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Abstract: Development of a novel filter material is urgently required for replacing the high-cost flue
gas purification technology in the simultaneous removal of both fine dust and Nitrogen oxides (NOx).
In this study; polyphenylene sulfide (PPS) needle-punching fibrous felts (NPFF) were employed as
the filter material to remove the fine dust; and in the meanwhile; Mn and Ce oxides were loaded
onto the PPS NPFF as the catalyst for selective catalytic reduction of NOx with NH3. Two different
pretreatment methods; i.e., sodium alginate (SA) deposition and plasma treatment; were employed to
modify the PPS NPFF before the traditional impregnation and thermal treatment processes during
the catalyst loading. The results showed that these two pretreatment methods both afforded the PPS
NPFF with the enhanced loading rate and stability of Mn/Ce oxides compared to those without any
pretreatments; which were significantly beneficial for the denitration application. Moreover; we found
that both SA deposition and plasma pre-treated samples presented excellent dust-removal properties;
and the filtration efficiency could reach 100% when the particle size of the fine particulates was above
4 µm. This study demonstrated that our Mn/Ce oxides decorated PPS NPFF have great potential
to be applied in the fuel gas purification field; due to their stable structure; handling convenience;
and excellent filtration efficiency; as well as high denitration performance.

Keywords: catalyst loading; sodium alginate deposition; plasma treatment; denitration;
filtration efficiency

1. Introduction

Environmental pollution is a combined effect of industrialization and urbanization, resulting in a
significant decline in the human health index [1,2]. Recently, the rapid increase of energy consumption
directly spurred the enhanced emissions of various pollutants during the combustion of solid fuels.
It is predicted that the total consumption of solid fuels will increase by roughly 20% from 2015 to
2035 [3]. Fine particles are one of the key pollutant components from exhaust emissions. In order
to address the pollution issues induced by fine particulates, bag filter technology has been widely
employed by industry [4], which is applied into the field of high temperature and high concentration
flue gas treatment [5,6].

Except for dust removal, another important aspect for flue gas processing is to effectively get
rid of the hazard nitrogen oxide (NOx) component, which could lead to a wide variety of respiratory
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diseases, such as pneumonia and bronchitis [7]. Presently, ammonia selective catalytic reduction
(NH3-SCR) technology is recognized as the most effective way to realize the removal of NOx existing
in the fuel-burning exhaust gas [8]. NH3-SCR technology takes NH3 as the reducing agent to reduce
toxic NOx to non-toxic N2 and H2O under the action of a catalyst [9]. With the low cost, high efficiency
and easy promotion, NH3-SCR technology has become a hot subject of extensive studies in the past
few years [10,11].

Catalyst performance has been demonstrated to be a dominant factor that notably affects the
NOx reduction efficiency of SCR technology [12]. Manganese (Mn)-based catalysts have attracted
much attention because of their low production cost and excellent catalytic activity at relatively low
temperature (100–250 ◦C). Peña et al. employed TiO2 as supportive material and compared the catalytic
performance of several different transition metal oxides [13]. The catalytic activity was found in the
following order under the operating temperature of 120 ◦C: Mn > Cu > Cr > Co > Fe > V > Ni. Other
studies indicated that the catalyst sintering phenomenon was effectively reduced, and the thermal
stability and service life of the catalyst were greatly improved, when other metal elements were
properly doped into Mn-based catalysts [14,15]. Ceric oxide (CeO2) was verified to effectively increase
the stability of the metal oxide catalyst during the loading process and obviously enhance denitration
efficiency during the NH3-SCR process [16,17].

