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Abstract: Adenosine deaminase (ADA), which catalyzes the irreversible deamination of adenosine to
inosine, is related to various human diseases such as tuberculous peritonitis and leukemia. Therefore,
the method used to detect ADA activity and screen the effectiveness of various inhibitor candidates
has important implications for the diagnosis treatment for various human diseases. A simple and
rapid assay method for ADA, based on the enzymatic formation of a luminescent lanthanide complex,
is proposed in this study. Inosine, an enzymatic product of ADA with stronger sensitization efficiency
for Tb3+ than adenosine, produced a strong luminescence by forming an inosine-Tb3+ complex,
and it enabled the direct monitoring of ADA activity in real-time. By introducing only Tb3+ to
adenosine and ADA in the buffer, the enhancement of luminescence enabled the detection of a low
concentration of ADA (detection limit 1.6 U/L). Moreover, this method could accurately determine
the inhibition efficiency (IC50) of the known ADA inhibitor, erhythro-9-(2-hydroxy-3-nonyl)adenine
(EHNA), and the inhibition of ADA could be confirmed by the naked eye. Considering its simplicity,
this assay could be extended to the high-throughput screening of various ADA inhibitor candidates.
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1. Introduction

Adenosine deaminase, referred to as ADA (EC 3.5.4.4), is a key enzyme in purine
metabolism, which catalyzes the irreversible deamination of adenosine (deoxyadenosine) to inosine
(deoxyinosine) [1,2]. ADA is distributed throughout all human tissues, and its abnormal level is
related to various human diseases. Accumulation of ADA substrate deoxyadenosine, due to the
extremely low activity of ADA, causes the inhibition of DNA synthesis by the sequential inhibition of
ribonucleotide reductase [3,4]. In particular, it is well known that the genetic deficiency of ADA leads
to severe combined immunodeficiency disease (SCID), which causes serious infections and chronic
diarrhea [5–8]. In contrast, the high level of ADA activity may result in several serious diseases such
as tuberculous peritonitis and leukemia [9–12]. Thus, inhibiting the high activity of ADA can be
an effective measure to treat several lymphoproliferative disorders. In addition, inhibition of ADA
prevents postischemic heart injury by blocking of sequential substrate formation for xanthine oxidase
which generates reactive oxygen species in the heart [13], and recent studies have reported the potential
of inhibiting ADA activity during antitumor therapy, revealing that it can suppress the progression of
breast cancer cells [14]. Therefore, detecting ADA activity has important implications in the diagnosis
and rapid verification of the effectiveness of candidate drugs for various human diseases.

Traditionally, spectrometric assay of ADA measured ADA activity based on detecting the change
in intrinsic absorbance of uric acid that is converted from inosine via sequential enzyme cascade
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reaction using the combination of nucleoside phosphorylase and xanthine oxidase [15]. Other methods
were based on the color change developed by the chemical reaction of ammonia or uric acid, which is
the product of these enzymatic cascade reactions, with colorimetric oxidizing agent [16]. Nevertheless,
these methods have certain limitations as described further. Initially, they require extra enzymes for
the enzyme-coupled reaction or these extra enzymes and colorimetric agent. Additionally, they cannot
detect ADA activity in real-time and this is time-consuming due to the enzyme-coupled reaction
and chemical reactions with the colorimetric agents. Recently, several fluorometric, colorimetric,
and electrochemical ADA assay methods have been developed using adenosine aptamer [17–22].
These methods use real-time assay and do not require extra enzymes for the enzyme-coupled reaction;
however, certain issues persist such as the complicated system considering the conformational change
of aptamer by competitive binding of substrate and product, and the stability of the aptamer conjugate.
Thus, the development of a simpler method, which can be applied in real-time detection of ADA
activity and rapid screening of various ADA inhibitor candidates, is still necessary.

