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ABSTRACT When osmotic pressure across an artificial membrane, produced
by a permeable electrically neutral solute on one side of it, is balanced by an
external pressure difference so that there is no net volume flow across the mem-
brane, it has been found that there will be a net flux of a second electrically
neutral tracer solute, present at equal concentrations on either side of the mem-
brane, in the direction that the "osmotic" solute diffuses. This has been as-
cribed to solute-solute interaction or drag between the tracer and the osmotic
solutes. An alternative model, presented here, considers the membrane to
have pores of different sizes. Under general assumptions, this "heteroporous"
model will account for both the direction of net tracer flux and the observed
linear dependence of unidirectional tracer fluxes on the concentration of the
osmotic solute. The expressions for the fluxes of solutes and solvent are mathe-
matically identical under the two models. An inequality is derived which must
be valid if the solute interaction model and/or the heteroporous model can
account for the data. If the inequality does not hold, then the heteroporous
model alone cannot explain the data. It was found that the inequality holds
for most published observations except when dextran is the osmotic solute.

INTRODUCTION

When an osmotic pressure is generated across a frog skin or toad bladder by a
permeable electrically neutral solute (such as sucrose or urea) placed on one
side, a second electrically neutral tracer solute, at the same concentration on
both sides will have a net flux across the membrane in the same direction as
the flux of the first solute and in a direction opposite to net volume flow
(Ussing, 1966; Franz and Van Bruggen, 1967; Biber and Curran, 1968;
Ussing and Johansen, 1969). This phenomenon has been ascribed by Franz,
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Galey, and Van Bruggen (1968) to solute-solute interaction (solute drag);
i.e., the more concentrated "osmotic" solute drags the dilute "tracer" in the
same direction as its diffusional flux. On the other hand, Ussing (1969) as-
cribed the phenomenon to a heterogeneous three-dimensional membrane
structure which resulted in circulatory solvent flow within the membrane.
The tracer, if confined to membrane regions where the direction of solvent
flow is opposed to that of net volume flow, would be carried along in those
regions by the solvent in a direction opposed to net volume flow. Ussing
(1969) called this model "anomalous solvent drag."

The solute-solute interaction model postulates a large interaction term be-
tween the two solutes, as has been calculated by Franz, Galey, and Van
Bruggen (1968) and Galey and Van Bruggen (1970) from observations on
artificial membranes. These authors also applied an external pressure to the
solution which contained the osmotic solute, the value of the pressure being
chosen to yield zero net volume flow. Without the added pressure, tracer
flowed in the same direction as volume flow. With it and at zero net volume
flow, net tracer flux was in the same direction as the net flux of the osmotic
solute. Unidirectional tracer fluxes varied linearly with the concentration of
the osmotic solute, increasing with increasing concentration when the uni-
directional flux was in the same direction as the osmotic solute flux, and de-
creasing with increasing osmotic solute concentration when it was in the
direction opposite to osmotic solute flux. It should be noted that Ussing's
explanation would not apply to the artificial membrane system, which would
be expected not to have the geometry of his model.

While solute-solute interactions have been demonstrated in free solutions
(cf. Curran, Taylor, and Solomon, 1967), and must operate to some extent
in a porous membrane, in this paper we will consider an alternative model
for tracer flows across an artificial membrane which emphasizes geometric
factors. The membrane is assumed to be composed of pores of different sizes
and is "heteroporous." Heteroporosity should produce volume circulation at
zero net volume flow (Sollner, 1945; Rapoport, 1966). Some of the aspects of
the irreversible thermodynamics of this model have been discussed previously
by Kedem and Katchalsky (1963), and the model has been suggested also
by Ussing and Johansen (1969). In treating it we will assume there is also
solute-solute interaction. After the model has been analyzed, the solute-
solute interaction model for a homogeneous membrane will be presented
and will be shown to be mathematically identical to the model for a hetero-
porous membrane with or without solute-solute interaction. Therefore, the
two models cannot be distinguished by experiments of the type heretofore
performed, although an inequality involving only measurable quantities
will be derived which must be satisfied if the heteroporous model without
solute-solute interaction can by itself explain the data. Since solute-solute
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interaction exists even in free solution and since it is most improbable that a
membrane is completely homogeneous, both factors, solute-solute interaction
and membrane heteroporosity, are present in any real membrane. However,
their relative importance in accounting for
determined at present.

