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BIGCHEM: Challenges and Opportunities for Big Data

Analysis in Chemistry

Igor V. Tetko,*™ " Ola Engkvist,” Uwe Koch,"’ Jean-Louis Reymond,”® and Hongming Chen'”

Abstract: The increasing volume of biomedical data in
chemistry and life sciences requires the development of
new methods and approaches for their handling. Here, we
briefly discuss some challenges and opportunities of this
fast growing area of research with a focus on those to be
addressed within the BIGCHEM project. The article starts
with a brief description of some available resources for “Big
Data” in chemistry and a discussion of the importance of
data quality. We then discuss challenges with visualization
of millions of compounds by combining chemical and bio-
logical data, the expectations from mining the “Big Data”
using advanced machine-learning methods, and their appli-
cations in polypharmacology prediction and target de-con-

Introduction

The Wikipedia definition “Big Data”" is a term for data sets
that are so large or complex that traditional data process-
ing applications are inadequate also highlights that not
only the size but also the data complexity is very impor-
tant. In pharmaceutical research area, “Big Data” is emerg-
ing from the rapidly growing genomics data thanks to the
rapid development of gene sequencing technology. Like-
wise people start to ask the question if there is Big Data in
chemistry?

Over the past decade there actually has been a remark-
able increase in the amount of available compound activity
and biomedical data.”™ The definition of “Big Data” in
chemistry is generally not clear. Frequently, the “Big Data”
in chemistry refers to considerably larger databases than
commonly used ones (in orders of magnitude),®™ which
become recently available thanks to the emerging of new
experimental techniques such as high throughput screen-
ing, parallel synthesis etc., or as access to new chemical
information as result of automatic data mining (e.g., pat-
ents, literature or in house data collections).”® How to effi-
ciently mining the large scale of data in chemistry becomes
an important problem for the future development of the
chemical industry including pharmaceutical, agrochemical,
biotechnological, fragrances, and general chemical compa-
nies.

Big Data collected from literature usually are quite noisy
and the reasons are multiple. First of all, this could be due
to the biological assay itself, for example the original ex-
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volution in phenotypic screening. We show that the effi-
cient exploration of billions of molecules requires the de-
velopment of smart strategies. We also address the issue of
secure information sharing without disclosing chemical
structures, which is critical to enable bi-party or multi-party
data sharing. Data sharing is important in the context of
the recent trend of “open innovation” in pharmaceutical in-
dustry, which has led to not only more information sharing
among academics and pharma industries but also the so-
called “precompetitive” collaboration between pharma
companies. At the end we highlight the importance of edu-
cation in “Big Data” for further progress of this area.

periment errors, assay artifacts in screening etc. Secondly,
there lack of a standard way for annotating biological end-
points, mode of action and target identifier. Thirdly, errors
exist when extracting data values, units and/or chemical
name recognition for automatic literature mining. Some ac-
tions have been done to address these problems, e.g., im-
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proving data quality by applying promiscuity filters to
clean up the screening data, developing bioassay ontology
(BAO) tools to better organize and/or standardize the col-
lected data etc.”™"

In order to support data analysis, collection, sharing, and
dissemination several large projects, such as ELIXIR (https://
www.elixir-europe.org), eTox (http://www.etoxproject.eu),
BIGCHEM (http://bigchem.eu) and others, were initiated
under the sponsorship of European Commission. Many of
these activities are within the core area of chemoinformat-
ics. The BIGCHEM project was recently sponsored by EU
Horizon2020 program. The consortium includes academia,
big pharma companies, large academic societies (Helm-
holtz, Fraunhofer) and Small and Medium Enterprises
(SMEs). This project mainly aims to develop computational
methods specifically for Big Data analysis. Below, we briefly
review challenges and opportunities in the Big Data analyt-
ics area particularly focusing on several aspects, which are
going to be addressed in BIGCHEM project.