A lanthanide complex has been widely used as a sensitive probe for various targets such as
anions, metal ions, and enzymes due to the advantage of long-lived narrow emission and large Stokes
shift compared to most organic fluorophores [23–29]. Furthermore, various studies about ligands for
lanthanide ions have been investigated as a sensitizer for developing a lanthanide complex with strong
luminescence [30–34]. Among these ligands, it is observed that nucleosides with ribose hydroxyl
groups strongly bind to the lanthanide ion; meanwhile, adenosine reveals weaker complexation than
inosine because adenosine only has a nitrogen donor in its nucleobase [35,36]. Considering this result,
we envisioned that adenosine and inosine could be distinguished by their different sensitization
efficiencies for the lanthanide ion; this difference resulted in a change in luminescence intensity via
the enzymatic formation of an inosine–lanthanide complex. Herein, we developed a simple and
direct ADA assay method using the different sensitization efficiencies of adenosine and inosine for
lanthanide ion. Inosine produced from the ADA reaction of adenosine bound to the lanthanide ion and
the inosine–lanthanide complex produced strong luminescence (Scheme 1). Based on the enzymatic
formation of the inosine-Tb3+ complex, this method could measure the ADA activity in real-time;
moreover, it could be applied for screening the inhibition efficiency of potent ADA inhibitors.
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Scheme 1. Schematic illustration of adenosine deaminase assay via enzymatic formation of an
inosine-Tb3+ complex.

2. Materials and Methods

2.1. Materials and Instrumentation

For the enzyme assay, ADA (from calf intestine) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA)
were purchased from Sigma-Aldrich. Adenosine, inosine, and terbium(III) chloride hexahydrate
(TbCl3·6H2O) were purchased from Alfa Aesar and all reagents were used without further purification.

Luminescence spectra were obtained via Agilent Cary Eclipse Fluorescence Spectrophotometer
(Agilent, Santa Clara, CA, USA). FT-IR spectra were obtained using a Thermo Scientific Nicolet iS10
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FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). NMR spectra were recorded using
a JEOL (400 MHz) NMR spectrometer (JEOL Ltd., Tokyo, Japan).

2.2. Optimization of Condition for Discrimination Between Adenosine and Inosine

Various buffers (HEPES or Tris, 20 mM) with different pH (pH 7.0, 7.4, and 8.0) were added to the
solution containing ligand (adenosine or inosine, 50 µM) and TbCl3·6H2O (1 mM). Without further
incubation, the phosphorescence intensity at 545 nm was recorded. Control sample comprised only
TbCl3·6H2O (1 mM) in the buffer solution (HEPES or Tris, 20 mM).

Each of adenosine and inosine with different amount (0, 10, 20, 30, 40, 50 µM) were added to
the solution containing TbCl3·6H2O (1 mM) and HEPES buffer (pH 8.0, 20 mM). Without further
incubation, the phosphorescence intensity at 545 nm was recorded.

All samples were adjusted to a final volume of 1 mL and all measurements were carried out in
1 cm quartz cell at 25 ◦C and were repeated thrice, respectively.

2.3. Model study of Enzymatic Antenna Formation

The sample containing TbCl3·6H2O (1 mM) and different ratios of [inosine]/([inosine] + [adenosine])
(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%) was prepared with fixed concentration of [inosine] + [adenosine]
= 50 µM. Without further incubation, the phosphorescence intensity at 545 nm was recorded.

2.4. Identification of Chemical Structure of Inosine-Tb3+ Complex by FT-IR and 1H NMR Spectroscopy

To prepare the inosine-Tb3+ complex, solution of inosine (10 mM) was mixed with different
equivalents of TbCl3·6H2O (10, 40 mM) and the mixture was lyophilized. Then, IR spectra (using KBr
pellets) were taken using an FT-IR spectrometer.

Inosine (5 mM) in D2O with different equivalents of TbCl3·6H2O (2.5, 5, 10, 20 mM) in D2O were
mixed. Then, NMR spectra were recorded using an NMR spectrometer.

2.5. Kinetic Measurement of ADA Enzyme Reaction

Various amounts of ADA (2, 3, 4, 5, 6, 7, 8, 9, 10 mU/mL) were added to the solution
containing TbCl3·6H2O (1 mM) and adenosine (50 µM) in HEPES buffer (pH 8.0, 20 mM). Thereafter,
the phosphorescence intensity at 545 nm of sample was recorded for 60 min in 1 min cycle. To get the
quantitative relationship between enzymatic conversion and phosphorescence intensity, a calibration
curve was obtained from the result of the model study of enzymatic antenna formation.

