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Dynamics of online hate 
and misinformation
Matteo Cinelli1, Andraž Pelicon2,3, Igor Mozetič2, Walter Quattrociocchi4, 
Petra Kralj Novak2 & Fabiana Zollo1*

Online debates are often characterised by extreme polarisation and heated discussions among 
users. The presence of hate speech online is becoming increasingly problematic, making necessary 
the development of appropriate countermeasures. In this work, we perform hate speech detection 
on a corpus of more than one million comments on YouTube videos through a machine learning 
model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there 
is no evidence of the presence of “pure haters”, meant as active users posting exclusively hateful 
comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed 
towards one of the two categories of video channels (questionable, reliable) are more prone to use 
inappropriate, violent, or hateful language within their opponents’ community. Interestingly, users 
loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find 
that the overall toxicity of the discussion increases with its length, measured both in terms of the 
number of comments and time. Our results show that, coherently with Godwin’s law, online debates 
tend to degenerate towards increasingly toxic exchanges of views.

Public debates on social media platforms are often heated and polarised1–3. Back in the 90s, Mike Godwin coined 
a theorem, today known as Godwin’s law, stating that “As an online discussion grows longer, the probability of 
a comparison involving Nazis or Hitler approaches to one”. More recently, with the advent of social media, an 
increasing number of people is reporting exposure to online hate speech4, leading institutions and online plat-
forms to investigate possible solutions and countermeasures5. To prevent and counter the spread of hate speech 
online, for example, the European Commission agreed with Facebook, Microsoft, Twitter, YouTube, Instagram, 
Snapchat, Dailymotion, Jeuxvideo.com, and TikTok on a “Code of conduct on countering illegal hate speech 
online”6. In addition to fuelling the toxicity of the online debate, hate speech may have severe offline conse-
quences. Some researchers hypothesised a causal link between online hate and offline violence7–9. Furthermore, 
there is empirical evidence that online hate may induce fear of offline repercussions10. However, the detection 
and contrast of hate speech is complicated. There are still ambiguities in the very definition of hate speech, with 
academic and relevant stakeholders providing their own interpretations4, including social media companies such 
as Facebook11, Twitter12, and YouTube13.

We use the term “hate speech” to cover whole spectrum of language used in online debates, from normal, 
acceptable to the extreme, inciting violence. On the extreme end, violent speech covers all forms of expression 
which spread, incite, promote or justify racial hatred, xenophobia, antisemitism or other forms of hatred based 
on intolerance, including: intolerance expressed by aggressive nationalism and ethnocentrism, discrimination 
and hostility against minorities, migrants and people of immigrant origin14. Less extreme forms of unacceptable 
speech include inappropriate (e.g., profanity) and offensive language (e.g., dehumanisation, offensive remarks), 
which is not illegal, but deteriorates public discourse and can lead to a more radicalised society.

In this work, we analyse a corpus of more than one million comments on Italian YouTube videos related 
to COVID-19 to unveil the dynamics and trends of online hate. First, we manually annotate a large corpus of 
YouTube comments for hate speech, and train and fine-tune a hate speech deep learning model to accurately 
detect it. Then, we apply the model to the entire corpus, aiming to characterise the behaviour of users producing 
hate, and shed light on the (possible) relationship between the consumption of misinformation and usage of hate 
and toxic language. The reason for performing hate speech detection on the Italian language is two-fold: First, 
Italy was one of the countries most affected by the COVID-19 pandemic and especially by the early application 
of non-pharmaceutical interventions (strict lockdown happened on March 9, 2020). Such an event, by forc-
ing people at home, increased the internet use and was likely to exacerbate the public debate and foment hate 
speech against specific targets such as the government and politicians. Second, Italian is a less studied language 
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in comparison to English or German15 and, to the best of our knowledge, this is the first study to investigate hate 
speech in Italian on YouTube.

