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The production of ergosterol lipid involves the activity of different enzymes and is a crucial event for the Leishmania membrane
homeostasis. Such enzymes can be blocked by azoles and allylamines drugs, such as the antifungal butenafine chloride. This
drug was active on parasites that cause cutaneous and visceral leishmaniasis. Based on the leishmanicidal activity of butenafine
chloride and considering the absence of reports about the therapeutic potential of this drug in cutaneous leishmaniasis, the
present work is aimed at analyzing the efficacy of butenafine formulated in two different topical delivery systems, the self-
nanoemulsifying drug delivery systems (BUT-SNEDDS) and in a SNEDDS-based nanogel (BUT-SNEDDS gel) as well as in the
free form in experimental cutaneous leishmaniasis. Physical studies showed that both formulations were below 300 nm with low
polydispersity (<0.5) and good colloidal stability (around -25mV). Increased steady-state flux was reported for nanoenabled
butenafine formulations with reduced lag time in Franz cell diffusion assays across Strat-M membranes. No toxic or
inflammatory reactions were detected in animals treated with BUT-SNEDDS, BUT-SNEDDS gel, or butenafine. Animals
topically treated with butenafine (free or nanoformulated) showed small dermal lesions and low tissue parasitism. Furthermore,
BUT-SNEDD gel and butenafine presented similar efficacy than the standard drug Glucantime given by the intralesional route.
Increased levels of IFN-γ were observed in animals treated with BUT-SNEDDS gel or butenafine. Based on these data, the
antifungal drug butenafine chloride can be considered an interesting repurposed drug for the treatment of cutaneous leishmaniasis.
1. Introduction

Leishmaniasis is an infectious disease caused by protozoans
from the Trypanosomatidae family, Kinetoplastida order,
and Leishmania genus, that affect humans, wild and domestic
animals, and invertebrates belonging to the Lutzomyia and
Phlebotomus genuses [1, 2]. Leishmaniasis is considered a
complex of diseases with important clinical-immunological
spectrum and epidemiological diversity. Depending on the
infecting species and the intrinsic features of the host, cuta-
neous or visceral leishmaniasis can be clinically character-
ized. The cutaneous form of leishmaniasis is caused by
different Leishmania species; therefore, a spectrum of clinical
signs can be found, ranging from a single localized skin
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lesion, that can heal spontaneously, to multiple ulcerated or
nonulcerated lesions in the skin and/or mucosa; these types
of lesions frequently require a more complex treatment [3].
In spite of that, the treatment of all clinical forms of leish-
maniasis is based on few therapeutic alternatives, such as
pentavalent antimonials and amphotericin B [4].

Pentavalent antimonials remain the first choice of treat-
ment for all clinical forms leishmaniasis, mainly in Latin
America [5]. Additionally, pentavalent antimonials induce
significant side effects such as gastrointestinal intolerance
and cardiotoxicity, resulting in low patient compliance and
termination of therapy prior to achieving therapeutic out-
comes [6]. In some geographic areas, such as in India,
drug-resistant parasites have been frequently detected [7].
In such situations, amphotericin B is used as the second-
line drug. Amphotericin B is effective in treating leishmania-
sis [8], but it interacts with the host cell membrane inducing
mild to severe adverse effects in patients, including fever and
renal and gastrointestinal toxicities [9, 10]. Moreover,
amphotericin B-resistant parasites have been isolated [11].
To mitigate toxicity of amphotericin B micellar formulation,
liposomal formulations of amphotericin B are clinically indi-
cated [12], but their use is limited in developing countries
due to high cost and temperature instability [12, 13]. An
amphotericin B cream (3%w/w, Anfoleish) is currently
under clinical trials, but preliminary results have shown var-
iable efficacy in patients with CL as a result of limited skin
permeability [14], while a range of adverse effects such as
itching, redness, peeling dryness, and irritation of the skin
were observed in patients [15]. Miltefosine, the only orally
bioavailable licensed treatment for leishmaniasis, has shown
different levels of efficacy [16]. Paromomycin, only available
licensed formulation, has shown poor efficacy in treating
post-kala-azar dermal leishmaniasis in India; however in the
New World, it shows variable efficacy in cutaneous leishman-
iasis [17, 18]. Altogether, the prevalence of the disease with
distinct outcomes, the ineffectiveness, and toxicity of the avail-
able drugs emphasizes the need for more active and less toxic
treatments based on natural or synthetic molecules [19–21].

The sterol biosynthesis pathway is shared by fungi and
Leishmania sp. [22, 23]. Molecules generated in this bio-
chemical pathway, such as ergosterol and other 24-methyl
sterols, are important for the maintenance of the cell mem-
brane homeostasis. In fact, studies already showed that anti-
fungal drugs are active on Leishmania parasites, and these
drugs can be selective toward parasites, since host cells do
not produce ergosterol, and depending on the drug, the
impact towards the homeostasis of the host can be absent
or tolerable [24, 25]. The class of the antifungal azoles such
as ketoconazole, fenticonazole and tioconazole, that were
previously shown to inhibit the C14α-demethylase enzyme,
was able to eliminate promastigote and amastigote of Leish-
mania sp. in vitro and in vivo [26, 27]. Additionally, squalene
epoxidase enzyme, that converts squalene to lanosterol, an
important precursor of ergosterol, has also been successfully
inhibited by antifungal drugs belonging to the allylamine
class [28, 29]. The most studied allylamine drug so far is ter-
binafine that was active on promastigote and amastigote
forms of Leishmania sp. [30, 31]. Additionally, patients with
CL treated with terbinafine by the oral route showed partial
to full recovery [32], while cutaneous lesions of patients
treated with topical terbinafine (32.25–75.5mg/day depend-
ing on the size of the skin lesion) plus Glucantime (20mg/kg
by intramuscular route) during 20 days showed faster
improvement in comparison to patients treated with placebo
ointment [33].

