3 mm3. The crystals belong to the space group

P212121 with unit-cell dimensions of a = 39.60 Å, b = 46.16 Å and

c = 99.59 Å. The solvent content is approximately 39%, with two

molecules of Evasin-1 per asymmetric unit (Mathews, 1968).

Heavy atom derivatives were screened at different concentrations

and with different soaking times, and the most successful

derivatives were prepared using 5 mM K2PtCl4 (24 hours) and

5 mM AuKCl4 (24 hours). Upon reaction with the heavy atoms,

the crystal diffraction quality decreased significantly presenting

severe anisomorphism and anisotropy. All datasets were collected

at the X06SA-PXI beamline of the Swiss Light Source (SLS) at the

Paul Scherrer Institute (PSI) in Villigen (Switzerland).

Data were indexed and processed using DENZO and

SCALEPACK from the HKL package[45]. Initial heavy atom

positions were determined by Patterson methods using

SHELX[46] and further refined with SHARP[47]. The quality

of the initial electron density map was significantly improved by

solvent flattening using SOLOMON[48] through the interface in

autoSHARP [49]. The results of the phasing calculations are

summarized in Table S2.

The initial model was traced with ARP-WARP[50], with 77 out

of 200 residues being assigned to the electron density. For

graphical interpretation of electron density, we used the software

packages O[51], COOT[52] and MAPMAN BONES[53] for the

initial electron-density skeletonisation. The initial model was

improved by visual inspection and model building with COOT

[52]. The model was refined to 1.70 Å resolution using CNX[26],

with a final R-value of 22.6% and free-Rvalue of 26.9 (5% test set)

using the parameter set of Engh and Huber [54]. The data

processing of the high resolution data set and refinement statistics

are summarised in Table S3. We have found two monomers (A/B)

in the asymmetric unit corresponding to a solvent content of

39.0% (VM = 2.02 Å3 Da21) [25]. The final refined atomic model

comprises residues 5–91 of monomer A and residues 10–89 for

monomer B, with the missing residues not observed in the electron

density (comprising the N-terminal and the C-terminal 6-his tag).

Crystallization and Structure Determination of the
Glycosylated Evasin-1

The first crystals of glycosylated Evasin-1 produced in Tn5 cells

were obtained in sitting drops vapour diffusion screenings using

the 96 well Crystal Screen HT from Hampton Research.

Conditions containing 30% polyethylene glycol (PEG) 4K or

PEG 8K and 0.2 M (NH4)2SO4 produced microcrystals. After

optimisation hexagonal rod shaped crystals grow up to maximum

dimensions of 0.3–0.8 mm in 20 days in 18% PEG 4K and 0.4 M

AS, or 10 days in 17% PEG 4K, 0.3 M (NH4)2SO4 and 3%

dioxane. These crystals belong to the space group P31,221 with

unit cell a = b = 116.69 Å, c = 58.82 Å, and diffracted up to

3.75 Å using synchrotron radiation. Using a different protein

preparation expressed in Sf9 cells, it was possible to obtain cubic

pyramid shaped crystals in 23% PEG 4K and 0.3 M (NH4)2SO4.

These crystals grow up to 0.260.260.2 mm3 and a complete data

set was obtained up to 2.70 Å using synchrotron radiation. These

crystals belong to the space group P212121, with unit cell

a = 68.70 Å, b = 70.49 Å, c = 103.82 Å. The crystal structure of

the glycosylated version of Evasin-1 was solved later by molecular

replacement in AMORE[55] using the non-glycosylated Evasin-1

as a search model. We have found three monomers in the

asymmetric unit corresponding to a solvent content of 67%

(Mathews, 1968). The model was built using COOT[52] and

refined against the 2.70 Å resolution data with CNX[26], with a

final R-value of 28.5% and with free-R value of 33.9 (5% test set).

The data processing and refinement statistics are summarised in

Table S4.

Crystallization and Structure Determination of the
Complex between Evasin-1 and CCL3

The human chemokine CCL3 variant DAla1-CCL3 (A10T)

lacking the first alanine residue and presenting the mutation

A10T[56] was produced in E. coli BL21 (DE3), and it was

expressed and purified as described[57].