In order to optimize the structure of the filtration system, and reduce the equipment and operating
cost of enterprise, the device that can achieve the joint removal of multiple pollutants is becoming the
main development orientation in the future flue gas purification field [18,19]. In this case, this study
aims to develop a new filter material that combines the features of the traditional bag filter and
NH3-SCR technology to provide both dust removal and denitrification functions. Polyphenylene
sulfide (PPS) needle-punching fibrous felts (NPFF) were employed as both dust-removal substrate
and catalyst-supporting materials, because previous studies demonstrated that PPS NPFF possessed
excellent heat and chemical resistances [20,21]. Mn and Ce-based catalysts were loaded on the PPS
NPFF through three steps, i.e., pretreatment, impregnation and thermal treatment. Two different
pretreatment methods, i.e., sodium alginate (SA) deposition and plasma treatment, were used to
investigate how the pretreatment method affects the loading rate and stability of catalysts. This work
also designed and implemented a laboratory-specific NH3-SCR denitration test device to simulate
the high-temperature working environment in practical applications. The effect of pretreatment
method on the denitration performance of the as-prepared Mn/Ce oxides decorated PPS NPFF was
studied, together with the changes of morphology, microstructure, and mechanical property of the
PPS NPFF before and after the catalyst loading process. We also characterized and compared the
dust removal properties of the finally-obtained Mn/Ce oxides decorated PPS NPFF manufactured by
different preparation methods.

2. Experimental

2.1. Materials

PPS NPFF (Gram weight: 580 g/m2, Thickness: 2.9 mm) were supplied by Xinli Environmental
Protection Materials Co., Ltd. (Zibo, Shandong, China). Sodium alginate (SA, AR), manganese nitrate
(Mn(NO3)2, AR) and cerium nitrate (Ce(NO3)3, AR) were purchased from Dingshengxin Chemical
Co. Ltd. (Tianjin, China), Shanpu Chemical Co. Ltd. (Shanghai China), and Qingdao Haizhilin Co.
Ltd. (Shandong, China), respectively. Nitric oxide (NO) and ammonia (NH3) were both provided
by Qingdao Three-factors Gas Technology Co. Ltd. (Qingdao, Shandong, China). Compressed air
without water (H2O) was obtained from Qingdao Haide Gas Co. Ltd. (Qingdao, Shandong, China).

2.2. Catalyst Loading Methods

All PPS NPFF were cut into 20 × 20 cm squares, and utilized as the catalyst supporting materials
in the present work. A traditional impregnation method in combination with a subsequent thermal



Polymers 2020, 12, 168 3 of 13

treatment process was employed to synthesize and load Mn and Ce-based catalysts onto the PPS NPFF.
Specifically, PPS NPFF were immersed into several different Mn (NO3)2 and Ce (NO3)3 mixed solutions
at room temperature. After the predetermined time point, the Mn (NO3)2 and Ce (NO3)3 coated PPS
NPFF were taken out and placed in a drying oven, experiencing thermal treatment at a predetermined
temperature for preset times. In order to obtain the optimal loading efficiency and stability of catalysts,
we optimized the parameters for both impregnation and thermal treatment processes. The detailed
information is shown in the Supplementary Information. The optimal Ce molality and Mn/Ce molar
ratio of impregnation solution, impregnation time, temperature and time of thermal treatment were
found to be 0.07 mol/L, 6/1, 60 min, 200 ◦C, and 60 min, respectively. The samples made by using these
optimal parameters were named as PPS NPFF/Mn/Ce-C, which were defined to be control groups.