Besides terbinafine, other antifungal drugs that target
squalene epoxidase enzyme impacted Leishmania sp. sur-
vival. Butenafine hydrochloride and tolnaftate drugs, that
are traditionally indicated for the topical treatment of super-
ficial mycosis, were active on promastigote and amastigote
forms of L. (L.) amazonensis, L. (V.) braziliensis, and L. (L.)
infantum [34, 35], and by morphological and/or physiologi-
cal studies, the lipids from parasites were affected during
the in vitro treatments. These and other studies highlight that
squalene epoxidase enzyme is an attractive target to be inhib-
ited aiming at impairing the parasite viability.

In spite of elegant works on drug repurposing in leish-
maniasis, few reports provided in vivo validation of drug can-
didates. To the best of our knowledge, this is the first study to
demonstrate the in vivo efficacy of butenafine in cutaneous
leishmaniasis. Here, we present a topical butenafine formula-
tion that involves loading butenafine in self-nanoemulsifying
drug delivery systems (SNEDDS) and SNEDDS-enabled
hydrogels in an attempt to improve butenafine permeation
across the skin and localize effective concentrations butena-
fine within the dermis, increasing the efficacy of butenafine
in American cutaneous leishmaniasis.

2. Material and Methods

2.1. Materials. Butenafine hydrochloride (>98%, HPLC) was
obtained from Kemprotec Ltd. (Smailthorn, Middleton-in-
Lonsdale, Cumbria, UK). Labrasol (caprylocaproyl macrogol-
8 glycerides), Transcutol P (diethylene glycol monoethyl
ether), and Capryol 90 (propylene glycol monocaprylate)
were a gift from Gattefosse (Alpha Chemicals, Berkshire,
UK). Carbopol 940 and all other chemicals were purchased
from Fisher Scientific UK (Loughborough, UK).

2.2. Preparation of Butenafine Nanoformulations. BUT-
SNEDDS (2.125%w/w) were prepared by dispersing BUT
(0.0425 g) within an isotropic mixture of Labrasol (0.6 g),
Capryol 90 (0.2 g), and Transcutol P (1.2 g), respectively
[36, 37]. The ratio of oil : surfactant and solvent was opti-
mized in terms of particle size using tertiary diagrams, and
choice of surfactants and solvents was based on solubility
studies [36, 37]. The BUT-SNEDDS were magnetically stir-
red for 15 minutes and left under stirring in a water bath
(50 rpm, Kotterman D1365, Hanigsen, Germany) at 37°C
overnight for 16 hours [20]. Blank SNEDDS were produced
using the same methodology but without adding BUT.

To prepare BUT-SNEDDS gel (0.70%w/w), Carbopol
940 (1 g) was added in deionized water (25mL) and left to
swell overnight. The pH of the swollen gel (10 g) was then
adjusted to pH 6.5 by addition of sodium hydroxide
(~0.78mL, 5M). Neutralised Carbopol 940 gel (10 g) and
BUT-SNEDDS (2.125%w/w, 5 g) (final pH: 6:5 ± 0:1,
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Accumet AB200 pH meter, Fisher Scientific, Loughborough,
UK) were mixed to obtain BUT-SNEDDS gel.

2.3. Characterization of Prepared SNEDDS and SNEDDS Gel
in terms of Particle Size and Colloidal Stability. Blank and
butenafine-loaded SNEDDS and SNEDDS gels were diluted
with deionized water (pH6:5 ± 0:1) (5mg in 30mL of water
and 16.8mg in 1.5mL of water, respectively). SNEDDS sam-
ples were vortexed and left to stand for 15 minutes prior to
analysis. Gels were diluted and centrifuged (5,000 rpm, 5
minutes, SciSpin, Micro Centrifuge, Shropshire, UK) to
remove carbomer, which is insoluble in water, and the super-
natant was left to stand for 15 minutes prior to analysis. Par-
ticle size and zeta potential were measured as previously
described [13, 20, 36, 38] using a Nano-ZS Zetasizer (Mal-
vern Instruments, Worcestershire, UK). The data were ana-
lyzed using the Contin method of data analysis [36]. The
accuracy of the instrument was assessed periodically using a
drop of latex beads (polystyrene, mean size 0.1μm) in
50mM sodium chloride (dispersed phase). All measurements
(n = 13) were performed in triplicate, and results presented as
the mean ± SD were reported.