LIST OF SYMBOLS

a "tracer" solute
b "osmotic" solute
i ith pore

.0 unidirectional flux of tracer from
left to right

. unidirectional flux of tracer from
right to left

J net flux from left to right
w permeability coefficient for hetero-

porous membrane model =
C i

w* permeability coefficient for ho-
mogeneous membrane model

cab cross-permeability coefficient of
tracer solute with osmotic solute
for heteroporous membrane
model= b i

Wob cross-permeability coefficient of
tracer solute with osmotic solute
for homogeneous membrane
model

experimental results cannot be

ar reflection coefficient
J, volume flow through ith pore

from left to right
J, net volume flow through mem-

brane from left to right =

c i
c concentration in bathing solution

Ac difference in concentration of
solute between right and left
solutions

c an "average" concentration of
the solute = Ac/ln [(c on right
side)/(c on left side)]

Li hydraulic conductivity of ith pore
L, hydraulic conductivity of ho-

mogeneous membrane model
P pressure difference across mem-

brane, between right and left
sides

R gas constant
T absolute temperature

THEORY

The heteroporous membrane model is illustrated in Fig. 1. The membrane
separates two well-stirred solutions. The electrically neutral osmotic solute
is present in the right solution to which a pressure is applied so that net vol-
ume flow is zero. The membrane is composed of pores of different sizes, two
of which are shown in the diagram.

A qualitative discussion of this model is as follows. Under the assumptions
that there is no solute-solute interaction and that the reflection coefficient
of the osmotic solute (cf. Kedem and Katchalsky, 1958) is smaller for the
larger pore, there will then be a net volume flow from left to right through
the smaller pore and an equal volume flow but in the opposite direction
through the larger pore. For a given volume flow through any pore, the
amount of material which can be "carried along" by that flow is larger the
smaller the reflection coefficient of that material. If the reflection coefficient
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for the tracer is smaller for the larger pore, then more tracer will be carried
by the volume flow through the larger pore than through the smaller pore
and the unidirectional tracer flux from right to left will be greater than in the
opposite direction.

In order to quantify the heteroporous model, the linear equations and
the approximations involved, as developed and discussed by Kedem and
Katchalsky (1958), will be used.

FIGURE 1. Heteroporous membrane model. Osmotic solute b is present at concentra-
tion cb in the right solution, while tracer a is present at concentration ca in both solutions.
Solute-solute interaction is assumed not to be present. Pressure P is applied to the right
solution so that the net volume flow, J,, is zero. The membrane is represented as hav-
ing a large and a small pore, with pore volume flows, represented by thick open arrows,
equal in magnitude but opposite in direction. If the reflection coefficient of the tracer
is assumed to be larger in the small pore, the unidirectional tracer flux (thin arrow) is
greater in magnitude through the large than through the small pore. Therefore there
is a net tracer flux from right to left.

For convenience, the "osmotic" solute will be assumed to be in the right
solution and P will be the pressure difference between the right and left
solutions.

The volume flow through the ith pore, relative to the membrane, is given by

Jvi = Li(abiRTAcb + oaiRTAc - P). ( I )

Following the approach of Kedem and Katchalsky (1958), the flux equa-
tions of the electrically neutral osmotic and tracer solutes can be written as

Jb = -WbRTACb + b (I - abi)Ji - JabCbRTAC. (2)
i

J, = -,RTAc, + Ca, (1 - i)Ji - wcoARTAcb (3)

where the cwb terms represent solute-solute interaction contributions. Assum-
ing that abi is greater than or of the order of oai , and since Ac. << Acb, the
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term involving Aca in equation (1) will be dropped, and since the osmotic
solute is present only in the right solution, Acb = Cb. Thus, the net volume
flow will be

J. = A Ji = Lp(ubiRTcb - P), (4)

and the unidirectional tracer fluxes become

Ja = aoRTc, + a. (1 - aai)Ji - WabaRTcb, (5)

