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MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through translational inhibition or mRNA
degradation by binding to sequences on the target mRNA. miRNA regulation appears to be the most abundant mode of
posttranscriptional regulation affecting ∼50% of the transcriptome. miRNA genes are often clustered and/or located in introns,
and each targets a variable and often large number of mRNAs. Here we discuss the genomic architecture of animal miRNA genes
and their evolving interaction with their target mRNAs.
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1. Introduction

MicroRNAs (miRNAs) are short noncoding RNAs that reg-
ulate gene expression by binding to sequences on the target
mRNA (reviewed by [1–7]. Gene silencing initiates when the
miRNA, located within an RNA-Induced Silencing Complex
(RISC), directs binding to complementary sequences on the
mRNA’s 3′ untranslated region (UTR). The miRNA-mRNA
recognition binding sequences are short, usually 6–8 nt [8–
11]. Inhibition of gene expression takes place via facilitated
mRNA degradation, mRNA cleavage, or interference with
translation.

2. Generation of miRNA Genes

2.1. miRNA Gene Origins. During animal evolution there
were distinct, characterized phases of large scale genome
duplications [12–14]. miRNA origin, as well, is traced back
to genomic episodes dominated by large duplication events
which coincide with the advent of bilaterians, vertebrates,
and (placental) mammals [15]. The current wealth of
miRNA genes results, additionally, from specific duplication
events of miRNA clusters [16, 17] and from mechanisms
such as the integration of repetitive genetic elements [18].

2.2. The Gatekeeper of the miRNA Biogenesis. The transcrip-
tion of miRNA genes is controlled by enhancer-promoter
elements comparable with those of protein-coding genes
[19]. Additional regulation of miRNA expression is obtained
through posttranscriptional processing [20], RNA A-to-I
editing [21, 22], selective export into the cytoplasm [23, 24],
and subcellular localization [25] (Figure 1 (see [2, 26–43])
also see review by [44]).

While several mechanisms control miRNA’s expression
along its biogenesis pathway, it seems that the rate limiting
step in acquiring a novel miRNA is the recognition of the
RNA secondary structure by Drosha. This stems from the fact
that mammals express only several hundred miRNAs from
myriad amounts of expressed RNA secondary structures
[16, 45–47]. Thus, processing of miRNA precursor by the
microprocessor is probably the gatekeeper of the miRNA
biogenesis pathway, which allows for only a portion of the
transcribed RNA hairpins to be further processed down the
miRNA biosynthetic pathway. Analysis of miR-220 recent
evolution provides an intriguing example for a gene that
apparently did not encode for a miRNA but became compe-
tent for Drosha-dependent microprocessing. miR-220, which
contains sequences of a tubulin gene, was probably originally
processed from an antisense strand (see [48, 49]) of tubulin,
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Figure 1: Several layers of regulation control canonical miRNA gene biogenesis: transcription activation, splicing, recognition by Drosha,
postprocessing, RNA editing, subcellular localization, nuclear export, and hairpin arm selection. Selected examples are referenced within.

which folds back into a proper stem-loop structure in human
but not in other vertebrates [15]. Comparative studies of
the tubulin antisense strand sequence may shed light on the
reasons for which human Drosha enables microprocessing
while in other species it is skipped. Though canonical
miRNA bioprocessing is Drosha-dependent, a novel splicing-
dependent [33] mechanism was suggested recently to bypass
initial steps of microprocessing [33, 50, 51]. Despite the
functional robustness of miRNA secondary structures in
light of accumulating mutations it is still not clear what the
precise requirements for passing the gatekeeper of miRNA
biogenesis are.

3. The Genomic Architecture of
miRNA Genes and Their Expression

Two characteristics of miRNA genes stand out in regard
to genomic organization of protein-coding genes. First,
miRNA genes are often found in clusters (30%–42%) [52–
54]. Additionally, miRNA genes are often embedded within
introns (25% or more) [27, 55–59].