Zeta potential (Malvern Nano-Zs, Malvern Instruments,
UK) was measured for the diluted formulations using the
Doppler electrophoresis technique. Analysis of the Doppler
shift (Fourier transformed) was done by using mixed-mode
measurement phase analysis light scattering (M3-Pals).
The viscosity of the sample was hypothesized to be the vis-
cosity of water at 25°C. All measurements were performed
in triplicate, and results presented as the mean ± SD were
reported [20].

2.4. Franz Cell Diffusion Studies. Franz cells (of 12mL capac-
ity) were mounted with a semisolid Teflon holder with a dif-
fusional area of 1.327 cm2. Compartments were rinsed with
deionized water and methanol, and a stirrer bar (3 × 6mm)
was placed inside. To ensure sink conditions, the receptor
compartment was filled with a mixture of 0.1% v/v trimethy-
lamine buffer (adjusted to pH5:00 ± 0:1 using 1M hydro-
chloric acid and 1M sodium hydroxide when needed) and
methanol (9 : 1 v/v), preheated to 37°C. Strat-M membranes
for transdermal diffuse testing (Millipore) were mounted to
adequately cover the receptor chambers. The donor compart-
ment and the receptor compartment were tightly sealed using
a thin layer of KORASILON Paste silicone grease (Mittelvis-
kos Kurt Obermeier GmbH & Co. KG) and Parafilm™ prior
to being clamped together. The donor chamber was filled
with 0.1% trimethylamine buffer (0.4mL) and covered with
Parafilm™ prior to being placed in a water bath at 37°C
(RCT basic, IKA® England Ltd., Oxford, UK). After 0.5 h,
the buffer was removed from the receptor chamber and was
collected for analysis. The receptor chamber was refilled with
fresh trimethylamine buffer and methanol mixture pre-
warmed to 37°C. The trimethylamine buffer in the donor
chamber was removed, and the formulations (BUT SNEDDS
1% or BUT SNEDDS gel 1%; 0.4 g) or butenafine solubilized
in PBS plus 1% DMSO (10mg/mL; 0.4mL/chamber) was
added to the donor chamber ensuring it was in contact with
the Strat-M membranes. Samples (0.3mL) were withdrawn
at predetermined times (5min, 10min, 15min, 30min,
60min, 120min, 180min, 240min, 360min, and 480min)
from the receptor chamber using a 1mL syringe with a 21 g
needle (38mm in length), and samples were analyzed by
HPLC as described below. The receptor chamber was imme-
diately replenished with prewarmed trimethylamine buffer
and methanol mixture (0.3mL).

Collected samples were analyzed by HPLC which was
equipped with a Jasco PU-1580 pump, a Jasco AS-2050 Plus
autosampler, and a Jasco UV-1575 UV-visible detector. Inte-
gration of the peaks was performed with the program Borwin
1.5 for PC (JMBS Developments). A Phenomenex LiChro-
sorb C18 reverse phase HPLC column (250 × 2:6mm, 5μm,
100Å) was used for analysis. An isocratic elution was used
with a mobile phase consisting of freshly prepared and
0.45μm nylon filtered 0.1% v/v trimethylamine buffer
(adjusted to pH 5:00 ± 0:1 using 1M hydrochloric acid and
1M sodium hydroxide when needed) and HPLC grade aceto-
nitrile (25 : 75 v/v). The flow rate was set at 1.2mL/min, and
the injection volume was 40μL. Detection was carried at
282 nm and a linear calibration curve was achieved between
0.1 and 100μgmL-1 (R2 > 0:999).

Regression analysis was used to calculate the slopes and
intercepts of the linear portion of each graph. The steady-
state flux (JSS), permeability coefficient (P), the diffusion
coefficient, and the lag time were estimated as previously
described in Lalatsa et al. [36]. Each formulation was tested
at least in triplicate.

2.5. Animals. Six- to eight-week-old female BALB/c mice
were obtained from Medical School of São Paulo University.
This study was carried out in strict accordance with the rec-
ommendations in the Guide for the Care and Use of Labora-
tory Animals of the Brazilian National Council of Animal
Experimentation (http://www.cobea.org.br). The protocol
was approved by the Committee on the Ethics of Animal
Experiments of the Institutional Animal Care and Use Com-
mittee at the Medical School of São Paulo University (CEP
322/12). For all experimental procedures, mice were anaes-
thetized or euthanized with thiopental (50 and 150mg/kg,
respectively).

2.6. Histological Changes in the Skin of Healthy BALB Mice
Treated with Butenafine-Containing Nanoformulations.
Thirty-five female BALB/c mice were divided into seven
groups: group 1 was treated topically with SNEDDS (con-
taining 10mg of butenafine); group 2 was treated topically
with BUT-SNEDDS gel (containing 10mg of butenafine),
group 3 was treated topically with butenafine solubilized in
DMSO (10mg of butenafine), and group 4 was injected intra-
lesionally with 100mg/kg of Glucantime. Groups 5 and 6
were topically treated with blank SNEDDS or blank SNEDDS
gels, respectively. Group 7 was topically treated with vehicle
solution (PBS plus 1% DMSO). Animals were treated once
a day for 15 days. Animals were physically examined weekly.
Forty-eight hours after the last application, animals were
euthanized with thiopental. Skin fragments were collected,
fixed in formalin, and stained with hematoxylin and eosin
to analyze histological changes.