This work advances the current literature at different levels. There is a large body of literature about commu-
nity-level hate speech16–18. However, less is known about the behavioural features of users using hate speech on 
mainstream social media platforms, with few recent exceptions for Twitter19–21 and Gab18. Furthermore, to our 
knowledge, the relationship between online hate and misinformation is yet to be explored. In this paper, we study 
hate speech with respect to a controversial and heated topic, i.e., COVID-19, which has been already analysed 
in terms of sinophobic attitudes22. We relax the assumption behind many community-based studies, for which 
every post produced within an online community hosting haters is hate17,23. Instead, to cope with a classification 
task that involves more than one million comments, we annotate a high-quality dataset of more than 70,000 
YouTube comments, which is used for training and evaluating a deep learning model. The model is standard in 
the state-of-the-art and builds on a wide strand of literature using machine learning24–26 and deep learning27–29 
for automatic hate speech detection via text classification. Moreover, we distinguish YouTube channels into two 
categories: questionable, i.e., channels likely to disseminate misinformation, and reliable. This categorisation 
is in line with previous studies on the spreading of misinformation30–32, and builds on a list of misinformation 
sources provided by the Italian Communications Regulatory Authority (AGCOM).

Our results show that hate speech on YouTube is slightly more present than on other social media 
platforms20,21,33 and that there are no significant differences between the proportions of hate speech detected 
in comments on videos from questionable and reliable channels. We also note that hate speech does not show 
specific temporal patterns, even on questionable channels. Interestingly, we do not find evidence of “pure haters”, 
intended as active users posting exclusively hateful comments. Still, we note that users skewed towards one of 
the two categories of video channels (questionable, reliable) are more prone to use toxic language—i.e., inap-
propriate, violent, or hateful—within their opponents community. Interestingly, users skewed towards reliable 
content use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of 
the discussion increases with its length measured both in terms of the number of comments and time. In other 
words, online debates tend to degenerate towards increasingly toxic exchanges of views, in line with Godwin’s law.

Methods
Data collection.  We collected about 1.3M comments posted by more than 345,000 users on 30,000 videos 
from 7000 channels on YouTube. According to summary statistics about YouTube by Statista34, the number of 
YouTube users in 2019 in Italy was about 24 millions (roughly one third of the Italian population). By applying 
1% empirical law, for which in an Internet community 99% of the participants just visualise content (the so-
called lurkers), while only 1% of the users actively participate in the debate (e.g., interacting with content, post-
ing information, commenting), we can evaluate the representativeness of our dataset. Therefore, we can expect 
that, out of 24 millions users on the platform, a population of 240,000 users usually interact with the content. 
Taking into account these estimates, the size of our sample (345,000) seems to be appropriate, especially when 
considering that we are focusing on a specific topic (COVID-19) and not on the whole content of the platform. 
These considerations are also consistent with another statistic of our dataset, where the videos show an average 
of 5M daily views (with peaks at 20M).

Using the official YouTube Data API, we performed a keyword search for videos that matched a list of 
keywords, i.e., {coronavirus, nCov, corona virus, corona-virus, covid, SARS-CoV}. An in-depth search was then 
performed by crawling the network of related videos as provided by the YouTube algorithm. Then, we filtered 
the videos that matched our set of keywords in the title or description from the gathered collection. Finally, we 
collected the comments received by these videos. The title and the description of each video, as well as the com-
ments, are in Italian according to the Google’s cld3 language detection service. The set of videos covers the time 
window that goes from 01/12/2019 to 21/04/2020, while the set of comments ranges in the time window that 
goes from 15/01/2020 to 15/06/2020.

We assigned a binary label to each YouTube channel to distinguish between two categories: questionable and 
reliable. A questionable YouTube channel is a channel producing unverified and false content or directly associ-
ated to a news outlet that failed multiple fact checks performed by independent fact checking agencies. The list 
of YouTube channels labelled as questionable was provided by the Italian Communications Regulatory Authority 
(AGCOM). The remainder of the channels were labelled as reliable. Table 1 shows a breakdown of the dataset.

Table 1.   Breakdown of YouTube data.