3.1. Chromosomal Organization of miRNA Genes. In accor-
dance with genomic duplication events that accompany
evolution of species, we see a correlation between the
number of miRNA genes and chromosome length. miRNA
gene number per chromosome also correlates with the
protein-coding gene density (Figure 2(a) and 2(b)). This
indicates that integration and/or maintenance of miRNA
genes roughly follows protein-coding genes.

However, Homo Sapiens chromosomes 14, 19, and X are
exceptionally enriched for miRNA genes. Chromosomes 14
and 19 both possess a single miRNA cluster, accounting for
93% and 80% of the total number of miRNA genes on each
chromosome, respectively [16, 61]. The cluster on chromo-
some 14 is located in the human imprinted domain (14 q32)
where only maternally inherited miRNAs are expressed [62].
Chromosome 19 hosts the primate-specific “500” cluster
[16], a recently emerging, placental-specific cluster [16]. The
X chromosome, on the other hand, does not have one large
cluster, but it exhibits rapid emergence of smaller miRNA
clusters due to frequent tandem duplications and nucleotide
substitutions [17]. We note that despite the parallel evolution
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Figure 2: Genomic organization of miRNA genes and their expression. The number of miRNA genes correlates with chromosome length (a)
and the number of protein-coding genes (b). Outliers chromosomes 14, 19, and X are indicated. When removing these three chromosomes
the number of miRNA genes aligns well on the regression line (R2 indicated). (c) Proportion of miRNA genes hosted in Introns—Intronic
(based on Refseq genes), Clustered on the same genomic strand, or Stand-alone miRNAs. Overlapping intronic and clustered miRNAs are
also indicated. Each row refers to 50 kb, 10 kb, and 1 kb distance between paired genes on the same strand. It was shown that clusters of size
3 kb give a large proportion of clusters (27%) with little change when increasing pairwise distance to 10 kb [54]. Diagrams are based on data
from Refseq. (d) Human miRNA copy number was plotted against the average miRNA expression level of 40 Human tissues [60]. A similar
plot of another dataset [55] gave comparable results (data not shown).

of miRNAs in animals and plants, miRNA clusters were
observed in both kingdoms [63].

3.2. Clusters of miRNA Genes. Plausibly, employment of an
already existing functional promoter by new miRNA genes
is an efficient way to express new miRNAs, eliminating
the need for de novo establishment of promoter-enhancer
sequences upstream of the miRNA gene (such as in [64–66]).
This may be the rational underlying miRNA aggregation
into polycistronic miRNA clusters and for their genomic
preference for introns of transcribed genes (see Figure 2(c)).
The consequence on the genomic level is that many miRNAs
within up to 50 kb DNA fragment tend to be coexpressed
[54, 55]. Amplification of an ancestral miRNA inside a
cluster [54, 56] could contribute to the effective dosage of
a given expressed miRNA homolog. However, at lower copy
number gene dose does not seem to be a powerful predictor
of expression levels (Figure 2(d)). The most likely interpre-
tation is that the magnitude of promoter activity probably

dominates regulation of miRNA expression. The correlation
between miRNA gene copy number and expression level that
was noted in some cases [67] may nonetheless suggest that
when miRNA copy number is high (>3; Figure 2(d)), it may
also serve to impact the expression level.

3.3. Intronic miRNA Genes. At least 25% of miRNA genes
are hosted in introns of both protein-coding and noncoding
RNAs (Figure 2(c) also see [27, 56, 59]). This is a striking
feature of noncoding RNAs (reviewed by [68]), plausibly
implying that some noncoding RNAs have developed a
functional relationship with their host genes [38, 69]. The
use of the same promoter-enhancer system enables coupling
of miRNA expression with its host gene, therefore not
surprisingly frequently seen [27, 55, 70]. When derived from
the same primary transcript, it appears that pri-miRNA
maturation by the microprocessor and pre-mRNA editing
by the Spliceosome can either coexist independently or
interconnect. While some studies imply that these processes
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hardly interact [59], others have shown strong interactions
initiating at transcription [71–73]. Overall, given the tight
proximity of these cellular events in time and space it is
hard to imagine how these functional complexes avoid each
other. Further analysis would be required to determine the
extent of this interaction and whether this is true for all given
transcripts [74].