http://www.cobea.org.br
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2.7. Parasites. L. (L.) amazonensis parasite (MHOM/BR/
73/M2269) was kindly provided by Prof. Dr. Fernando T.
Silveira from the criobank of “Leishmaniasis Laboratory
Prof. Dr. Ralph Laison”, Department of Parasitology, Evan-
dro Chagas Institute, Ministry of Health, Belém, Pará, Brazil.
The parasite was identified using monoclonal antibodies and
isoenzyme electrophoretic profiles at the Leishmaniasis Lab-
oratory of the Evandro Chagas Institute (Belém, Pará State,
Brazil). This parasite was grown in Roswell Park Memorial
Institute-1640 medium—RPMI 1640 (Gibco®, Life Technol-
ogies, Carlsbad, CA, USA), supplemented with 10% heat-
inactivated fetal bovine serum, 10μg/mL of gentamicin, and
1,000U/mL of penicillin (R10) at 25°C. Promastigote forms
in the stationary phase were used.

2.8. Infection and Experimental Treatment. Thirty-five male
BALB/c mice were subcutaneously infected in the base of tail
with 106 promastigote forms of L. (L.) amazonensis, and five
BALB/c mice received only sodium chloride 0.9% (w/v)
under the same route (healthy group). Four weeks after infec-
tion, L. (L.) amazonensis-infected BALB/c mice were divided
into seven groups: group 1 (G1) was constituted by infected
animals that received only vehicle solution (PBS plus 1%
DMSO); groups 2 (G2) and 3 (G3) were treated with blank
SNEDDS or blank SNEDDS gels, respectively; group 4 (G4)
was treated with BUT-SNEDDS (containing 10mg of bute-
nafine); group 5 (G5) was treated topically with BUT-
SNEDDS gel (containing 10mg of butenafine), group 6
(G6) was treated topically with butenafine (10mg of butena-
fine) solubilized in PBS plus 1% of DMSO, and group 7 (G7)
was injected intralesionally with 100mg/kg of Glucantime.
Groups 1 to 6 were treated topically with butenafine-
containing formulations, blank formulations, butenafine, or
vehicle solution, while G7 was injected intralesionally. Group
8 was constituted by noninfected, nontreated animals. Ani-
mals were treated for 15 consecutive days once daily. The
physical conditions of the animals were monitored once
a week. Two weeks after the last application, animals were
euthanized with thiopental. Skin fragments were collected,
fixed in formalin, and stained with hematoxylin and eosin
to analyze histological changes. There was no dead prior
to the endpoint. In all experiments, parasites were in sta-
tionary phase of growth, and never excessed three passages
in vitro.

2.9. Clinical Course of Lesion Development and Determination
of Parasite Burden in the Skin of Infected and Treated Animals.
The clinical course of lesion development was evaluated
weekly by recording the average diameter of the tail mea-
sured as the mean of tail base diameters in horizontal and
vertical directions using a caliper. The parasite load in the
skin was determined using the quantitative limiting dilution
assay, as previously described [39]. Briefly, a skin fragment
from the base of tail was aseptically excised, weighed, and
homogenized in Schneider’s medium. The skin suspensions
were subjected to 12 serial dilutions with four replicate wells.
The number of viable parasites was determined based on the
highest dilution that promastigotes could be grown after 10
days of incubation at 25°C.
2.10. Cytokine Production Studies. The subiliac and popliteal
lymph nodes from the different groups were aseptically col-
lected and macerated in R10 medium, and the number of
cells estimated under trypan blue exclusion dye. Cells were
adjusted at 5 × 105 cells/well and stimulated with 5.0μg of
whole antigen of L. (L.) amazonensis or 1.0μg of concanava-
lin A, as a positive control; negative controls were cultivated
only with R10 medium during 72 h in a humidified incuba-
tor, 37°C, 5% CO2. Following this experimental time, super-
natants were collected, and the amounts of IL-4 and IFN-γ
(BD, Franklin Lakes, NJ, USA) were quantified by sandwich
enzyme-linked immunosorbent assay (ELISA) in accordance
with the manufacturer’s recommendations.

2.11. Statistical Analysis. The results were expressed as the
mean ± standard deviation of three independent experi-
ments, and the nonparametric Mann–Whitney U test was
used to compare results among groups. Differences were con-
sidered statistically significant at 5% significance level
(p < 0:05). GraphPad Prism 5 (GraphPad Software, Inc., La
Jolla, CA, USA) was used to analyze the results.

3. Results

3.1. Measurement of Particle Size and Zeta Potential of
Nanoformulations. Prepared BUT-SNEDDS and BUT-
SNEDDS gel illustrated sizes consistently below 300nm
(Table 1) with good colloidal stability. The particle size of
BUT-SNEDDS and BUT-SNEDDS gel was similar indicating
the ability of nanoparticles forming after dilution of the gels
in aqueous environments. Viscosity of the prepared hydrogels
was appropriate for skin application avoiding running [36].