The complex between the non-glycosylated Evasin-1 and CCL3

was prepared by incubating Evasin-1 overnight at 4uC with an

excess of CCL3, in a molar ratio of 1:2.5, which was then captured

on an (Ni-NTA) affinity column. Complex formation was followed

by gel filtration analysis (Superose 12) of the peak fractions and

SDS-PAGE, and pooled according to homogeneity of the sample.

The fraction containing the complex was then concentrated to

10 mg/ml in 25 mM Tris-HCl pH 8.0, 100 mM NaCl. Crystals

of the complex were obtained at room temperature by vapour

diffusion, using sitting drops, in the presence of 24% PEG 3350,

0.2 M ammonium sulphate and 0.1 M HEPES pH 8.1. The

crystals appear in one month and continue to grow for another

month up to a maximum size of 0.260.260.2 mm3. The crystals

belong to the space group P4332 with unit-cell dimensions of

a = b = c = 104.384 Å. The solvent content is approximately
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50.6%, with one 1:1 heterodimeric complex of Evasin-1 /CCL3

per asymmetric unit[25].

The Evasin-1 position was located by molecular replacement

with AMORE[55], using the previously determined Evasin-1 as a

search model. The initial molecular replacement phases produced

electron density maps of very good quality where the missing

CCL3 monomer could be identified by visual inspection,

confirming that the correct molecular replacement solution was

found. The complex Evasin-1 and CCL3 model was traced using

ARP-WARP[50], with 149 out of 169 residues being docked

initially to the electron density. After visual inspection with

COOT[52] and refinement with CNX[26], the final model has an

R-value of 24.2 and a free R-value of 29.9 (5% test set) for all 30–

1.90 Å data. The data processing and refinement statistics are

summarised in the Table 1. The refined atomic model of the

Evasin-1 and CCL3 complex comprises the residues 1–100 of

Evasin-1 and 2–67 of CCL3 with the last 2 residues from the C-

terminal of CCL3 not being observed.

Cloning, Expression and Purification of Chemokine the
Chimera CCL3/CXCL8 and CCL5/CCL3

The chemokine chimeras were produced essentially as described

elsewhere[58], subcloned into a pET30a expression vector, the

protein expressed in E. coli BL21(DE3) and the protein purified

following standard chemokine techniques[59].

In the first PCR step, the core of CXCL8 for CCL3/CXCL8 or

CCL3 for CCL5/CCL3 were amplified to obtain the sequence of

the chemokine lacking its N terminus sequence up to the CXC or

CC motif, replaced by the five last N terminal amino acids CCL3

or CCL5. The second PCR step generated the full sequence of the

N terminus of CCL3 or CCL5. After solubilisation of the inclusion

bodies in 6 M guanidine, both CCL3/CXCL8 or CCL5/CCL3

protein solutions were directly renatured by dropwise dilution at

4uC into 0.1 M Tris-HCl pH 8.0 containing 0.1 mM reduced

glutathione and 0.01 mM oxidized glutathione, to obtain a final

protein concentration of 50 mg/ml. In the case of the CCL5/

CCL3, the initiating methionine was retained when the protein is

expressed in E.coli and was subsequently removed by methionine

aminopetidase (MAP) (PeproTech) digestion. CCL5/CCL3 was

suspended at 1 mg/ml in 35 mM Tris/HCl pH 8, the MAP was

then added at a ratio enzyme: substrate of 1:19250 (w:w) and the

digestion carried out for 24 h at 37uC. The digested protein was

then purified on an analytic RP-HPLC as described previously,

quantified by UV at 280 nM, aliquoted and lyophilised.

Surface Plasmon Resonance Analyses
Real-time biomolecular interaction analyses were performed

using a BIAcore 3000 surface plasmon resonance (SPR) system.