Channels Videos Comments

Category

Reliable
7140 29,975 1,170,461

99.7 % 98.5 % 91.8 %

Questionable
17 464 103,475

0.3 % 1.5 % 8.2 %

Total
7157 30,436 1,273,930

100 % 100 % 100 %
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Hate speech model.  Our aim is to create a state-of-the-art hate speech model, by deep learning methods. 
We first produce two high-quality manually annotated datasets for training and evaluating the model. The train-
ing set is intentionally selected to contain as much hate speech vocabulary as possible, while the evaluation set 
is unbiased, to assure proper model evaluation. We then apply the model to all the collected data and study the 
relationship between the hate speech phenomenon and misinformation.

Deep learning models based on Transformer architecture outperform other approaches to automated hate 
speech detection, as evident from recent shared tasks in the SemEval-2019 evaluation campaign: HatEval28 and 
OffensEval35, as well as OffensEval 202029. The central reference for hate speech detection for Italian is the report 
on the EVALITA 2018 hate speech detection task36. Furthermore, in37 authors modelled the hate speech task 
using the Italian pre-trained language model AlBERTo, achieving state-of-the-art results on Facebook and Twit-
ter datasets. We trained a new hate speech detection model for Italian following the state-of-the-art approach37 
on our four-class hate speech detection task (see sections “Data selection and annotation” and “Classification” 
for detailed information).

Data selection and annotation.  The comments to be annotated were sampled from the Italian YouTube com-
ments on videos about the COVID-19 pandemic in the period from January 2020 to May 2020. Two sets were 
annotated: a hate-speech-rich training set with 59,870 comments and an unbiased evaluation set with 10,536 
comments.

To get a training set that is rich with hate speech, we annotated all the comments with a (basic) hate speech 
classifier (machine learning model) that assigns a score between -3 (hateful) and +3 (normal). The basic classifier 
was trained on a publicly available dataset of Italian hate speech against immigrants38. Even though this basic 
model is not very accurate, its performance is better than random and we used its result for selecting the train-
ing data to be annotated and later used for training our deep learning model. For a realistic evaluation scenario, 
threads (i.e., all the comments to the video) were kept intact during the annotation procedure, yet individual 
comments were annotated.

The threads (with comments) to be annotated for the training set were selected according to the following 
criteria: thread length (the number of comments in a thread between 10 and 500), and hatefulness (at least 5% 
of hateful comments according to our basic classifier). The application of these criteria resulted in 1168 threads 
(VideoIds) and 59,870 comments. The evaluation set was selected from May 2020 data as a random (unbiased) 
sample of 151 threads (VideosIds) with 10,543 comments.

Our hate speech annotation schema is adapted from OLID39 and FRENK40. We differentiate between the 
following speech types:

•	 Acceptable (non hate speech);
•	 Inappropriate (the comment contains terms that are obscene or vulgar, but the text is not directed to any 

person or group specifically);
•	 Offensive (the comment includes offensive generalisation, contempt, dehumanisation, or indirect offensive 

remarks);
•	 Violent (the comment’s author threatens, indulges, desires or calls for (physical) violence against a target; it 

also includes calling for, denying or glorifying war crimes and crimes against humanity).

The data was split among eight contracted annotators. Each comment was annotated twice by two different 
annotators. The splitting procedure was optimised to get approximately equal overlap (in the number of com-
ments) between each pair of annotators for each dataset. The annotators were given clear annotation guidelines, 
a training session and a test on a small set to evaluate their understanding of the task and their commitment 
before starting the annotation procedure. Furthermore, the annotation progress was closely monitored in terms 
of the annotator agreement to ensure high data quality.

The annotation results for the training and evaluation sets are summarised in Fig. 1. The annotator agree-
ment in terms of Krippendorff ’s Alpha 41 and accuracy (i.e., percentage of agreement) on both the training and 
the evaluation sets is presented in Table 2. The agreement results indicate that the annotation task is difficult 
and ambiguous, as the annotators agree on the label in only about 80% of the cases. Since the class distribution 
is very unbalanced, accuracy is not the most appropriate measure of agreement. Alpha  is a better measure of 

(a) Training set (b) Evaluation set

Figure 1.   The distribution of the four hate speech labels in the manually annotated training (a) and evaluation 
(b) sets. The training set is intentionally biased to contain more hate speech while the evaluation set is unbiased.
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agreement as it accounts for the agreement by chance. Our agreement scores in terms of Alpha  are comparable 
to those of other high-quality datasets, like21,42.