3.4. Functional Expression of miRNAs and Their Host Genes.
While mRNA/miRNA derived from the same transcript
may simply reflect an efficient use of a promoter-enhancer
cassette [59], in a subset of cases a coordinated expression
of an miRNA-protein pair from the same genomic locus
may reflect a genetic interaction. For example, platelets
contain two cAMP phosphodiesterases (PDEs)—PDE2A and
PDE3A—each regulating a specific intracellular pool of
cAMP [75]. miR-139 that is hosted in an intron of the
PDE2A targets PDE3A (TargetScanS, see [76]), implying that
the miRNA expression from PDE2A regulates the balance
between the two isoforms. Similarly, miR-208 is encoded
by an intron of the cardiac-specific alpha myosin heavy
chain (MHC) gene, a major cardiac contractile protein.
Alpha MHC responses to stress and hypothyroidism [35,
77] partially by coexpressing miR-208. The miRNA targets
and downregulates beta MHC expression [70]. Thus, the
precision in regulating an miRNA and a gene product may be
hardwired into the genomic organization, to promise proper
balance in their opposing or collaborating functions.

4. Generation of miRNA Targets and
Their Interaction with miRNAs

4.1. Reciprocal Evolutionary Interaction between miRNAs and
Their Targets. Our current understanding of miRNA binding
sites suggests that a stretch of 6 nucleotide “seed” region,
matching between the 5′ end of the miRNA and the mRNA
3′ UTR, may suffice for regulation by miRNAs [9, 10, 76, 78].
Because changes in cis sequences often dominates rewiring
of genetic networks, [79] it is likely that the 3′ UTR of
mRNA targets change their repertoire of seed matches faster
than the highly conserved transacting miRNAs. This can
be intuitively explained merely because the large number
of targets affected by mutations in any given miRNA gene
acts as a stabilizing element on the miRNA itself. So given a
virtually fixed population of miRNAs, targets gain and lose
binding sites in a way that supports their controlled miRNA
expression. This can be viewed as an evolutionary reciprocal
interaction between the miRNA and its accumulating targets.
After miRNA emergence, once a critical number of targets
are functionally regulated by the miRNA, stabilization of its
primary sequence is gained [80], while at the same time,
stabilizing selection decreases variation in target seed match
[28, 81, 82].

The target set size is also dramatically affected by the
nucleotide composition of the new miRNA, and, as men-
tioned above, this characteristic affects the average selective
pressure on the miRNA itself [78]. Given a set of 17 000
3′ UTRs (“Known Genes” in the UCSC genome browser
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Figure 3: The number of predicted conserved miRNA target
sites. (a) Predicted number of conserved targets, conserved target
sites and poorly conserved sites of human miRNAs (based on
TargetScanS). (b) The number of predicted conserved miRNA
targets was divided according to the conservation level of the
miRNA itself (H, Human; P, Chimp; M, Mouse; R, Rat; D, Dog;
C, Chicken; based on TargetScanS). Shaded in red/green are the
regions with the largest/least number of targets (resp.). Extreme
numbers of targets are boxed and are discussed in the text.

database), some ∼2000 UTRs would randomly have a single
binding site for a heptamer seed composed of A/U residues.
This number falls to only ∼200 seed matches with a G/C-
only seed content and is somewhere in between (∼800)
for a mixed nucleotide composition (equal number of A/U
and G/C). Once emerged, the set of targets affected by a
novel miRNA is subject to selective pressure which molds
the transcriptome such that binding sites would either be
acquired or lost. In fact, selective loss of seed matches, to a
level below the randomly predicted baseline, dubbed “anti-
targets” [9, 83], provides strong support for the evolutionary
power underlying the structure of miRNA binding sites (also
see [84]).
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The reciprocal interaction between miRNAs and their
targets gets an additional perception when looking at this
relationship in viral miRNAs. Several viruses express miR-
NAs for controlling specific cellular genes or pathways. For
this purpose, most cellular mRNA targets of viral miRNAs
identified to date play a role in either regulation of apoptosis
or host antiviral immune response. miRNAs are suitable for
a viral genome expression as they are short and compact. In
addition, they can be generated more readily than proteins
against new target genes and do not elicit any antigenic
response. Their evolutionary flexibility is based on the high
mutation rates of the viruses. This leads to modifications
in the miRNA genes themselves, and thus even the largest
virus family containing miRNAs (herpesvirus) shows lit-
tle conservation between their miRNAs. It also indicates
that it is unlikely that host miRNA targets viral mRNAs
as these would mutate away from disruptive regulation
(also see [85, 86]) .