To further improve the catalyst loading rate, two different pretreatment methods, i.e., SA deposition
and plasma treatment, were utilized to modify the PPS NPFF before the impregnation and thermal
treatment processes (Figure 1). Alginate is a natural polysaccharide, produced from seaweed and
paid attention to due to its multifarious properties, efficiency, and affordable price, non-biotic and
non-biodegradable nature [22]. As an excellent cationic heavy metal adsorbent, the molecular backbone
of sodium alginate contains a large number of highly active carboxylic ions (-COO-) and hydroxyl (-OH)
groups [23]. Creating a matrix of alginate on the surface of compounds caused exceptional properties,
a high adsorbent density, and a high surface area as well as increased adsorption capability [24,25].
Thus, SA deposition employed SA as a binder for catalyst immobilization. PPS NPFF was immersed
into several different SA solutions at room temperature. After the predetermined time point, the SA
coated PPS NPFF were taken out and dried in a drying oven at 60 ◦C for 24 h. The as-obtained SA
coated PPS NPFF further experienced the impregnation and thermal treatment processes by using the
same parameters with PPS NPFF/Mn/Ce-C fabrication. We designed two single factor experiments
to optimize the experimental parameters of SA deposition. Detailed information is shown in the
Supplementary Information. The optimal mass fraction of SA was 0.8%, and the optimal immersion
time was 60 min. The samples made by using the optimal parameters of SA deposition were named as
PPS NPFF/Mn/Ce-D.
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Figure 1. Schematic of the fabrication of Mn/Ce oxides decorated polyphenylene sulfide (PPS)
needle-punching fibrous felts (NPFF).

We also employed low-temperature plasma technology to pretreat the PPS NPFF, which could etch
the surface of the felt and increase the bonding performance of the felt surface [26,27]. The applicability
of PPS fibers in catalyst decorating is affected because of their compact structure, smooth surface,
and poor friction properties. The surface of PPS fiber has been etched, crosslinked, group introduced,
roughened, etc., due to highly excited and unstable active particles in air plasma. On the surface of PPS
fibers, fine cracks are formed, convex deposits are generated, and a series of polar groups containing
oxygen and sulfur are generated [28–31]. Therefore, the air plasma increases the micro-roughness of the
fiber surface, improves the fiber adhesion, biocompatibility, etc., and further facilitates the decorating
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of the catalyst. Plasma treatment was carried out by using the Atmospheric Pressure Plasma System
Model AS400+PFW10 (Plasma Treat GmbH, Steinhagen, Germany). The air was used to generate
plasma, and the gas flow rate of the discharge and the jet-sample-distance were 1000 L/h and 3 cm,
respectively. In addition, there were four other main parameters, i.e., voltage, duty ratio, jet moving
speed, frequency, which could significantly affect the treatment results. Therefore, a series of single
factor experiments and even orthogonal experiments were utilized to obtain the optimal parameters,
as shown in the Supplementary Information. The optimal plasma voltage, jet moving speed, duty
ratio and frequency were insured to be 280 V, 8 m/min, 60% and 19 KHz. The plasma-treated PPS
NPFF further experienced the impregnation and thermal treatment processes by utilizing the same
parameters with PPS NPFF/Mn/Ce-C fabrication. The samples made by using optimal parameters of
plasma treatment were named as PPS NPFF/Mn/Ce-P.

2.3. Catalyst Loading Rate and Fastness Characterization

Catalyst loading rate was defined as the ratio of the increased weight after catalyst loading to the
weight of original sample. It was calculated as follows:

R =
M2 −M1

M1
× 100 (1)

where: R: loading rate, %; M1: the weight of original sample, g; M2: the weight of the sample after
catalyst loading, g.

An air blower (Philips, Amsterdam, NY, USA) was employed to test the catalyst loading fastness.
The samples after the catalyst loading were placed under a 2000 mL/min air flow for 5 h. The catalyst
loading fastness was defined as the ratio of the weight of the sample after the airflow process to the
weight of the original sample. It was calculated as follows:

Q =
M
M0
× 100 (2)

where: Q: loading fastness, %; M: sample weight after the airflow process, g; M0: the weight of the
original sample, g.