Classification.  A state-of-the-art neural model based on Transformer language models was trained to distin-
guish between the four hate speech classes. We use a language model based on the BERT architecture43 which 
consists of 12 stacked Transformer blocks with 12 attention heads each. We attach a linear layer with a softmax 
activation function at the output of these layers to serve as the classification layer. As input to the classifier, we 
take the representation of the special [CLS] token from the last layer of the language model. The whole model is 
jointly trained on the downstream task of four-class hate speech detection. We used AlBERTo44, a BERT-based 
language model pre-trained on a collection of tweets in the Italian language. According to previous work43, fine-
tuning of the neural models was performed end-to-end. We used the Adam optimizer with the learning rate of 
2e − 5 and learning rate warmup over the first 10% of the training instances. We used weight decay set to 0.01 for 
regularization. The model was trained for 3 epochs with batch size 32. We performed the training of the models 
using the HuggingFace Transformers library45.

The tuning of our models was performed by cross validation on the training set, while the final evaluation was 
performed on the separate out-of-sample evaluation set. In our setup, each data instance (YouTube comment) 
is labelled twice, possibly with inconsistent labels. To avoid data leakage between training and testing splits in 
cross validation, we use 8-fold cross validation where in each fold we use all the comments annotated by one 
annotator as a test set. We report the performance of the trained models using the same measures as are used 
for the annotator agreement: Krippendorff ’s Alpha-reliability ( Alpha)41, accuracy ( Acc ), and the F1  score for 
individual classes, on both the training and the evaluation datasets. The validation results are reported in Table 3. 
The coincidence matrices for the evaluation set, used to compute all the scores of the annotator agreements and 
the model performance, are reported in Table S8 of SI.

The performance of our model is comparable to the annotator agreement in terms of Krippendorff ’s Alpha  
and accuracy ( Acc ), providing evidence for its high quality. The model achieves the annotator agreement both 
on the training set in the cross validation setting, as well as on the evaluation set. This shows the ability of the 
model to generalise well on the yet unseen, out-of-sample evaluation data. We observe similar results in terms 
of F1  scores for individual classes. The only noticeable drop in performance compared to the annotators is the 
performance on the minority (Violent) class. We attribute this drop to the very low amount of data available for 
the Violent class compared to the other classes, however, the performance is still reasonable. We therefore apply 
our hate speech detection model to the set of 1.3M comments and report the findings.

Results and discussion
Relationship between hate speech and misinformation.  We start our analysis examining the dis-
tribution of the different speech types on both reliable and questionable YouTube channels. Figure 2 shows the 
cumulative distribution of comments, total and per type, by channel. The x-axis shows the YouTube channels 
ranked by their total number of comments, while the y-axis shows the total number of comments in the data-
set (both quantities are reported as proportions). We observe that the distribution of comments is Pareto-like; 
indeed, the first 10% of channels (dotted vertical line) covers about 90% of the total number of comments. Such 

Table 2.   The annotation results for the training and evaluation datasets: date range, size (no. of comments 
annotated twice), and the annotator agreement in terms of interval Krippendorff ’s Alpha  and accuracy ( Acc).

Dataset Dates Size Alpha Acc

Training Jan.–Apr. 2020 59,870 0.59 0.77

Evaluation May 2020 10,543 0.56 0.82

Table 3.   Performance of our hate speech classification model on the training set (cross validation results) and 
the out-of-sample evaluation set, in comparison to the inter-annotator agreement on the same datasets. The 
overall performance is measured by Krippendorff ’s Alpha and accuracy ( Acc ), and performance for individual 
classes by F1 . Note that the performance of our model is comparable to the annotator agreement, except for the 
Violent class, indicated by lower F1.