2.6. Detection of ADA Inhibition by EHNA

Various concentrations of EHNA (5, 25, 50, 80, 100, 150, 200, 250 nM) with ADA (0.2 U/mL) were
preincubated for 50 min. Thereafter, the phosphorescence intensity at 545 nm of sample containing
inhibitors, ADA, TbCl3·6H2O (1 mM), and adenosine (10 µM) in HEPES buffer (pH 8.0, 20 mM)
was recorded immediately for 40 min in 1 min cycle. For calculating the half maximal inhibitory
concentration (IC50), inhibition efficiency (IE) was defined as:

(IE) = [∆(P.I.)(no inhibitor) − ∆(P.I.)(inhibitor)]/∆(P.I.)(no inhibitor)

where ∆(P.I.) indicates the phosphorescence intensity change at 545 nm in the selected duration.

3. Results and Discussion

3.1. Optimization of ADA Assay Condition Using Lanthanide Ion

First, we screened the change in the luminescence of the Tb3+ complex with adenosine and inosine
under various buffer conditions to verify whether the discrimination of adenosine and inosine were
enabled based on their different antenna effect for the lanthanide complex. As expected, luminescence
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enhancement occurred in the inosine-Tb3+ complex under a basic condition, whereas adenosine
indicated no significant change in luminescence in the presence of Tb3+ (Figure S1). This indicated that
inosine had stronger sensitization efficiency as a Tb3+ antenna than adenosine because inosine contains
a hard, negatively charged oxygen atom and adenosine only contains nitrogen donors. In addition,
inosine-Tb3+ complex showed phosphorescence with a lifetime of above 20 µs (Figure S2) [37].
The difference between luminescence intensities between inosine and adenosine with Tb3+ was evident
under HEPES buffer condition (Figure 1), wherein the HEPES buffer was optimized to a slightly basic
pH of 8.
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Figure 1. Comparison of luminescence of Tb3+ (1 mM)-nucleoside (adenosine or inosine, 50 µM)
complex in HEPES buffer condition (pH 8.0; HEPES, 20 mM). λex = 260 nm.

As presented in Figure 2a, luminescence of Tb3+ complex was linearly related to the concentrations
of inosine. The luminescence of Tb3+ complex increased immediately with addition of inosine to the
solution of Tb3+ in buffer condition. Thereafter, the luminescence intensity was kept constant for 1 h
(Figure S3). In presence of both adenosine and inosine with Tb3+, the luminescence of Tb3+ linearly
increased as the ratio of inosine increased, as in an enzymatic reaction in which the concentration of
product increased and that of adenosine decreased simultaneously (Figure 2b).

To investigate the chemical structure of this luminescent inosine-Tb3+ complex, the complex was
identified by FT-IR and 1H NMR spectroscopy. In the IR spectrum (Figure 3a), C=O stretching band
(~1700 cm−1) of inosine was shifted to ~1625 cm−1 when Tb3+ was added, indicating an interaction
of Tb3+ with oxygen included in hypoxanthine of inosine [38]. In 1H NMR spectrum (Figure 3b),
the peak of aromatic protons of inosine (δ 8.163, 8.146) was shifted to upfield and its shape was changed.
Based on these results and the previous report [39], the proposed chemical structure for inosine-Tb3+

complex was accorded to the complex shown in Scheme 1.
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3.2. Kinetic Measurement of ADA Enzyme Reaction

Based on the result, we anticipated that the antenna effect of inosine for luminescent Tb3+ complex
could be applicable in monitoring the ADA activity (which converts adenosine into inosine) in real-time.
To confirm this, we prepared the cocktail of adenosine and Tb3+, and ADA was added to this solution;
thereafter, the luminescence change was recorded in real-time.