2.4. Denitration Measurement

A home-made NH3-SCR denitration testing device (Figure 2) was designed and implemented by
our group, to better mimic the practical denitration processing in the thermal power plant. The three
different Mn/Ce Oxides loaded PPS NPFF samples were cut into a circular shape with a diameter of
10 cm, and further placed into a tube furnace with the total volume of 4.6 L. The whole device was
connected with the silicone hoses to avoid the gas leakage. Before test, the compressed air was firstly
introduced to keep the gas environment inside the channel in a normal air state. Then, the compressed
air, NH3 and NO were continuously introduced into the channel, and the concentrations of each
gas component in the inlet and outlet were monitored by the sensors in site. The total gas flow was
maintained as 140 mL/min, and the compressed air flow was maintained at 120 mL/min. The range of
NH3/NO flow ratio was 0.8–1.6. After the sensor display was stabilized, the tube furnace started to heat
up. The pre-set testing temperature ranged from 80 ◦C to 220 ◦C. The sensor displays were recorded
in a real time manner by using an intelligent test system (Shenwei Electronic Technology Co., Ltd.,
Shanghai, China) connected to a computer.

The denitration performance of test samples was indicated by the denitration rate. The calculation
formula is as follows:

η =
W1 −W2

W1
× 100 (3)

where: η: denitrification rate, %; W1: the NO concentration at inlet, ppm; W2: the NO concentration at
outlet, ppm.
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Figure 2. Schematic illustration of our home-made ammonia selective catalytic reduction (NH3-SCR)
denitration testing device.

2.5. Air Permeability and Filtration Characterization

The air permeability of the samples was measured according to the ISO 9237 (1995) standard
test method by using a Frazier Air Permeability Tester (YG461E, NBFY Co. Ltd., Ningbo, China)
with a fixed testing area of 20 cm2 and the pressure drop of 200 Pa. Ten readings were recorded for
each sample.

The filtration performance of the samples was examined by utilizing an air filtration device
(TOPAS AFC-131, Frankfurt, Germany). All the samples were cut into a circular sample with a diameter
of 17 cm, and the filtration efficiency to DEHS (Diisooctyl sebacate) aerosol particles was obtained
under the airflow rate of 18 m3/h. The diameter of the DEHS aerosol particles ranged from 0.225 µm to
7.25 µm.

2.6. Other Characterization Methods

The morphology and microstructure of the PPS NPFF and the decorated Mn/Ce oxides catalysts
were observed by using a scanning electron microscopy (SEM, Phenom Pro SEM, Hitzacker, Germany),
and a field emission scanning electron microscopy (JSM-7800F, JEOL, Tokyo, Japan). The samples were
subjected to gold sputter-coating for 60 s in a vacuum (SBC-12, KYKY Technology Co., Ltd., Beijing,
China) prior to imaging. A X-Max Energy-Dispersive X-ray spectrometer (JEOL Ltd., Tokyo, Japan)
was coupled to SEM for the elemental analysis of the sample. Surface areas and pore diameters on
the sample fibers were characterized on a fully automated Quantachrome Autosorb iQ3 (Orlando,
FL, USA) surface area analyzer using nitrogen adsorption-desorption. The specific surface areas were
calculated based on the Brunauer-Emmett-Teller (BET) method and the pore diameters were estimated
by using the Barrett-Joyner-Halenda (BJH) method. The pore size distribution and average pore size of
the whole sample were determined by using an aperture tester (TOPAS PSM-165, Frankfurt, Germany)
with a constant testing area of 2.01 cm2. All data were tested and acquired from 5 set of specimens.
The mechanical characterization of all samples was performed by a universal testing machine (3382,
Instron, Boston, MA, USA). The sample size was 40 mm length × 20 mm width. For each sample, the
distance between the two clamps, clamp speed and test volume were fixed at 20 mm, 5 mm/min and
5 times, respectively.