Data Repositories

Publicly available databases such as PubChem,”’ Bind-
ingDB, and ChEMBL™ (Table 1) represent examples of
large public domain repositories of compound activity
data. ChEMBL and BindingDB contain manually extracted
data from tens of thousands of articles. PubChem was origi-
nally started as a central repository of High Throughput
(HTS) screening experiments for the National Institute of
Health’s (USA) Molecular Libraries Program but also incor-
porates data from other repositories (e.g., ChEMBL and
BindingDB). Commercial databases, such as SciFinder,
GOSTAR and Reaxys (Table 1) have accumulated a large
amount of data collected from publications and patent
data. Similarly to public and commercially available reposi-
tories, industry has produced large private collections. For
example, more than 150M data points are available as part
of AstraZeneca International Bioscience Information System
(AZ IBIS) just for experiments performed before 2008.® The
data quality in databases can significantly vary depending
on data source, data acquisition procedures and curation
efforts. Accumulated chemical patents represent another
rich resource for chemical information. Large-scale text

Table 1. Data repositories
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mining has been done on patent corpus to extract useful
information. IBM has contributed chemical structures from
pre-2000 patents in PubChem.? SureChEMBL database!”
was launched in 2014 providing the wealth of knowledge
hidden in patent documents and currently contains 17 mil-
lion compounds extracted from 14 million patent docu-
ments.

Under the enormous pressure of developing new drug
with more restrained R&D budget, recent years have seen
large pharma companies increasingly exploring the so
called “open innovation” model for drug discovery re-
search. The collaboration between academics and pharma-
ceutical industry in terms of compound, data sharing has
been largely increased."® The examples include AstraZene-
ca-Sanger Drug Combination prediction challenge to devel-
op better algorithms for treatment of cancer.™ European
Lead Factory® is another collaboration effort of seven
pharma companies, SMEs and academic partners to create
a diverse library of 500k compounds by combining com-
pounds from partners, external users and newly synthe-
sized libraries and to screen these libraries against commer-
cial and public targets. Both academia and industry should
benefit from these kind of collaborative efforts, which can
result in more chemical and biological data being available
in the public domain. More interestingly, even the collabo-
rations between pharmaceutical companies on the so-
called “precompetitive” level, which was hardly to imagine
ten years ago, has become a trend. These efforts have
made sharing of data within each organization become
possible and lead to a further increase in the size of “Big
Data".?"??

Frequent Hitters Analysis

Big Data sometimes also means noisy data. Data coming
from HTS experiments could often be contaminated with
false positive and false negative results. The errors can
appear due to casual problems such as measurements
errors, robotic failure, temperature differences, etc., which
could be easily addressed with proper experimental proto-
cols (e.g. by repeated measurements). Unfortunately, there
are also systematic problems, such as low solubility in
water, degradation of compounds or “frequent hitters”

Database Unique compounds  Experimental Main data types

facts data types
ChEMBL v. 21% 1,592,191 13,968,617 1,212,831 PubChem HTS assays and data mined from literature
BindingDB™ 529,618 1,207,821 6,265 Experimental protein-small molecule interaction data
PubChem® > 60M >157M >1M Bioactivity data from HTS assays
Reaxys' >74M >500M - Literature mined property, activity and reaction data
SciFinder (CAS)™  >111M > 80M - Experimental properties, *C and 'H NMR spectra, reaction data
GOSTAR[® >3M > 24M > 5k Target-linked data from patents and articles
AZ IBIS® - > 150M - AZ in-house SAR data points
OCHEM™” > 600k >1.2M >400 Mainly ADMET data collected from literature
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(FH). The first two problems can be solved with, e.g. proper
analytical procedures, while the latter requires another type
of consideration.

FHs are usually referred to as compounds that provide
unspecific activity in different assays.”? Some of these com-
pounds cause nonspecific binding (e.g., reactive com-
pounds) or/and interfere with a particular assay technology
(e.g., light quenching, compounds forming micelles, lucifer-
ase inhibitors, formation of complexes with tagged proteins
for AlphaScreen). Others are promiscuous binders that in-
teract with different targets in a specific, dose-dependent
fashion™! and could constitute up to 99.8% of hits.”® An
analysis of results of these HTS data without filtering non-
specific binders and compounds that interfere with the
assay technology could result in a model to predict FHs
and not the target activity. Therefore carrying out FH analy-
sis would help to clean screening data and eventually help
to build better predictive model.

Various sources for compounds behaving as FH have
been proposed such as: chelation, redox activity, mem-
brane disruption, singlet oxygen production, compound
fluorescence, cysteine oxidation and non-selective reactivi-
ty.?® It was also estimated that 1-2% of drug-like com-
pounds could self-associate into colloidal aggregates that
non-specifically inhibit enzymes and other proteins at a typi-
cal screening concentration of 5 uM.”” Baell and Holloway
looked at compounds with activity in multiple assays""" and
found certain substructures, which appeared repeatedly in
promiscuous hits, and labeled them “Pan Assay Interference
Compounds (PAINS)".