Performance and agreement

Overall Acceptable Inappropriate Offensive Violent

Alpha Acc F1 F1 F1 F1

Model

Training 0.59 0.79 0.87 0.54 0.64 0.52

Evaluation 0.55 0.84 0.91 0.59 0.58 0.39

Inter-annotator

Training 0.59 0.77 0.86 0.52 0.63 0.63

Evaluation 0.56 0.82 0.90 0.53 0.57 0.55
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a 10 to 90 percent relationship is even stronger when comments are analysed according to their types; indeed, the 
heterogeneity of the distribution decreases going from violent to acceptable comments. It is also worth noting 
that, as indicated by the secondary y-axis of Fig. 2, the first 10% of channels with most comments also contain 
about 50% of all the questionable channels in our list, thus indicating a relatively high popularity of these chan-
nels. In addition, questionable channels are about 0.25% of the total number of channels that received at least one 
comment and, despite being such a minority, they cover ∼ 8% of the total number of comments (with the follow-
ing partitioning: 8% acceptable; 7% inappropriate; 9% offensive; 9% violent) and the 1.3% of the total number of 
videos, thus highlighting a disproportion between their activity and popularity.

Figure 3 shows the proportion of comments by label and channel types, and their trend over time. In panel (a) 
we display the overall proportion of comment types, noting that the majority of comments is acceptable, followed 
by offensive, inappropriate, and violent types, all relatively stable over time (see panel (b)). It is worth remark-
ing that, despite the proportion of hate speech found in the dataset is consistent with—although slightly higher 
than—previous studies20,33, the presence of even a limited number of hateful comments is in direct conflict with 
the platform’s policy against hate speech. Moreover, we do not observe relevant differences between questionable 
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(c) and reliable (d) YouTube channels. Panel b displays four dashed lines in correspondence of events of 
paramount relevance for the year 2020 in Italy. The first line is placed on 30/01/2020 when the first two cases of 
COVID-19 were detected in Italy. The second line is placed on 09/03/2020 when the Prime Minister enforced 
the first lockdown to the whole nation. The third line is placed on 10/04/2020 when the Prime Minister 
communicated to the nation an extension of the lockdown until May the 3rd. The fourth line is placed on 
04/05/2020 when the “phase 2” (i.e., the suspension of the full lockdown) began. Interestingly, we note a higher 
share of Acceptable comments between the second and third lines, that is during the lockdown, perhaps due to 
positive messages and encouragement among people. Instead, as a possible consequence of the extension of the 
lockdown, we note a lower share of Acceptable comments right after the third line.
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(panel (c)) and reliable (panel (d)) channels, providing a first piece of evidence in favour of a moderate (if not 
absent) relationship between online hate and misinformation.

Now we aim at understanding whether hateful comments display a typical (technically, the average) time of 
appearance. This kind of information can indeed be crucial for the implementation of timely moderation efforts. 
More specifically, our goal is to discover whether 1) different speech types have typical delays and 2) any differ-
ence holds between comments on videos disseminated by questionable and reliable channels. To this aim, we 
define the comment delay as the time elapsed between the posting time of the video and that of the comment 
(in hours). Figure 4 displays the comment delays for the four types of hate speech and for questionable and reli-
able channels. Looking at panel (a) of Fig. 4, we first note that all comments share approximately the same delay 
regardless of their type. Indeed, the distributions of the comment delay are roughly log-normal with a long aver-
age delay ranging from 120 h in the case of acceptable comments to 128 h in the case of violent comments (the 
comment delay is reduced by ∼ 75% when removing observations in the right tail of the distribution as shown 
in Table S1 of SI). For what concerns comments on videos published by questionable and reliable channels, we 
do not find strong differences between typical delays of speech types within the two domains. In the case of 
questionable channels, we find that comment delays range from 66 to 42 h, while for reliable channels they range 
from 125 to 136 h (as reported in SI). To summarise, we find a discrepancy in users’ responsiveness to the two 
types of content, with comments on questionable videos having a much lower typical delay than those on reliable 
videos. In addition, comments typical delays differ between reliable and questionable channels. In particular, on 
questionable channels toxic comments appear first and faster than acceptable ones, following decreasing levels of 
toxicity (violent → offensive → inappropriate). In other words, violent comments on questionable content display 
the shortest typical delay, followed by offensive, inappropriate, and acceptable comments. Conversely, on reliable 
channels the shortest typical delay is observed for appropriate comments, followed by violent, unacceptable, and 
offensive comments (for details refer to SI).