3.2. Franz Cell Diffusion Studies. In the permeability studies,
it was observed that butenafine-containing formulations dis-
played higher flux rate, permeability, and diffusion coefficients
through the Strat membrane in comparison to the butenafine
solubilized in DMSO (p < 0:05). Additionally, the formula-
tions showed a significant lower lag time compared to free
butenafine which can be explained for the slower release of
the drug (p < 0:05). These data are summarized in Table 2.

3.3. Histological Changes in the Skin of Healthy BALB Mice
Treated with Butenafine-Containing Nanoformulations.
BALB/c mice were treated topically with formulations
containing butenafine (10mg of butenafine), butenafine sol-
ubilized in DMSO (10mg), and blank formulations or intra-
lesionally treated with Glucantime (100mg/kg) once a day
during 15 days. Forty-eight hours later, animals were eutha-
nized and fragments of the skin were collected.

The histological section of the skin from nontreated
BALB/c mice showed no morphological changes in the epi-
dermis and dermis layers (Figure 1(a)). Similarly, skin from
animals treated with blank SNEDDS and blank SNEDDS gels
(Figures 1(b) and 1(c), respectively), BUT-SNEDDS and
BUT-SNEDDS gel (Figures 1(d) and 1(e), respectively), or
butenafine solubilized in DMSO (Figure 1(f)) showed nor-
mal morphology of the epidermis and dermis; additionally,
no signs of inflammation were observed. Animals treated
with Glucantime (Figure 1(g)) did not show changes in the



Table 1: Mean particle size, polydispersity, and zeta potential of
prepared batches of BUT-SNEDDS and BUT-SNEDDS gel (n = 4).

Formulation
Particle size

(nm)
Polydispersity

Zeta potential
(mV)

BUT-SNEDDS 185 ± 2 0:343 ± 0:024 −20:3 ± 3:0
BUT-SNEDDS gel 235 ± 11 0:458 ± 0:032 −24:3 ± 1:5
Blank SNEDDS 245 ± 27 0:578 ± 0:011 −14:8 ± 2:3
Blank SNEDDS gels 294 ± 85 0:605 ± 0:032 −22:6 ± 1:9
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epidermis; however, a diffuse inflammatory infiltrate was
identified in the dermis, mainly composed of mononuclear
cells (Figure 1(g), white arrow).

3.4. Clinical Course of the Lesion Development and
Determination of Parasite Burden in the Skin of Infected
and Treated Animals. All the infected control groups
[infected nontreated (G1), treated with blank SNEDDS
(G2), or blank SNEDDS gel (G3)] showed similar growth of
lesions that increased over eight weeks of postinfection
(Figure 2(a)). Skin lesions in animals treated with BUT-
SNEDDS (G4) and BUT-SNEDDS gel (G5) as well as butena-
fine (G6) and Glucantime (G7) significantly decreased in size
after 6 weeks of postinfection and remained significantly
smaller until the end of the experiment (8 weeks) compared
to the control groups (p < 0:05, Figure 2(a)).

In comparison to the controls, animals treated topically
with nanoenabled butenafine formulations or butenafine
presented lower tissue parasitism (p < 0:05). Additionally,
animals treated with Glucantime (G7) by the intralesional
route also showed low parasitism in the skin compared to
the controls (p < 0:05). Furthermore, BUT-SNEDDS gel
(G5) was more efficient at decreasing tissue parasitism in
infected animals than blank SNEDDS gel (G3). Although
efficient at decreasing the lesion size, BUT-SNEDDS (G4)
displayed similar ability to decrease parasite load than blank
SNEDDS (G2) (p > 0:05). Treatment with BUT-SNEDDS gel
(G5) and butenafine (G6) demonstrated comparable efficacy
to intralesional administration of Glucantime (G7) (p > 0:05
), as shown in Figure 2(b).

3.5. Histological Changes in Infected Animals Treated with
Free or Nanoformulated Butenafine. Histological sections
from the skin of infected control animals, i.e., infected non-
treated (G1), treated with blank SNEDDS (G2), or with blank
SNEDDS gels (G3) as in Figures 3(a)–3(c), respectively, dis-
played complete disruption of the epidermis and dermis.
Macrophages were highly infected with amastigotes in such
control groups; additionally, neutrophil and eosinophil
immune cells were detected throughout these sections. Histo-
logical sections from animals treated with BUT-SNEDDS
(G4) displayed lower tissue parasitism compared to the con-
trols (G1, G2, and G3), but mixed inflammatory infiltrate still
persisted, with the involvement of mononuclear and poly-
morphonuclear immune cells (Figure 3(d)). On the other
hand, lesions from animals treated topically with BUT-
SNEDDS gel (G5) (Figure 3(e)) or intralesionally with Glu-
cantime (G7) (Figure 3(g)) showed inflammatory infiltrates
characterized by the presence of lymphocytes and few
infected macrophages (inset in the respective figures). In
the histological section of the skin from BALB/c mice treated
with free butenafine (G6) (Figure 3(f)), inflammatory infil-
trate was constituted of mononuclear cells, mainly with the
involvement of few polymorphonuclear cells. Figure 3(h)
shows histological section from the skin of healthy BALB/c
mice (G8). Black arrows indicate amastigote forms.