Ja = aRTca - ea (1 - a,)Ji + WabaRTcb, (6)

where the tracer is present in the left solution for equation (5) and in the
right solution for equation (6). If the tracer is present at equal concentra-
tions on both sides of the membrane the net tracer flux would be

J(aO) = Ca [I (1- crai)Ji - wabRTcb] * (7)

If the hydrostatic pressure balances the osmotic pressure, then J = 0. By
solving for P from equation (4) and inserting this into equation (1), where the
Aca term is neglected as discussed before, we have

Jvi = LiRTcb Tbi -(8)

If abi varies among pores, the individual Ji will not all equal 0 and will vary
in sign so that the volume circulation as illustrated in Fig. 1 will obtain.
Substituting equation (8) into equations (5-7) yields,

J = oaRTca - RTeaCb [ab + -A 5( L, ] (o9)

ja = waRTca + RTaCb [ab + aiLpi (bi - La1 10
L 514~e) j' al + (10)

Ja(Aca..O) = -RTl.C + "iLpi E zjC LPj (1

II7
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Note that if the tracer is THO, then ai = 0 and if owab = 0, then J = 0,
i.e. the unidirectional fluxes of THO would be equal, as has been found ex-
perimentally by Galey and Van Bruggen (1970). However, if Wb 0, this
experimental result would not be expected. Further, if the parameters are
independent of concentrations, the linear relations between unidirectional
tracer fluxes and b, which are also found experimentally, are satisfied by
equations (9) and (10).

We have not made any assumptions about the relative values of the 0ai in
equation (11) but in the absence of electrostatic interactions or specific mem-
brane-solute effects, it is reasonable to assume that a pore which has a smaller
value of a for solute a than another pore also will have a smaller value of
oi for solute b than the other pore. Thus, the ao are assumed to be ordered
for the pores and the following inequality will hold,

(0-i- aj)(9bi - bi) > 0. (12)

Equation ( 1) may be rearranged to yield

J. = RTcaCb u[bo + (orai - a)(b - ab)LiLpj/2 Lk. (13)

Hence, if equation (12) is valid and Wab > 0, J < 0, which is the observa-
tion of Franz, Galey, and Van Bruggen (1968), and Galey and Van Bruggen
(1970). That is, tracer will flow in the same direction as the flow of the osmotic
solute when J, = 0 even if there were no solute-solute ineraction.

We will now consider a "pure" solute-solute interaction model, in which
the solute fluxes interact with each other in a homogeneous membrane.
Analogously to equations (1)-(3), the flux equations for the homogeneous
system can be written as

Ja= -a*RTAca + (1 - a)J, - abCaRTACb, (14)

Jb = - bRTAC + b(l - o)J. - co acbRTAco, (15)

J, = Li,(bRTAcb + aaRTAca - P). (16)

For a given system, the independent variables are Ca , Acb , A ,b , and P,
while the quantities that can be measured are Ja,, Jb, and J. These quan-
tities can be used to calculate the coefficients a, ab , L, Oa , Wb, and wab
for the solute drag model and lc and b for the heteroporous membrane
model. The values of Jai, bi , L,i , and Wab for the heteroporous membrane
model cannot be determined from the measured quantities alone; they must
be chosen so that sums of their various combinations satisfy the equations
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and the experimentally measured quantities. If the coefficients of A\c,, Acb,

and P are equated to each other for the two models (equations 1-4 for the
heteroporous model and equations 14-16 for the solute drag model), a
solution is found which places minimal constraints on the possible ai's,
LP's, and Cwb which can be chosen. If these constraints can be satisfied, then
the two models are mathematically identical and cannot be distinguished
by experiments which measure the fluxes as concentration and pressure are
varied. The constraints which are found are

a = E oCaiLpi/ Lpi

ab = E abLpi/Z Li

i= Lp
L, = Lil

(17)
Wa = Wa + a( aL pi- o2Lp)

i

b = Wb + Cb( b iLi - bLp)

Wab = woab + E aaiabiLpi - aobLp.