Users’ behaviour and misinformation.  In line with other social media platforms30,46, users activity on 
YouTube follows a heavy tailed distribution, i.e., the majority of users post few comments, while a small minority 
is hyperactive (see Fig. S1 of SI for details). Now we want to investigate whether a systematic tendency towards 
offences and hate can be observed for some (category of) users. In Fig. 5, each vertex of the square represents one 
of the four speech types (acceptable—A; inappropriate—I; offensive—O; violent—V). Each dot is a user whose 
position in the square depends on the fraction of his/her comments for each category. As an example, a user 
posting only acceptable comments will be located exactly on the vertex A (i.e., in (0,0)), while a user that splits 
his/her activity evenly between acceptable and inappropriate comments will be located in the middle of the edge 
connecting the vertices A and I. Similarly, a user posting only violent comments will be located exactly on the 
vertex V (i.e., in (1,0)). More formally, to shrink the 4-dimensional space deriving by the four labels that fully 
characterise the activity of each user, we associate a user j the following coordinates in a 2-dimensional space:

where aj , ij , oj , vj are the proportions, respectively, of acceptable, inappropriate, offensive, and violent comments 
posted by user j over his/her total activity cj.

Although most of the users leave only or mostly acceptable comments, there are also several users ranging 
across categories (i.e., located away from the vertices of the square in Fig. 5). Interestingly, there is no evidence 
of “pure haters”, i.e., active users exclusively using hateful language, that are only 0.3% of the total number of 
users. Indeed, while there are users posting only or mostly violent comments (see Fig. 5a), their overall activity 

(1)xj = aj ∗ 0 + ij ∗ 0 + oj ∗ 1 + vj ∗ 1

(2)yj = aj ∗ 0 + ij ∗ 1 + oj ∗ 1 + vj ∗ 0
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is very low and below five comments (see Fig. 5b). A similar situation is observed for offenders, i.e., active users 
posting only offending comments. Although we cannot exclude that moderation efforts put in place by YouTube 
(if any) might partially impact these results, the absence of pure haters and offenders highlights that hate speech 
is rarely only an issue of specific categories of users. Rather, it seems that regular users are occasionally triggered 
by external factors. To rule out possible confounding factors (note that users located in the centre of the square 
could display a balanced activity between different pairs of comment categories) we repeated the analysis exclud-
ing the category I (i.e., inappropriate). The results are provided in SI and confirm what we observe in Fig. 5.

We now aim at unveiling the relationship between users behaviour in terms of commenting patterns and their 
activity with respect to questionable and reliable channels. Since misinformation is often associated with the 
diffusion of polarising content which plays on one’s fear and could fuel anger, frustration and hate47–49, our intent 
is to understand whether users more loyal to questionable content are also more prone to use a toxic language in 
their comments. Thus, we define the leaning l of a user j as the fraction of his/her activity spent in commenting 
videos posted by questionable channels, i.e.,

where 
∑cj

i=1 qj is the number of comments on videos from questionable channels posted by the user j and cj is 
the activity of user j. Similarly, for each user j we compute the fraction of unacceptable comments a as:

where aj is the fraction of acceptable comments posted by user j.
In Fig. 6a, we compare users’ leaning lj against the fraction of unacceptable comments aj . As expected, we may 

observe two peaks (of different magnitude) in correspondence of extreme values of leaning ( lj ∼ 0 and lj ∼ 1 ), 
represented by the brighter squares in the plot. In addition, the joint distribution becomes sparser in correspond-
ence of higher values of users’ leaning and fraction of unacceptable comments ( lj ≥ 0.5 and aj ≥ 0.5 ), indicating 
that a relevant share of users are placed at the two extremes of the distribution (thus being somewhat polarised) 
and that users producing mostly unacceptable comments are way less present.

In Fig. 6b, we display the proportion of unacceptable comments posted by users displaying leaning at the two 
tails of the distribution (i.e., users displaying a remarkable tendency to comment questionable videos lj ∈ [0.75, 1) 
and users with a remarkable tendency to comment reliable videos lj ∈ (0, 0.25] ). We find that users skewed 
towards reliable channels post, on average, a higher proportion of unacceptable comments ( ∼ 23% ) than users 
skewed towards questionable channels ( ∼ 17% ). In other words, users who tend to comment on reliable videos 
are also more prone to use a unacceptable/toxic language. Further statistics on the two distributions are reported 
in SI.