3. Results and Discussion

3.1. Catalyst Loading Efficiency and Stability

Figure 3 shows the effects of different pretreatment methods on the loading efficiency and stability
of Mn/Ce-based catalysts decorated on the PPS NPFF. The results presented in Figure 3A displayed
that the Mn/Ce oxides decorated PPS NPFF prepared with different methods afforded different catalyst
loading rates. In general, both PPS NPFF/Mn/Ce-D and PPS NPFF/Mn/Ce-P prepared from the
two different pretreatment methods exhibited obviously enhanced catalyst loading rates compared
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with the PPS NPFF/Mn/Ce-C without any pretreatments. After systematic optimization (as shown
in Supplementary Information), the maximum catalyst loading rate pretreated by SA deposition
and plasma treatment could reach to 18.95% and 23.03%, respectively. The loading rate of PPS
NPFF/Mn/Ce-P was demonstrated to be the highest, which may be due to the notably improved
number of active groups on the PPS NPFF surface produced by low temperature plasma treatment.
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Catalyst loading fastness is another important indicator for evaluating the catalyst loading status
on the surface of PPS NPFF. Figure 3B indicates that all three Mn/Ce oxides decorated PPS NPFF
exhibited great catalyst loading stability. With the air blowing time increasing, the fastness of the
catalyst decreased slightly. After 5 h of air blowing, the loading fastness was only slightly different from
that of the original sample. Moreover, the loading fastness of PPS NPFF/Mn/Ce-P was higher than those
of the other two groups, i.e., PPS NPFF/Mn/Ce-D and PPS NPFF/Mn/Ce-C, and the loading fastness of
the PPS NPFF/Mn/Ce-P group still maintained 99.8% after 5 h of air blowing, which demonstrated
that the low temperature plasma treatment could significantly improve adhesion between the Mn/Ce
catalyst and the PPS NPFF.

3.2. Morphology and Elemental Analysis

Figure 4A,E shows that the fibrous structure with smooth fiber morphology was observed for
the original PPS NPFF without any processing. In comparison, the Mn/Ce oxides decorated PPS
NPFF exhibited significantly different morphology. Figure 4B,F shows the morphological images of
PPS NPFF/Mn/Ce-C with different magnifications. The Mn/Ce oxides were less developed in this
case, since the poor interaction between the Mn/Ce particles and the fibers of PPS NPFF was formed.
Figure 4C,G displayed that the Mn/Ce oxides were better dispersed on the fiber surface of PPS NPFF
after the pretreatment of SA deposition. SA was firstly deposited on the fiber surface, thereby providing
more active sites for the consolidation of Mn/Ce-based catalysts. The topographical images of the PPS
NPFF/Mn/Ce-P (Figure 4D,H) presented that obviously increased Mn/Ce oxides were found on the
fiber surface, and it had a certain degree of agglomeration in some areas. The low temperature plasma
treatment could improve surface roughness, as well as produce more active groups, thereby resulting
in the enhanced adhesion between the catalyst and the PPS NPFF. These results suggested that the
pretreatment methods had a positive effect on the presence of catalyst particles on the fiber surface of
PPS NPFF. In addition, the PPS NPFF/Mn/Ce-P pretreated by low temperature plasma treatment had
been demonstrated to exhibit great catalyst dispersion on the surface of PPS NPFF.
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Figure 4. (A–D) Scanning electron microscopy (SEM) images and (E–H) FE-SEM (Field emission
scanning electron microscopy) images of the original PPS NPFF and the three different Mn/Ce oxides
decorated PPS NPFF.

EDS(X-Max Energy-Dispersive X-ray spectrometer)was further employed to examine the surface
composition and element distribution of the PPS NPFF after the catalyst loading. Figure 5A–C shows
that all the three different Mn/Ce oxides decorated PPS NPFF were found to contain N, Mn, Ce, S, C,
and O elements. Moreover, the plasma-pretreated samples (Figure 5C) exhibited the highest Mn and
Ce contents than those of the other two samples (Figure 5A,B), which was consistent with the results
shown in Figure 4.
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oxides decorated PPS NPFF: (A) PPS NPFF/Mn/Ce-C; (B) PPS NPFF/Mn/Ce-D; (C) PPS NPFF/Mn/Ce-P.