The first three relations in equation (17) are the same as those derived
previously by Kedem and Katchalsky (1963) without the assumption of
solute-solute interaction. The next two are also the same as those derived by
Katchalsky and Kedem (1962) for the case of a membrane with two different
pores and also without the assumption of solute-solute interaction. Since
(hi oaLpi/Lp - ¢2) is always positive, we see that in general w* > w.

The final relation of equation (17) leads to an inequality among measur-
able quantities which can be used experimentally to distinguish between the
models in certain cases. We will exclude the case in which solute transfer is
more rapid than solvent transfer and a is negative (cf. Kedem and Katchal-
sky, 1961), and will assume that the ai's of the pores in the heteroporous model
are positive and less than or equal to 1. If the heteroporous model is correct
but the solute-solute interaction is negligible, i.e. wb may be taken equal to
0, and if the solute drag model is used to analyze the results, then if a, < gab

(see Appendix I),

wab < a-,(l - b)Lp, (a, _< ab) (18)

while if a > 0 rb

*ab < b(l - a)Lp (Oa > ab). (19)

The maximum value of both equations (18) and (19) will occur when
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a = ab = 0.5, so that a weaker inequality is

0ab < L,/4. (20)

A conceivable experiment which might be used to distinguish between the
models is the following. In the absence of applied pressure (P = 0) and with-
out a gradient of tracer across the membrane (Ac = 0), volume flow across
any pore will either be zero or from left to right if ab > 0. The net flux of
the tracer solute, under the heteroporous model with the assumption of negli-
gible solute-solute interaction, will be from left to right and opposite to the
direction of flux of the osmotic solute. Thus, if there is a net flux of the tracer
at P = 0 in the direction opposite to that of the volume flux, this would imply
that the heteroporosity of the membrane alone is not sufficient to describe
the system but that solute-solute interactions must also be considered.

If the parameters of the system are constant this experiment is equivalent
to testing the inequalities found in equations (18) and (19). This may be seen
as follows. Equation (14) for the case of P = Ac = 0 reduces to

Ja = Ca(l - a)Lp(obRTCb) - wabaRTcb . (21)

If J > 0, i.e. the tracer moves in the direction opposite to that of the os-
motic solute, then from equation (21) we see that wa*b < rb( - a)L,,

which is the inequality of equation (19) but without the restriction that
(a > ora. If oa < b , then since

Ub(l - a) > a(l - ab) (Caa < ab) (22)

we see that the inequality of equation (18) is also satisfied for this case.
Thus, the experiment at P = 0 will not yield any further information than
that which could be found from testing equations (18) and (19).

Another inequality on the wab which may not be as experimentally use-
ful, is derived in Appendix II. If Oa + as < 1, then if wb = 0,

0ab -aa;bLp, (a + a0 < 1) (23)

while if (a + osb) 1,

wab 2 ( a± + ab - 1 - craab)Lp (<ao + ob 2 1). (24)

If a third solute which is electrically neutral and impermeable is used at a
low concentration, either in conjunction with or in place of an applied pres-
sure, all the results which have been derived in this paper are still applicable.
This is because whenever the term P was used previously, it can be replaced
by (P - RTAc) where c is the concentration of the impermeable solute.
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DISCUSSION

The inequalities of equations (18-20) were used to analyze the data of Galey
and Van Bruggen (1970). If equation (14) of this paper is compared to
equation (4) of their paper, we see that

* P12
Wb c_ PRT (25)

where the experimental values of P12 are listed in their paper. Since the
value of Ca used in their experiment is 1 m, and P12 is expressed in cm hr - x,
equation (25) becomes

COab = 1.14 X 10-P12 (26)

where the units of o*b are cm3 dyne-' sec- 3. The values of Lp and a are listed
in their Table I. A sample of the results of this calculation is shown in our
Table I for the S & S B20 (Carl Schleicher and Schuell Company, Keene,
N.H.) membrane for mannitol as the tracer.