Panel (c) of Fig. 6 provides a comparison between the distributions of unacceptable comments posted by users 
skewed towards questionable channels (q in the legend) on videos published by either questionable or reliable 
channels. Panel (d) of Fig. 6 provides a similar representation for users skewed towards reliable channels (r in 
the legend). We may note a strong difference in users behaviour: quite unimodal when they comment videos 
on the same side of the leaning; bimodal when they comment videos on the opposite side of leaning. Therefore, 
users tend to avoid using a toxic language when they comment videos in accordance with their leaning and to 
separate into roughly two classes (non-toxic, toxic) when they comment videos in contrast with their preferences. 
This finding resonates with evidence of online polarisation and with the presence of peculiar characters of the 
internet such as trolls and social justice warriors.
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Figure 5.   Users balance between different comment types. In panel (a) brighter dots indicate a higher density 
of users while in panel (b) brighter dots indicate a higher average activity of the users in terms of number of 
comments. We note that users focused on posting comments labelled as offensive and violent are almost absent 
in the data.
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Toxicity level of online debates.  Finally, we aim at investigating whether online debates degenerate (i.e., 
increase their average toxicity) when the discussion gets longer, both in terms of number of comments and time. 
More in general, we are interested in analysing how commenting dynamics change over time and whether online 
hate follows similar dynamics to those observed for users’ sentiment31. Indeed, although violent comments and 
pure haters are quite rare, their presence could negatively impact the tone of the general debate. Furthermore, 
we want to understand whether the toxicity of comments tends to follow certain dynamics empirically observed 
on the internet such as Godwin’s law. To this purpose, we test whether toxic comments tend to appear more 
frequently at later stages of the debate.

To compute the toxicity level of a debate around a certain video, we assign each speech type (A,I,O,V) a 
toxicity value t as follows:

•	 Acceptable: t = 0
•	 Inappropriate: t = 1
•	 Offensive: t = 2
•	 Violent: t = 3
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Figure 6.   Panel (a) displays the relationship occurring between the preference of users for questionable 
and reliable channels (the user leaning lj ) and the fraction of unacceptable comments posted by the user ( aj ) 
as a joint distribution. Panel (b) displays the distribution of unacceptable comments for users displaying a 
remarkable tendency to comment under videos posted by questionable ( lj ∈ [0.75, 1) ) and reliable ( lj ∈ (0, 0.25] ) 
channels. Panel (c) displays the distribution of unacceptable comments posted by users with leaning towards 
questionable channels ( lj ∈ [0.75, 1) indicated as q) under videos of questionable channels (dashed line indicated 
as q to q in the legend) and under videos of reliable channels (solid line indicated as q to r in the legend). Panel 
(d) displays the distribution of unacceptable comments posted by users with leaning towards reliable channels 
( lj ∈ (0, 0.25] indicated as r) under videos of questionable channels (solid line indicated as r to q in the legend) 
and under videos of reliable channels (dashed line indicated as r to r in the legend).
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Then, we define the toxicity level T of a discussion d of n comments as the average of the toxicity values over all 
the comments of the discussion:

To understand how the toxicity level changes with respect to the number of comments and to comment delay 
(i.e., the time elapsed between the posting time of the video and that of the comment), we employ linear regres-
sion models. Figure 7 shows that a positive relationship between the two variables (i.e., average toxicity is an 
increasing function of the number of comments and comment delay) exists, and that such a relationship cannot 
be reproduced by linear models obtained with randomised comment labels (regression outcomes and a valida-
tion of our results using proportions of unacceptable comments are reported in SI). We apply a similar approach 
to distinguish between comments on videos from questionable and reliable channels (as shown in SI). Overall, 
similarly to the general case, we find stronger positive effects in real data than in randomised models although 
such effects are significant only in the case of comments under videos posted by reliable channels.