3.6. Cytokine Production Studies. Mononuclear cells from
animals treated with blanks (G2 and G3), BUT-SNEDDS
(G4), SNEDDS gel (G5), and butenafine (G6) produced sim-
ilar amounts of IL-4 (Figure 4(a)) in comparison to the
infected control animals (G1). Cells from animals treated
with Glucantime (G7) produced significant low levels of IL-
4 in comparison with the infected control group (p < 0:05).

In comparison with infected control (G1), mononuclear
cells from animals treated with BUT-SNEDDS gel (G5) or
butenafine (G6) produced significant high levels of IFN-γ
(p < 0:05). Cells from animals treated with blanks (G2 and
G3), BUT-SNEDDS (G4), or Glucantime (G7) did not alter
the amounts of IFN-γ produced (p > 0:05, Figure 4(b)). Ani-
mals treated with BUT-SNEDDS gel (G5) produced higher
amounts of IFN-γ than animals treated with blank SNEDDS
gel (G3) (p < 0:05).

Furthermore, it was possible to observe that the control
groups (G1, G2, and G3) showed an elevated IL-4/IFN-γ
ratio, demonstrating that these animals from an immunolog-
ical point of view developed an expressive Th2 immune
response, although the G4 group, treated with BUT-
SNEEDS, also developed a Th2 response. In contrast, animals
treated with BUT-SNEDDS gel (G5), butenafine (G6), and
Glucantime (G7) were able to inhibit the production of Th2
immune response, and especially, G5 and G6 upregulated
Th1 immune response.

Lymph node cells stimulated with concanavalin A pro-
duced high amounts of both cytokines (data not shown),
while negative controls (cells cultured with R10 only) did
not produce quantifiable levels of both cytokines (data not
shown).

4. Discussion

The cell membrane physiology of Leishmania parasites is
dependent on the formation of ergosterol and other 24-
alkyl sterols; furthermore, this biochemical route is complex
and different leishmanial enzymes take part of this process.
Thus, the inhibition of key molecules may disrupt the bal-
ance of the cell membrane and induce death in Leishmania
sp., caused by depletion of ergosterol precursors [40]. Bute-
nafine, an antifungal drug, has been shown to eliminate pro-
mastigote and intracellular amastigote forms of L. (L.)
amazonensis and L. (V.) braziliensis selectively, while being
able to induce structural changes associated with lipid recy-
cling and programmed cell death in promastigote forms of
L. (L.) amazonensis [34]. Possibly, the leishmanicidal activity
of butenafine relies on the fact that it is able to inhibit squa-
lene epoxidase enzyme, and once inhibited, squalene as well
as other intermediated molecule will not be produced,



Table 2: Permeation parameters for butenafine and butenafine nanoenabled formulations across Strat membrane.

Parameter BUT-SNEDDS gel BUT-SNEDDS Butenafine

Steady-state flux (μg/cm2/h) 52:2 ± 2:7∗ 51:29 ± 0:34∗ 35:60 ± 12:10
Lag time (min) 2:14 ± 0:01∗ 2:60 ± 0:01 5:28 ± 0:01
Permeability coefficient (cm2/h) 5:22 ± 0:27∗ 5:13 ± 0:03∗ 3:56 ± 1:21
Diffusion coefficient (cm/h) 0:57 ± 0:03∗ 0:56 ± 0:01∗ 0:39 ± 0:27
∗p < 0:05 indicates statistical significance in comparison to the permeation parameters for butenafine.
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resulting in a deficiency in basic processes required for
Leishmania sp. survival, such as membrane recycling and
cell division [29].

Although butenafine is active on Leishmania sp. parasites
[41], there are not available clinical formulations to support
its topical use for the treatment of cutaneous leishmaniasis.
Thus, this study demonstrated for the first time that applying
butenafine in the infected skin of BALB/c mice decreased the
size of the skin lesion as well as parasitism. Additionally,
butenafine was formulated in cost-effective, easily scalable
nanosystems prepared from generally regarded as safe excip-
ients that were highly efficient at killing tissue amastigotes.
These data provided preclinical proof of concept of the bute-
nafine, administered in formulations or in the free form,
which is effective in cutaneous leishmaniasis caused by L.
(L.) amazonensis.

Physical data obtained demonstrated that both BUT-
SNEEDS and BUT-SNEDDS gel have the potential to pene-
trate through the skin, since their particle sizes are 235 nm
or below, with a low polydispersity index (<0.5) and a zeta
potential around -24mV. Previous studies showed that for-
mulations containing particles with size lower than 300nm,
presenting low polydispersity (~ 0.4) and zeta potential
below -25mV, have high degree of stability, present low ten-
dency to form aggregates, and have potential to penetrate
through biological systems, such as the skin [42]. Thus, phys-
ical features suggested that both BUT-SNEEDS and BUT-
SNEDDS gel are suitable formulations to be employed in
studies aiming at analyzing butenafine efficacy by the topical
route. In fact, studies employing Strat-M artificial mem-
branes, that mimic the skin and transcutaneous permeation,
showed that butenafine formulated into SNEDDS and
SNEDDS gel presented high steady-state flux, permeability,
and diffusion coefficients suggesting a faster permeability
through the membrane than butenafine solubilized in PBS
plus 1% DMSO; additionally, a lower lag time observed in
both formulations showed that butenafine formulated into
SNEDDS and SNEDDS gel diffused faster than butenafine
through artificial membranes.