3.3. Surface Area and Pore Diameter Analysis

Figure 6A shows the testing results of mean pore diameter on the fiber surface. The mean pore
diameters of original PPS NPFF, PPS NPFF/Mn/Ce-C, PPS NPFF/Mn/Ce-D, and PPS NPFF/Mn/Ce-P
were determined to be 3.31 nm, 3.501 nm, 3.707 nm, and 3.706 nm, respectively. The surface area of
the fibers was apparently different, as can be seen from Figure 6B. The original PPS NPFF has the
lowest value of BET surface area (0.207 m2/g). In comparison, the BET surface area of the three different
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Mn/Ce oxides decorated PPS NPFF increased significantly, which may be due to the good dispersion
of Mn/Ce particles on the PPS fiber surface. In the case of PPS NPFF/Mn/Ce-P, the BET surface area
was greatly increased to 11.029 m2/g, most likely due to the abundant deposit of catalyst on the surface
of the fiber. The obviously increased surface area may provide more space, which could favor the
interaction between the catalyst and reaction gas.

In spite of the pore diameter of the single fibers, we also tested the pore diameter distribution
of the whole fibrous felt as shown in Figure 6C. The mean pore diameter of the whole fibrous felt is
calculated in Figure 6D. Notably, the original PPS NPFF presented a wider pore diameter distribution
compared with the three different Mn/Ce oxides decorated PPS NPFF. The original PPS NPFF possessed
the highest value of mean pore diameter (94.37 µm), whereas all the mean pore diameters of three
different Mn/Ce oxides decorated PPS NPFF reduced to below 30 µm. Taken together, the catalyst
loading could significantly narrow the pore diameter distribution (Figure 6C) and obviously decrease
the value of the mean pore diameter (Figure 6C).
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3.4. Mechanical Property

Uniaxial tensile testing results of the original PPS NPFF and the three different Mn/Ce oxides
decorated PPS NPFF are shown in Figure 7. Typical stress-strain curves in Figure 7A indicated that all the
tested samples exhibited similar mechanical behavior characteristics. In comparing the three different
Mn/Ce oxides decorated PPS NPFF with the original PPS NPFF, they presented obviously higher initial
modulus (Figure 7B), but relatively lower breaking stress and strain (Figure 7C,D), attributed to the
necessary thermal treatment experienced during the catalyst loading process. The three different Mn/Ce
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oxides decorated PPS NPFF still possessed excellent mechanical properties to satisfy the requirements
for both dust removal and denitration application.Polymers 2020, 12, x FOR PEER REVIEW 9 of 14 
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Figure 7. (A) Representative stress-strain curves, (B) initial modulus, (C) ultimate tensile stress, and
(D) ultimate strain of the original PPS NPFF and the three different Mn/Ce oxides decorated PPS NPFF.

3.5. Filtration Property and Air Permeability

We performed filtration experiments on all PPS NPFF with or without further processing. Figure 8A
comparatively depicts the grade efficiency of each sample for fine dust in the regime of 0.225 µm
to 7.25 µm. The same profile pattern can be observed in all instances, i.e., the filtration efficiency
increases with increasing particle size. Relatively low capture efficiency was found for the original
PPS NPFF. As expected, the catalyst loading process could improve the overall filtration performance,
showing a much higher capture efficiency than that of the original PPS NPFF. This observation is
ascribed to the significantly reduced pore diameter distribution and mean pore diameter, caused by
the catalyst loading process. The PPS NPFF/Mn/Ce-P showed the highest efficiency among all the
samples, indicating the advantages of applying the low temperature plasma treatment on the PPS
NPFF modification. In practice, all the three different Mn/Ce oxides decorated PPS NPFF, i.e., PPS
NPFF/Mn/Ce-C, PPS NPFF/Mn/Ce-D, PPS NPFF/Mn/Ce-P, could perform well when target particles
were larger than 4 µm. It is also observed in Figure 8B that the catalyst loading process did not affect
the overall air permeability of the three different Mn/Ce oxides decorated PPS NPFF, presenting slightly
reduced air permeability compared with the original PPS NPFF.
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3.6. Denitration Mechanism and Performance