As presented in Figure 4a, luminescence intensity of Tb3+ complex continued to increase as
the enzymatic reaction proceeded. To investigate the kinetic behavior of ADA, we measured the
luminescence intensities of the cocktail of adenosine and Tb3+ with various concentrations of ADA.
The reaction rate of ADA was determined based on the change in the luminescence intensity at 545 nm,
wherein the rate exhibited linear relationship with ADA concentration (Figure 4b). The detection limit
of 1.6 U/L ADA was obtained, which is comparable to other complicated ADA assay methods that
use aptasensors or nanomaterials. Thus, these results revealed that the introduction of only Tb3+ to
ADA and adenosine enabled the simple and direct detection of ADA activity with high sensitivity
in real-time based on the enzymatic formation of inosine-Tb3+ complex with strong luminescence.
Furthermore, we also tried to detect ADA activity in diluted plasma to evaluate the feasibility of our
method under biological fluid. As we were concerned about the interference from the unwanted
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binding of Tb3+ to other components such as serum proteins [40], the blank signal of Tb3+ in diluted
serum was enhanced and it was difficult to detect low concentration of ADA (Figure S4).
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3.3. Determination of Inhibition Efficiency of ADA Inhibitor

To explore the feasibility of this assay method for screening the inhibition efficiency of various
ADA inhibitor candidates, we chose EHNA, which is a well-known potent ADA inhibitor [2], as the
model inhibitor. After incubating various concentrations of EHNA and ADA, the inhibition efficiency
of EHNA depending on the different inhibitor concentrations was measured. As predicted, the activity
of ADA was inhibited by EHNA and the inhibition was enhanced as the concentration of EHNA
increased. From the dose-response curve for EHNA (Figure 5a), the measured IC50 of EHNA was
64 nM and it was in accordance with the literature value [17]. This result demonstrated that this
simple assay method using the introduction of Tb3+ to ADA and adenosine could screen the inhibition
efficiency of ADA inhibitors.

Furthermore, the inhibition of ADA activity and relative inhibition efficiency of various ADA
inhibitors could be confirmed by the naked eye via observing the change of green luminescence of the
assay solution containing ADA, inhibitor, adenosine, and Tb3+ as presented in Figure 5b. After treating
10 µM of ADA inhibitors, we confirmed that EHNA (Ki = 1.6 nM) completely inhibited the ADA activity
and had stronger inhibition efficiency than that of theobromine (Ki = 311 µM) [2,41]. Considering
its simplicity and rapid speed, it could be applicable to high-throughput screening of various ADA
inhibitor candidates in developing a potent ADA inhibitor as therapeutic agent.
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inosine by the enzymatic formation of an inosine-Tb3+ complex. Adenosine and inosine had different
sensitization efficiencies for Tb3+ as antennae, resulting in distinct luminescence of the lanthanide
complex. Insertion of inosine to Tb3+ under buffer condition remarkably enhanced the luminescence
intensity of the Tb3+ complex, whereas adenosine had no influence on the luminescence of Tb3+

complex. Based on these results, the ADA activity could be monitored in real-time with a combination
of adenosine and Tb3+; luminescence intensity of the assay solution containing adenosine, Tb3+,
and ADA increased simultaneously as the enzymatic reaction proceeded. The obtained detection limit
for ADA was quite low (1.6 U/L), and was comparable to the previously reported assay method that
included a complicated system. Furthermore, it could be used for screening the relative inhibition
efficiency of ADA inhibitors by the naked eye, and to measure the IC50 of the known ADA inhibitor
EHNA (measured IC50 = 64 nM) accurately. By the introduction of only a lanthanide ion in the
enzymatic reaction, a simple assay for ADA activity and rapid screening of ADA inhibitors was
enabled, which might be used as a high-throughput screening method for ADA inhibitor candidates
for treating various human diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/12/2728/s1,
Figure S1: Result of buffer screening for optimization of condition for discrimination between adenosine and
inosine, Figure S2: Lifetime measurement for luminescence of inosine-Tb3+ complex, Figure S3: Time-dependency
of luminescence intensity of inosine-Tb3+ complex, Figure S4: Confirmation of feasibility of assay method in
diluted serum sample.
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