TABLE I

TEST OF RELATION Wa < a(l - ab)L, for
S & S B20 MEMBRANE FOR MANNITOL AS TRACER

(FROM GALEY AND VAN BRUGGEN, 1970)

L, = 0.66 X 10-10 cm3 dyne- I sec '-

a, = 0.055 aob

Tracer (a) Osmotic solute (b) w tb oa(1 - ab)Lp Lp/4

Mannitol Mannitol 0.055 0.014 0.034 0.165
Sucrose 0.090 0.017 0.033 0.165
Raffinose 0.10 0.012 0.033 0.165
Dextran <1 0.30 0 0.165

Units of ta*b , a(l - ab)L, and L,/4 are cm3 dyne -1' sec-' X 100°.

For the Diaflo UM-3 (Amicon Corporation, Cambridge, Mass.) and
GA Type B (General Atomic Division of General Dynamics, San Diego,
Calif.) membranes, the inequalities of equations (18) and (19) are satisfied
for mannitol, sucrose, and raffinose by at least a factor of 5. For the S & S
B20 membrane, the inequalities are also satisfied for mannitol, sucrose, and
raffinose, but by a lesser factor which may be as low as 1.8. However, w* >
L,/4 for the three solutes when dextran is the osmotic agent. This would
imply that in order to explain the experimental results with dextran, solute-
solute interaction must be considered and heteroporosity alone will not suffice.
However, two points should be mentioned. The first is that when dextran is
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used as the tracer, the c*b is at least two orders of magnitude smaller than
when dextran is the osmotic solute. In contrast to this, the wcab's are approxi-
mately equal for the tracer and osmotic solute conditions of mannitol, sucrose,
and raffinose, respectively, even though the difference in concentration be-
tween tracer and osmotic solute for the latter three is much greater than for
the dextran. Also, the concentration of dextran as an osmotic solute, approxi-
mately 160 g/1000 g H 2 0, is so high that the van't Hoff equation may not
be valid (Charmasson, 1967). Both these factors raise serious questions as
to the applicability of the linear equations of this paper to the experiment
using dextran.

The experiments of Franz, Galey, and Van Bruggen (1968) with inulin
and sucrose were not analyzed since the data were not compatible with the
linear equations of this paper.

It should be emphasized that parameter agreement with the inequalities
of equations (18) and (19) does not prove that the solute drag hypothesis is
unimportant, but indicates only that the heteroporous membrane hypothesis
is consistent with the data.

APPENDIX I

Derivation of Equations (18) and (19)

Let a, _< (o. Since owab = 0, the relation for Wab of equation (17) may be written
as

ab = ( E aibi - - aab) L (A)

Since from equation (17) a = E oaL,/L, and by assumption 0 < obi < 1, then
i

E cTaibL i/Lp < a, (B)

and therefore

Wab < aa(1 - ab)Lp. (C)

In order to derive equation (18), we must show that a case exists for which the in-
equality of equation (C) can be replaced by an equality. Consider a membrane in
which aai and abi are either 0 or , and let bi be I when as is 1. (Since a, < ab,

this is possible.) In this case, .igbi i = a and together with equation (C),

equation (18) is proved.
An analogous argument can be made to derive equation (19).
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APPENDIX II

Derivation of Equations (23) and (24)

Since a,i and obi are taken as nonnegative, E (TaiCbiLp, > O. In order to derive
equation (23), we must find a case for which this inequality can be replaced by an
equality. First, let a + ab < 1 and let ai and rbi be either 0 or 1, but when ai is
1, ai is 0 and therefore -i `,i7WbiLpi = 0. Insertion into equation (17), remember-
ing that woa = 0, yields equation (23).

Second, let a + b 2 1, and define ai and ai such that ai = (1 -ai),
abi = (I - abi)) Further, define Xa and ab such that

t L aiLpi

ra = 1 - a.
Lp

, (D)
Z abiLpi

a b = = 1 -ab.
Lp

Therefore aa + ab < 1 and by the argument used in the first case Es a5iObiLi 0.
Since

E TiaibLjpi = E (1 - Gai)(l - b1)Lpv
(E)

= L - rLp, - bL,p + a ia.biLp

it follows that

E aiabLp i > L(1 - a' - b) = Lp(o + ab - I). (F)

Insertion of equation (F) into equation (17) with o = 0 yields equation (24).
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