The general reactions involved in NH3-SCR are shown in Figure 9A. NH3 was employed as a
reducing agent to reduce harmful NOx to harmless N2 and H2O under the synergetic action with
O2. There were three general reactions, which were called standard SCR, fast SCR, and NO2 SCR
reactions [7,32]. The catalyst performance was found to be a dominant factor for the above-mentioned
reactions [11,33]. In the present study, we employed two pretreatment methods including SA deposition
and plasma treatment to modify the PPS NPFF before the impregnation process to help improve the
catalyst loading rate and stability, which was expected to be conducive for the NH3-SCR denitration
activity. Figure 9B,C shows the effect of different preparation methods on the denitration activity
of finally-obtained Mn/Ce oxides decorated PPS NPFF. Figure 9B indicates that the Mn/Ce oxides
decorated PPS NPFF prepared with three different methods imparted different catalytic activities in the
temperature range of 80 ◦C to 220 ◦C. In general, the PPS NPFF/Mn/Ce-D and PPS NPFF/Mn/Ce-P which
both experienced pretreatment exhibited better catalytic activity and presented higher denitration
rate, compared to PPS NPFF/Mn/Ce-C without pretreatment. The same pattern can be observed in
all instances, i.e., the denitration rate increased with increasing temperature from 80 ◦C to 200 ◦C.
The denitration rate reached the optimum value at 200 ◦C. When the temperature exceeded 200 ◦C,
the denitration rate decreased slightly. Importantly, it can be concluded that PPS NPFF/Mn/Ce-P
prepared by low temperature plasma treatment exhibited the highest denitration rate, and the
denitration rate reached more than 80% at 220 ◦C. The previous studies have also demonstrated that
the reaction temperature played a determined role on the denitration rate of the Mn/Ce catalyst [34,35].
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From the three mentioned reactions in Figure 9A, we could figure out the imposed quantity of
NH3 as another key factor which could significantly affect the complete reduction of NOx emissions.
Figure 9C displays that how the NH3/NO flow ratio affects the denitration rate of all the Mn/Ce oxides
decorated PPS NPFF prepared by three different methods. We found that the denitration rate increased
with the NH3/NO flow ratio increasing when the NH3/NO flow ratio was below 1. The denitration
rate significantly improved when the NH3/NO flow ratio reached 1, and it tended to be stable when
the NH3/NO flow ratio exceeded 1.

4. Conclusions

A series of Mn/Ce oxides decorated PPS NPFF were prepared by using three different methods.
Two pretreatment methods, i.e., SA deposition and plasma treatment, were demonstrated to effectively
modify the PPS NPFF, which were beneficial for improving the catalyst loading rate and stability of
Mn/Ce oxides. In all, the two different pretreatment methods could impart the eventually-obtained
Mn/Ce oxides decorated PPS NPFF with great dust removal activity as well as excellent denitration
outcomes. This study provides a theoretical and experimental basis for the denitrification-dust removal
integration process, and is of great significance for simultaneous removal of both fine dust and NOx in
the exhaust emissions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/168/s1,
Figure S1: Loading rate under each parameter of the impregnation and heat treatment process: (A) Ce molality;

http://www.mdpi.com/2073-4360/12/1/168/s1
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(B) Mn/Ce molar ratio of impregnation solution; (C) Impregnation time. Figure S2: Loading rate under each
parameter of SA deposition: (A) The mass fraction of SA; (B) Immersion time of SA deposition. Figure S3: Loading
rate under each parameter of plasma treatment: (A) Voltage; (B) Duty ratio; (C) Jet moving speed; (D) Frequency.
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