Healthy BALB/c mice were treated with BUT-SNEDDS
and BUT-SNEDDS gel to analyze possible toxic effects of for-
mulation in the skin of animals. In this case, no histological
changes were observed in animals treated with butenafine,
butenafine loaded in nanoenabled formulations, or blank for-
mulations. Altogether, data suggested that free and nanoen-
abled formulations are not toxic to BALB/c skin after
topical application for 15 consecutive days. In spite of that,
it is important to point out that an inflammatory infiltrate
was detected in the dermis of animals injected with Glucan-
time. The severe side effects induced by Glucantime can be
avoided by applying it intralesionally; however, some
patients can experience local inflammatory reactions, associ-
ated with the type IV hypersensitivity [43, 44], and a similar
process may take place in BALB/c mice.

Butenafine, BUT-SNEDDS, and BUT-SNEDDS gel were
able to decrease the size of the skin lesions in BALB/c mice.
Blank formulations did not alter the course of the infection.
BUT-SNEDDS gel was more efficient in reducing parasite
load in the lesions compared to BUT-SNEDDS. According
to data on artificial membrane permeation, both BUT-
SNEDDS and BUT-SNEDDS gel have the same potential to
permeate by membranes; however, BUT-SNEDDS has
higher viscosity (data not shown), favoring the draining out
of this formulation, that can alter the efficacy of this formula-
tion. Moreover, animals treated with BUT-SNEDDS gel or
butenafine demonstrated similar lesion size and tissue para-
sitism in comparison to the animals treated with Glucantime.
In previous studies with terbinafine, the latter also was able to
inhibit the development of the skin lesion in BALB/c mice
infected with L. (L.) major [45], and humans naturally
infected with Leishmania sp. receiving terbinafine by oral
route or topically associated with Glucantime had improve-
ments in the skin lesions [32, 33], suggesting that inhibitors
of squalene epoxidase enzyme can be interesting targets to
characterize new classes of leishmanicidal drugs. In addition
to the therapeutic activity of butenafine, the topical route of
application offers many advantages compared to injections,
such as the possibility of self-administration, pain-free, no
need for patient hospitalization, enable to bypass the liver
metabolism of drugs, and more importantly is noninvasive;
thus, this can be considered a useful nanomedicine to treat
cutaneous leishmaniasis. By contrast, Glucantime, the first-
line drug, although effective in the present study, for human
treatment has been considered outdated, highly toxic, inva-
sive, and painful, and more importantly, some patients are
refractory to this treatment [46–48], which in fact can limit
its efficacy.

The same pattern observed in the studies of the skin par-
asitism was found in the histological analysis. In the skin of
the control groups [infected and nontreated (G1), infected
and treated with blank SNEDDS (G2), or blank SNEDDS gels
(G3)], an intense inflammatory infiltrate was observed and it
was mainly composed by heavily infected macrophages. In
the skin of animals treated topically with BUT-SNEDD
(G4), intermediate number of amastigote forms was observed
along with an intense inflammatory infiltrate composed by
polymorphonuclear and mononuclear cells; in the skin of
animals treated with BUT-SNEDD gel (G5), few amastigote
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Figure 1: BALB/c mice were treated topically with butenafine chloride formulated in the self-nanoemulsifying drug delivery system
(SNEDDS) or in a SNEDDS-based nanogel (SNEDDS gel) containing butenafine (10mg of butenafine per dose), butenafine solubilized in
DMSO (10mg/dose), and blank formulations of the nanosystems or intralesionally treated with Glucantime (100mg/kg/dose) once a day
during 15 days. Forty-eight hours after the last dose, fragments of the skin from BALB/c mice were collected and analyzed by histology.
Histological section of the skin from (a) nontreated animals, (b) blank SNEDDS, (c) blank SNEDDS gel, (d) BUT-SNEDDS, (e) BUT-
SNEDDS gel, (f) butenafine, and (g) Glucantime. White arrow shows an area of inflammatory infiltrate.
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Figure 2: In vivo efficacy of butenafine and nanoenabled formulations in experimental cutaneous leishmaniasis. BALB/c mice were infected
into the base of the tail with 106 promastigote forms of L. (L.) amazonensis in stationary phase of growth. Four weeks after, infected animals
were topically treated once daily for 15 days with blank SNEDDS, blank SNEDDS gel, BUT-SNEDDS, BUT-SNEDDS gel, butenafine, and
Glucantime. Lesion sizes were analyzed weekly (a), and the skin parasitism from the base of tail, quantified by limiting dilution assay, was
analyzed at 8 weeks of postinfection (b). ∗p < 0:05 indicates statistical significance. G1: infected control; G2 and G3: animals treated with
blank SNEDDS or blank SNEDDS gels, respectively; G4: animals treated with BUT-SNEDDS; G5: animals treated BUT-SNEDDS gel; G6:
animals treated with butenafine; G7: animals treated with Glucantime.
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forms were identified (inset in Figure 3(e)), and mononuclear
cells were the main cells identified in the inflammatory infil-
trate; additionally, fibroblasts were observed around the
inflammatory cells that may be associated with the process
of skin remodeling [49], suggesting a superior therapeutic
activity of such formulation compared to BUT-SNEDD. A
low number of amastigote forms inside big intracellular vac-
uoles frommacrophages were observed in the skin of animals
with butenafine (G6); furthermore, an inflammatory process
composed by both mononuclear and polymorphonuclear
cells was identified in focal areas of the skin. The features
associated with the low number of parasitism along with
focal areas suggested that butenafine was active in the exper-
imental model cutaneous leishmaniasis. The skin of animals
treated by intralesional route with Glucantime (G7) pre-
sented similar features than the skin from G4, since few
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Figure 3: Skin histological section from infected controls: (a) infected, nontreated, (b, c) infected and treated with blank SNEDDS or blank
SNEDDS gel, respectively, and animals treated with BUT-SNEDDS or BUT-SNEDDS gel (d, e, respectively), butenafine (f), or Glucantime
(g). Skin histological section from healthy animals is shown in (h). Black arrows indicate intracellular amastigote forms. Insets show in
details amastigote forms of the skin histological sections from animals treated with butenafine loaded in gel (e) or Glucantime (g).
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Figure 4: Mononuclear cells from lymph nodes of treated and control BALB/c mice were isolated and cultured by 72 h under specific
stimulation with the whole antigen of L. (L.) amazonensis, following the levels of IL-4 (a) and IFN-γ cytokines (b) which were quantified
by ELISA. (c) IL-4/IFN-γ ratio. ∗p < 0:05 indicates statistical significance. G1: infected control; G2 and G3: animals treated with blank
SNEDDS or blank SNEDDS gels, respectively; G4: animals treated with BUT-SNEDDS; G5: animals treated with BUT-SNEDDS gel; G6:
animals treated with butenafine; G7: animals treated with Glucantime.
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amastigote forms were detected (inset in Figure 3(g)), but the
inflammatory infiltrate persisted that can be an effect of low
number of amastigote forms or even an effect of the drug,
since Glucantime triggered an inflammatory response in
the skin of healthy animals (Figure 1(g)) and humans [44].