Finally, to evaluate the effect (in the short run) of violent comments, we study the transition between subse-
quent comments in threads appearing under YouTube videos. The choice of analysing threads instead of full lists 
of comments resides in the fact that YouTube comments are ranked according to several factors (among which 
the number of likes received by the comment, the length of the thread, the importance of the user who posted 
the comment). Therefore, given a certain video, we cannot be sure of what comments (and in which order) the 
user actually visualises. However, threads do not suffer from this issue, since comments in threads are presented 
in chronological order. The aim of studying the transitions between comment types is to find specific transition 
patterns (probabilities) between toxic comments and understand if the conversation tends to evolve in a way 
that is different with respect to random models. As an example, a thread with four comments 1 Acceptable, 2 
Offensive and 1 Violent (in this order) can be summarised with the string “AOOV”, which entails three transi-
tions between comment types, namely {AO; OO; OV}. By extending such a process to all threads in our dataset, 
we can compute the transition probability from one comment type to another using a 4 by 4 transition matrix. 
In this way, we can evaluate the possible presence of an escalation effect due to the fact that toxic comments 
could be immediately followed by increasingly toxic ones. The results are reported in Fig. 8, in which we notice 
that certain transition probabilities cannot be reproduced by a null model in which the sequences of comments 
within threads are randomised. In particular, we note that, differently from the empirical data, in randomised 
instances the transition probability from one violent comment to another is 0 and the probability of passing from 
violent comments to unacceptable ones (inappropriate, offensive and violent) is always higher in the empirical 
case than at random. Similar results hold for offensive and inappropriate comments, but not for acceptable ones. 
This finding confirms the presence of a short term influence of violent comments that could flame the debate 
and scale up into streams of toxicity.

Conclusions
The aim of this work is two-fold: i) to investigate the behavioural dynamics of online hate speech and ii) to shed 
light on the possible relationship with misinformation exposure and consumption. We apply a hate speech deep 
learning model to a large corpus of more than one millions comments on Italian YouTube videos. Our analysis 
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provides a series of important results which can support the development of appropriate solutions to prevent 
and counter the spread of hate speech online. First, there is no evidence of a strict relationship between the 
usage of a toxic language (including hate speech) and being involved within the misinformation community 
on YouTube. Second, we do not observe the presence of “pure” haters, instead it seems that the phenomenon 
of hate speech involves regular users who are occasionally triggered to use toxic language. Third, users polari-
sation and hate speech seem to be intertwined, indeed users are more prone to use inappropriate, violent, or 
hateful language within their opponents community (i.e., out of their echo chamber). Finally, we find a positive 
correlation between the overall toxicity of the discussion and its length, measured both in terms of number of 
comments and time.

Our results are in line with recent studies about (the increasing) polarisation of online debates and segregation 
of users50. Furthermore, they somewhat confirm the intuition behind some empirically grounded laws such as 
Godwin’s law which can be interpreted, by extension, as a statement regarding the increasing toxicity of online 
debates. A potential limitation of this work is represented by the relentless effort of YouTube in moderating hate 
on the platform. This could have prevented us from having complete information about the actual presence of 
hate speech in public discussions. In spite of this limitation, after collecting again the whole set of comments after 
at least 1 year from their posting time, we find that only 32% of violent comments were actually unavailable due 
to either moderation or removal by the author (see Table S9 of SI). Another issue could be the presence of chan-
nels wrongly labelled as reliable instead of questionable (i.e., false negatives) or the fact that certain questionable 
sources available on YouTube are not included in the list, especially due to the high variety of content available 
on the platform and the relative ease with which one can open a new channel. Nonetheless, our findings are 
robust with respect to these aspects (as we show in a dedicated section of SI). Future efforts should extend our 
work to other languages beyond Italian, social media platforms, and topics. For instance, studying hate speech 
on online political discourse over time could provide important insights on debated phenomena such as affective 
polarisation51. Moreover, further research on possible triggers in the language and content of videos is desirable.

Data availibility
The datasets generated during the current study for the purposes of training and evaluating the hate speech model 
are available at the CLARIN repository: http://​hdl.​handle.​net/​11356/​1450. The hate speech model is available at 
the HuggingFace repository: https://​huggi​ngface.​co/​IMSyPP/​hate_​speech_​it.
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