4.2. The Large Variation in miRNA Target Sites. Conserved
complementarities to a minimal hexamer region (matching
nt 2–7 of the miRNA) [8] indicates that once a seed
match emerges, it becomes functional. If the binding
is preferentially beneficial, it might serve as a favorable
and directional intermediate species. Within Tetrapods, the
average number of predicted conserved sites per miRNA
is at the range of 200 (Figure 3(a), TargetScanS, plotted
for Human miRNAs). However, the number of targets is
skewed to the higher values, while the upper and lower 10-
percentiles regulate more than 450 or less than 50 genes,
respectively (also see [87, 88]). Comparative genomics
suggests that ancient miRNAs have on average twofold
more targets than newly generated ones (compare 453 to
194, resp.). Some discrepancies result from misestimating
miRNA antiquity or overlapping miRNA functional sites.
Specifically, the age of some miRNA genes might have
been misestimated, as cross-species orthologues searches are
not exhausted yet. miR-761, for example, identified only
in mouse [57] is in fact conserved in six other mammals
(including human and opossum; see [89] also see miRviewer
at http://people.csail.mit.edu/akiezun/miRviewer). Alterna-
tively, overlapping functional sites shared by miRNAs and
other regulatory factors may bias the distribution of targets.
For example, pre-existing “scaffolds” of other regulatory
systems could serve as anchors for miRNA binding. In the
case of miR-16, a component of the AU-rich mediated
deregulation of mRNA stability [90], the miRNA is a late
addition onto a mechanism that was probably functional in
the common ancestor of yeast [91], before the innovation
of miRNAs. In this train of thought, some transcriptional
termination or pause sites [92, 93] overlap with miRNA
seed-matches (miR-525 and miR-488). In human, Alu
transposable elements exhibit complementarities in some of
their regions to almost 30 human miRNAs [94]. In other
instances, the attempt to avoid specific protein binding
domains in the 3′ UTRs may expel miRNA binding sites.
For example, 3′ UTRs may avoid miR-518a seed (which has
only 26 predicted conserved targets) because it perfectly
matches the proline and acidic rich (PAR) protein binding

sequence [95]. Other miRNA interference events may involve
binding to promoters via antisense transcription, which is
estimated to be as common as 15% in the human genome
[96]. Overlapping sequences as such might coincide with
promiscuous promoter-associated functions of small RNAs
[36] or increase in transcription [97]. Plausibly a selective
pressure to avoid the binding of the aryl hydrocarbon
receptor (AhR) [98] onto miR-521 sites (AhR and miR-
521 share the same sequence) may explain how miRNAs of
similar antiquity and A/U content (compare to miR-520 h)
dramatically vary in their predicted numbers of conserved
targets (compare 8 to >400, resp.; both miRNAs are part
of the same primary transcript, BF773110). It is noteworthy
that the low number of miR-521 targets cannot be explained
by a conflict of expression in a broad set of tissues since miR-
521 is expressed only in placenta.