In cutaneous leishmaniasis, IL-4 and IFN-γ cytokines
play antagonistic roles, as IFN-γ is capable of activating mac-
rophages that, in turn, will produce reactive species of nitro-
gen and oxygen and eliminate intracellular amastigote forms
[50]. On the other hand, IL-4 aids CD4+ Th2 lymphocyte dif-
ferentiation and inhibits Th1 generation [51]. In the present
study, the level of IL-4 in treated animals was unaltered when
compared to the control, suggesting differentiation of IL-4-
producing cells stimulated by the parasite antigens. Con-
versely, high levels of IFN-γ were detected in animals treated
with BUT-SNEDDS gel and butenafine, suggesting that bute-
nafine has immunomodulatory activity, and at least partially,
the leishmanicidal activity of this drug can be accounted due
to its immunomodulation [52]. Surprisingly, cells from ani-
mals treated with SNEDDS did not change the profile of
cytokine production. This can be explained by the low viscos-
ity of SNEDDS compared to SNEDDS gels and the inability
of SNEDDS to remain on the skin. On the other hand, mono-
nuclear cells from animals treated with Glucantime produced
low levels of both IL-4 and IFN-γ cytokines. Possibly, Glu-
cantime eliminates high number of parasites quickly and
the remaining ones are not able to induce the differentiation
of specific Th1 or Th2 anti-Leishmania T lymphocyte clones.
However, it was shown in vitro that butenafine, as well as
other squalene epoxidase inhibitors [26, 34, 35], was able to
eliminate amastigote forms after 24 h; thus, parasites can be
eliminated slower, allowing antigens to circulate and main-
taining clones of T cells. Recently, Yamamoto et al. [53]
observed that cells from BALB/c mice infected with L. (L.)
amazonensis and treated with amphotericin B also produced
low amounts of IL-4 and IFN-γ cytokines, pointing out to the
fact that low parasite numbers cannot stimulate a specific
immune response, and in fact, a minimum level is needed
to maintain an efficient inflammatory response. In addition,
it was possible to observe that groups treated with BUT-
SNEEDS gel or butenafine enhanced the efficacy of the
immune response, since a strong Th1 immune response
was triggered upon treatment, and as expected, the control
groups produced high levels of IL-4 and developed an
increased Th2 immune response.

In conclusion, butenafine chloride was successfully for-
mulated as nanoenabled stable gels for topical administra-
tion. BUT-SNEDDS gel showed high flux across healthy
mouse skin without causing any toxic, inflammatory, or
allergic reactions. Additionally, infected BALB/c mice top-
ically treated with BUT-SNEDDS gel or butenafine (vehi-
cle) showed reduced lesion size and parasite load similar
to that elicited by intralesional administration of Glucan-
time and these effects were associated with increase in
IFN-γ levels. Taken together, transcutaneous drug delivery
of butenafine can offer advantages over other invasive
routes of administration currently in use towards a cost-
effective, easily scalable, and safe topical repurposed ther-
apy for leishmaniasis.
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