The non-specific binding, however, can be also important
and be extensively exploited by nature. A significant over-
lap between PAINS substructures and natural products for
quinones and catechols®™ indicate that these scaffolds
were selected by evolution for their shotgun properties.
Other substructures such as 2-amino thiazoles have been
shown to be FHs in the sense of promiscuous binders, but
are also present in marketed drugs.”® An application of
alerts developed by chemical providers to flag problematic
compounds found that drugs are two-three folds enriched
with such alerts as compared to the screening libraries.®”
Thus, a blind exclusion of “undesired” compounds may
result in a significant risk to miss potentially interesting
compounds and thus throw the baby out with the bathwa-
ter.

In order to develop FH filters it is important to find
assays, which use similar technology. To be able to better
analyze and compare different HTS data the Bio-Assay On-
tology (BAO) concept was developed."**" It has been used
to both annotate HTS in PubChem and in an industrial set-
ting.” The use of BAO makes it easier to group assays ac-
cording to the used technologies and to identify relevant
FHs. The identified catalogue of FH substructures can be
very useful to remove chemical matter in future HTS cam-
paigns that will specifically interfere with the used assay
technology. Thus, the information about the mechanism of
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action of FHs will be important to design and correctly in-
terpret screening campaigns.***?

It should be noted that even the best BAO and best
methods of standardization of experiments will never fully
address the problem of heterogeneity and complexity of
biological and chemical data. By no means experiments
performed in mouse and in rats can be combined into one
single “activity” column associated to a single, standardized
structure for all possible experiments. Such merge can be
performed only depending on the conditions of experi-
ments, endpoint and, importantly, properties of com-
pounds. For example, even for simple lipophilicity property
logP shake-flask values can be merged with logD values
obtained from HPLC experiments only for compounds non
ionized under the pH of the experiment but not for all pos-
sible structures.

Data Visualization and Exploration of Chemical
Space

The visualization and compact representation of millions of
compounds (such as >110M compounds in SciFinder, see
Table 1), which is usually the first step of data analysis, rep-
resents significant challenge in Big Data analysis. It is usual-
ly done by projecting large compound collections into
a low dimensional space, amenable to visual inspection
and intuitive analysis by the human brain. It could help to
detect chemical entities with novel chemical scaffolds and
physicochemical properties (e.g., for compound library
design), to compare different libraries or to identify regions
of chemical space that possess certain pharmacological
profile.®?® Exemplary approaches such as principle compo-
nent analysis (PCA),®¥ Generative Topographic Mapping
(GTM),?*! Kohonen networks,®® Diffusion Maps,®” and inter-
active maps obtained by projection of high-dimensional
descriptor spaces,*®** are promising techniques in this con-
text. Such visualization methods can be also used to inter-
pret structure-activity relationships.*”’ For example, in the
“Stargate” version of GTM, latent space links two different
initial spaces — one defined by molecular descriptor and an-
other one by experimental activities.”" This allows, on one
hand, to predict the whole pharmacological profile for one
particular chemical structure and, on the other hand, to
identify new structures corresponding to the given profile.
Another example of exploring chemical space is using a so
called ChemGPS approach to represent and navigate
through drug-like”” and pharmacokinetic'*®’ chemical space
based on PCA components extracted from molecular 2D
descriptors. Its variant ChemGPS-NP¥¥ characterize the nat-
ural product space in particular. It has been shown that the
accuracy of describing molecules in ChemGPS-NP defined
space is similar to the accuracy of structural fingerprints in
retrieving bioactive molecules.”!

Beside the space represented by known and available
chemical structures, the chemical space composed by virtu-
al compounds is much bigger. The number of potential
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molecular structures, which could theoretically be enumer-
ated, is vast. For example, the database GDB-17 contains
166.4 billion molecules that are possible combinations of
up to 17 atoms of C, N, O, S and halogens following simple
rules of chemical stability and synthetic feasibility.***” Al-
though GDB-17 is already very large, it would be many
orders of magnitude larger if extended to 20-30 heavy
atoms, which is the average size of drug-like molecules.*®
These data sets raise new challenges even for traditional
profiling of chemical compound collections, which is used
to identify chemicals with favorable properties (e.g., Lipin-
ski's rule, non-toxic, etc.). Even a fast algorithm, which is
able to process 100,000 molecules per minute, will require
> 1,000 days~ 3 years of calculations on one core to anno-
tate the full GDB-17. If the model supports efficient paralle-
lization, it could be executed on, e.g., the supercomputer
of Leibniz Supercomputing Centre with 241,000 cores. In
this case the calculation time can be theoretically de-
creased to ten minutes. Instead of a brute force approach
one can rely on, e.g. sequential triaging scheme that elimi-
nates undesired regions, such as low solubility or low pre-
diction accuracy due to limited applicability domain of
model,*” by very fast algorithms first and then applies
more compute expensive methods on smaller subspaces.
Thus novel approaches or workflows are needed to effi-
ciently search through this enormous chemical space.