4.3. Unique Features of miRNAs with Most Number of Targets.
In order to further explore the characteristics of miRNAs
with extreme number of targets we compared the group
of miRNAs with the largest number of targets to that with
the least number of targets (Figure 3(b), shaded red and
green, resp.). We found some correlation between miRNA
conservation and its potential number of predicted targets.
This correlation is emphasized in the conserved target sets
where human-to-mouse conserved miRNAs have on average
197 predicted conserved targets; human-to-dog conserved
miRNAs have 245, and human-to-chicken conserved miR-
NAs 453. miRNAs with the largest number of targets tend to
be expressed mostly from one arm of the pre-miRNA hairpin
(they do not exhibit both 5′ and 3′ arm expression) and are
often expressed at higher levels and in a broader set of tissues
compared to miRNAs with the least number of targets (also
see [99]).

miRNAs with the largest number of targets are A/U-
rich. The average A/U percentage within the seed of the
top 20 miRNAs with the largest number of targets is 57%,
compared to 41% for those with the least number of
targets. This may be required for weaker secondary structures
in the target mRNA and for ongoing accessibility [11].
Consistently, a general mutational trend (in the human
genome) from G-to-A and C-to-T is more abundant than the
reverse direction [100]. Analysis of human Single Nucleotide
Polymorphisms (SNPs) on a representative chromosome
(chromosome 1; 661 SNPs) confirms that the majority of
polymorphisms generating new potential miRNA binding
sites are G-to-A and C-to-T substitutions (occurring 1.7-fold
more than the reverse direction). Interestingly, the two most
pronounced examples of target polymorphic changes are G-
to-A mutations [39, 101].

In summary, miRNA gene integration and maintenance
roughly follow protein-coding genes. After emergence, the
miRNA gene sequence is refined through an evolutionary
reciprocal interaction with its accumulating targets, and
these later stabilize the miRNA when reaching a large
enough number of functional targets. Finally, overlapping
functional sites shared by miRNAs and other regulatory
factors may facilitate or inhibit miRNA target formation and
thus influence miRNA target set size.
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Figure 4: A possible scenario for acquiring a functional miRNA binding site.

5. A Timescale for miRNA Target-Site Evolution

It would take several million years for a specific 7-mer
binding site to evolve from a complete null binding sequence
[102]. However, miRNA binding sites evolve from existing
sequences, and based on these partial binding sequences,
(“almost-binding” sites or “pre-seed” sites), a corrected
estimated time for a miRNA binding site to emerge is
0.2 million years (Durrett R., personal communications).
For example, a 5 nt pre-seed site will appear every 1024 nt
(4∧5) or even 20 times more often since the position of the
5 nt within the 7 nt is not restricted and may also include
inserts. Thus, a 1 kb 3′ UTR will contain several potential
pre-seed sequences. A human specific miRNA that is absent
even from the chimp genome should be roughly 6 million
years old (last estimated split between human and chimp).
Given 0.2 million years required for a 7-mer binding site to
evolve, around 30 perfect 7-mer binding sites are expected.
For an miRNA that is traced back to mouse (split more than
100 million years ago from human), about 500 conserved
targets per miRNA are reasonable. This simplified calculation
might indicate that, given a spontaneous mutation rate,
there should be a direct correlation between the age of an
miRNA and the number of targets it possesses and also to
the number of duplicated events of the same miRNA site on
one transcript. Eventually, it is not enough for the mutation
to occur—it should also be maintained in the population
after exhibiting a strong selective pressure towards a favorable
regulation which can only take place when an miRNA and
its targets are spatially and temporally coexpressed [83, 103].
This calculation allows us to set the general time line of

events for miRNA formation. Nevertheless there are many
outstanding exceptions of small and large miRNA target
repertoires (also see Figure 4 ).

Websites Used

Ensembl: http://www.ensembl.org
GenBank: http://www.ncbi.nlm.nih.gov
miRBase: http://microrna.sanger.ac.uk/
miRNAminer: http://groups.csail.mit.edu/pag/mirnaminer
miRviewer: http://people.csail.mit.edu/akiezun/miRviewer
Patrocles: http://www.patrocles.org/
TargetRank: http://hollywood.mit.edu/targetrank
TargetScanS: http://www.targetscan.org
UCSC genome browser: http://genome.ucsc.edu.
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