Chemokine binding analyses were performed on immobilized

Evasin-1. Evasin-1 was suspended at 50 mg/ml in 10 mM sodium

acetate buffer pH 4.5 and directly immobilized on a CM4 chip

(Biacore) by a standard amine coupling chemistry with the Biacore

Amine coupling kit (Biacore) according to manufacturer’s

instructions, to reach a level of 300–400 response units (RU)

using the Biacore3000 Wizard software. A blank cell was prepared

as a control with the chemical coupling without any added protein.

Experiments were performed at 25uC and 30 ml/min using HBS-P

running buffer (0.01 M HEPES pH 7.4, 0.15 M NaCl and

0.005% surfactant P20) (Biacore). Chemokines were suspended

at 0.1 mg/ml in running buffer and for binding experiments and

all protein solutions were filtered through a 0.22 mm filter. The

injection time was 3 min followed by a dissociation time of

2.5 min after injection. The chip was regenerated using 50 mM

Glycine buffer, pH 2 for 30 s. For each experiment, chemokines

were injected in triplicate in random order.

For Evasin-1 WT and F14A W89A binding on immobilized

CCL3, the same procedures were applied with the following

changes: CCL3 was suspended at 25 mg/ml in 10 mM sodium

acetate buffer pH 4 and immobilized on the chip and Evasin-1

WT and F14A W89A were suspended at 1 mg/ml in running

buffer for binding experiments.

For the kinetic experiments, 6 dilutions of chemokines or

Evasin-1 WT and F14A W89A were prepared in running buffer,

filtered through a 0.22 mm filter, and injected over the

experimental and blank flow cells. The injection time was 3 min

followed by a dissociation time of 15 min and the chip was

regenerated using 50 mM Glycine pH 2 buffer for 30 s. Again,

each chemokine or Evasin-1 WT and F14A W89A dilution was

injected in triplicate in a random order.

For the analysis, the sensograms from the blank cell, in addition

to the sensograms obtained with the running buffer alone were

subtracted from the binding to remove the system noise. For the

kinetics, the association (ka) and the dissociation (kd) values were

determined simultaneously by globally fitting sensograms for an

entire range of chemokine concentrations according to the

langmuı̈r-fitting model. The apparent equilibrium dissociation

constants (Kd) were determined from the mean kinetics values with

the equation: Kd = kd/ka.

Table 1. Summary of data collection and refinement statistics
for the complex.

Data collection Complex

Space group P4332

Cell parameters 104.38

Wavelength (Å) 0.976

Resolution (Å) 30.00–1.9

Total observations 649696

Unique reflections 15897

I/s 44.7 (15.3)

Rsym (%) 8.4 (37.3)

Completeness (%) 99.8 (100.0)

Redundancy 40.9

Refinement statistics

Rcryst 24.2

Rfree 29.9

Number of molecules in asymmetric unit 1 heterodimer (A/B)

Number of protein atoms (A/B) 785/524

Number of solvent atoms/Ni atoms 223/3

Rmsd Bond length (Å) 0.004

Rmsd Bond angles (degrees) 0.88

Average B factors

Protein atoms (A/B) (Å2) 31.7/33.3

Solvent molecules/Ni atoms (Å2) 51.2/33.5

Ramachandran plot

Most favored/additional (%) 89.4/8.5

Generous/disallowed (%) 1.4/0.7

doi:10.1371/journal.pone.0008514.t001
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Supporting Information

Table S1 List of the residues at the interface of the complex and

their main interactions. (A) residues from Evasin-1, and (B)

residues from CCL3.

Found at: doi:10.1371/journal.pone.0008514.s001 (0.01 MB

DOC)

Table S2 Data collection and MIRAS Phasing statistics

(SHARP)

Found at: doi:10.1371/journal.pone.0008514.s002 (0.01 MB

DOC)

Table S3 Summary of data collection and refinement statistics

for the native dataset 2 of Evasin-1

Found at: doi:10.1371/journal.pone.0008514.s003 (0.01 MB

DOC)

Table S4 Summary of data collection and refinement statistics

for the glycosylated Evasin-1

Found at: doi:10.1371/journal.pone.0008514.s004 (0.01 MB

DOC)
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