Structure-Activity Relationship Modeling

Although a plethora of machine learning algorithms is
available for SAR studies®®" there is an increasing need for
robust and efficient computational methods, which are
able to cope with very large and heterogeneous datasets.
The current methods already allow to build predictive
models from hundreds of thousands of compounds and
high-dimensional descriptors with data matrices of
> 0.2 trillion entries.” Advances in this field can be also ex-
pected from data fusion methods, which simultaneously
model several related properties.”® The simultaneous mod-
eling of such incompatible data by exploring inter-correla-
tion between different properties, e.g. tissue/air partitioning
coefficients in humans and in rats, has already successfully
contributed models with improved accuracy compared to
those built with any single activity data.®” Numerous meth-
ods have been developed to predict compound polyphar-
macology.®*** Prediction of the binding affinity of ligands
to multiple proteins allows to anticipate potential selectivi-
ty issues, discover beneficial multi-target activities as early
as possible in the drug discovery process,®® or make target
deconvolution for phenotypic screening.®” Most of these
methods rely on building single target model individually,
one future development could be to use all available che-
mogenomics data to pursue multi-task learning and build
one multi-label model to predict multiple target activity si-
multaneously. A recent study shows that massive multitask
networks obtain predictive accuracies significantly better
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than single-task methods.®® Probabilistic matrix factoriza-
tion (PMF) methods have been found particularly useful in
building multi-task model.**®" Further injection of ligand
and protein information into PMF method as side informa-
tion may further improve the prediction accuracy.®” How-
ever in Big Data setting, this would require huge computer
power and dedicated parallel programming model. Recent-
ly deep learning technology has gained large attention in
public media. In 2015 the deep learning models achieved
accuracy of human brain for handwritten Chinese character
recognition®®, while in 2016 a deep-learning network won
Go™ tournament against the human champion. Moreover,
recent announcement of Google Cloud Platform® has
made possible the use of technologies staying behind the
best implementation of machine learning algorithms by
non-experts. The deep learning neural network technology,
which is able to efficiently deal with high-dimensional and
complex data, has also been applied in chemoinformatics
area®'%>® and is expected to further contribute to the
progress of this direction of studies.

Another important question is “does more data contrib-
ute better models”? A consensus model to predict melting
point (MP), which was developed with N=275k measure-
ments, calculated RMSE =3141°C for Bergstrém data set’®”
of drugs (N=277)."" This result is almost 15°C improve-
ment compared to the results of the original study®” and
3°C improvement compared to the model developed with
N=47k molecules. It should be noticed that models
were developed using different descriptors and machine
learning methods, which could contribute to the difference
in their performances. To exclude influence of these factors,
we used exactly the same protocols from ref® to develop
a model using Bergstrom data only. The developed consen-
sus model calculated RMSE=50+1°C confirming, on one
hand, that the improvement in the prediction accuracy for
MP was contributed by an increase of the training set size
and, on the other hand, suggesting that modern automatic
text patent mining, which was used to contribute >80% of
data of the 275k set, produced data of excellent quality.

De Novo Design

De novo design aims at generating new chemical entities
with drug-like properties and desired biological activities in
a directed fashion. Comparing with normal virtual screen-
ing or HTS, which search for active compounds in physical-
ly available compound database, de novo design tries to
generate hypothetical candidate compounds in silico. There
are mainly two type of methods for making de Novo mo-
lecular design, one is the based on the similarity to known
active compounds, i.e., ligand based De Novo design, and
the other type is based on protein 3D structure to generate
new compounds, i.e., structure based De Novo design.
Here we mainly discuss ligand based methods, structure
based methods can be found in elsewhere.*”

Mol. Inf. 2016, 35, 615-621 618



www.molinf.com

www.molinf.com

One way for doing de Novo design is to search the large
virtual compound database such as the GDB to get de
novo hits. In order to search vast virtual chemical space,
one would need integrated workflows combining efficient
search and multiparameter optimization strategies to filter
out molecules with sub-optimal profiles as early as possi-
ble. For example physicochemical and synthetic feasibility
filters can be frontloaded to trim down the number of com-
pounds. Ruddigkeit etal.’” was able to search entire
GDB17 database with a workflow combining MQN 2D
structure fingerprint with ROCS shape matching method.
Another strategy is reaction-driven, fragment-based de
novo design. Based on known chemical reactions and com-
mercially available build blocks, chemically diverse and syn-
thetically feasible compounds are generated via normally
multistep and multi-parameter optimization process search-
ing for candidate compounds which satisfy to certain prop-
erty profile. These reaction-based methods have been suc-
cessfully applied to design de novo bioactive com-
pounds.”'=7*!

The third strategy to provide an intelligent search of new
compounds is to generate structures, which are sufficiently
new but still within the chemical spaces covered by the
models. A group of these methods, which is known as “in-
verse QSAR”, has received a boost during recent year due
to increasing computational power and new theoretical de-
velopments. A set of linear constrained Diophantine equa-
tions was used by Faulon et al.” to exhaustively enumer-
ate new compounds. Wong et al.” used kernel methods
to map training compounds from input space to the kernel
feature space. In this space the authors generated new
data points, which were used to recover the chemical struc-
tures. Actually, this approach is similar to that of aforemen-
tioned “Stargate” GTM,*" with an exception that the
former algorithm does not use supervised learning to
create maps. In another approach Funatsu et al.”® used
Gaussian models and Bayesian inference to exhaustively fill
a target region of the model space with new structures.
Thus, these methods propose novel chemical structures
while still staying within the chemical space of the QSAR
models.

Data Sharing and Data Security

Even large pharma companies can accumulate only limited
amounts of relevant property information. As it was men-
tioned before, sharing data collected by different organiza-
tions offers the opportunity to develop computational
models on a much broader data basis, thereby increasing
model robustness, accuracy and coverage of chemical
space.”7’® The development of approaches to predict
ADME/T properties in a collaborative manner is becoming
a part of future pharma R&D strategies. Recently, AstraZe-
neca and Bayer made the efforts to compare their entire
compound collection in a secure manner,?? while AstraZe-
neca and Roche started a data sharing consortium on the
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topic of matched molecular pairs to improve metabolism,
pharmacokinetics, and safety of their compounds through
MedChemica.”"! Moreover, AstraZeneca has already donat-
ed some of its ADMETox data to CheMBL."® However, col-
laborative efforts in this field are generally not straightfor-
ward. The intellectual property aspects associated with pri-
vate compound collections and associated data might be
relevant for ongoing drug discovery efforts. Secure multi-
party computation methods based on modern encryption
theory®#" provide ways to develop models without the
need to share molecular structures or proprietary molecular
representations. These methods are compute-intense and
bandwidth-demanding but fast development of Internet
and increasing computational power of computers is
making them applicable to real world problems. 2%

Training Big Data Scientists — The
Chemoinformaticians

The “Big Data” challenges require professionally trained ex-
perts, “data scientists in chemistry” — the chemoinformati-
cians, who can cope with the complexity and diversity of
problems in this field of scientific discovery. Traditional
“data scientists” coming from computer science field, as
well as computational chemists with little knowledge in
computer science, are very unlikely to have sufficient
knowledge and expertise to address both chemoinformat-
ics questions and will need additional training. Important
questions in this regard are following ones: How should
one balance chemistry and computer science training?
How should one ensure a high level of scientific expertise
and, at the same time, a practically oriented mindset?
Which new and rapidly developing methodologies should
be considered? How should one prepare trainees to work
at the interface between computing, chemistry, and phar-
maceutical research? These questions can be answered
only during close interactions of academic partners and the
end-users and tight involvement of industrial partners in
targeted research trainings. In this respect the training pro-
grams, such as offered through Marie Sktodowska-Curie Ac-
tions, provide generous funding support by means of Inno-
vative Training Networks, which foster and promote such
type of interactions.

Conclusions

Both industry and academic partners share high expecta-
tions from “Big Data” in chemistry, which is a new emerg-
ing area of research on the borders of several disciplines.
The advance in this area requires development of new
computational approaches and more importantly education
of scientists, who will further progress this field.
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