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Mental workload is a neuroergonomic human factor, which is widely used in planning

a system’s safety and areas like brain–machine interface (BMI), neurofeedback, and

assistive technologies. Robotic prosthetics methodologies are employed for assisting

hemiplegic patients in performing routine activities. Assistive technologies’ design and

operation are required to have an easy interface with the brain with fewer protocols, in

an attempt to optimize mobility and autonomy. The possible answer to these design

questions may lie in neuroergonomics coupled with BMI systems. In this study, two

human factors are addressed: designing a lightweight wearable robotic exoskeleton

hand that is used to assist the potential stroke patients with an integrated portable

brain interface using mental workload (MWL) signals acquired with portable functional

near-infrared spectroscopy (fNIRS) system. The system may generate command signals

for operating a wearable robotic exoskeleton hand using two-state MWL signals. The

fNIRS system is used to record optical signals in the form of change in concentration

of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex

(PFC) region of the brain. Fifteen participants participated in this study and were given

hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the

participant’s brain are segregated using machine learning classifier—support vector

machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum

classification accuracy is 91.31%, using a combination of mean-slope features with an

average information transfer rate (ITR) of 1.43. These results show the feasibility of a

two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic

patients assisting in the physical grasping tasks.

Keywords: brain machine interface (BMI), brain computer interface (BCI), machine learning (ML), mental workload

(MWL), functional near infrared spectroscopy (fNIRS), exoskeleton, bionic actuating behavior, neuroergonomics
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INTRODUCTION

Tetraplegia and stroke are among the major causes leading
to lesser control over muscular movements (Blokland et al.,
2014). Patients suffering from such diseases show a declining
trend in the uncontrolled motor movements during the later
stages of the disease. These patients cannot control their motor
movements due to neuronal degeneration (Lo et al., 2016; Hong
et al., 2018). In the severe phase of these diseases, a patient
may become completely paralyzed and unable to perform daily
routine tasks. Spinal cord injuries (SCI) as well as some brain
injuries may contribute to motor disabilities. The pattern of
neural and hemodynamic signals in patients with the brain and
spinal injuries also differs from that of healthy patients (Käthner
et al., 2017). For such patients, there is a need to devise a
methodology to partially, if not fully, rehabilitate them, helping
them in performing routine tasks (Hong and Santosa, 2016). The
brain–computer interface (BCI) and brain–machine interface
(BMI) are among such neurofeedback methods that can provide
rehabilitation and assistance to patients with severe motor
disabilities (Khan andHong, 2017). A BCI translates the neuronal
hemodynamic signals acquired directly from a patient’s brain into
useful machine commands that can be used to control devices
for assistance (Hong et al., 2020). Based on portability, low cost,
and non-invasiveness, techniques like electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS) are
commonly used in rehabilitation (Hong and Khan, 2017).

In comparison, fNIRS has a superior spatial resolution,
while EEG has a better temporal resolution (Ferrari and
Quaresima, 2012; Asgher et al., 2020b). BCI-based applications
are now gaining significance and becoming more practical. A
BMI system mainly comprises of four essential parts: signal
processing, feature extraction, classification, and command
generation (Asgher et al., 2019). Among these parts, signal
processing and feature extraction are vital and applied in further
utilizing neurofeedback systems. Over the years, EEG was used
as a default for BCI applications. Recently, fNIRS is becoming
prevalent to utilize a person’s cognitive states for BCI and BMI
applications (Naseer and Hong, 2015). Hemodynamic behaviors
and responses of a healthy person are different from those of the
patients. The flow of blood is also not the same for a stroke patient
or brain injury victim compared with a healthy person (Kübler
and Birbaumer, 2008; Chodobski et al., 2011; Kaufmann et al.,
2013; Käthner et al., 2017).

One of the trailed paradigms in BMI is to detect the abstract
body kinematics using neuro-imaging modalities and decode
them using the regression model, and mapping them with
social robotics. Abiri et al. (2017) presented a work in which
the scalp EEG was recorded, and the user was visualizing
different body kinematics. The studies (Volosyak, 2011; Ortiz-
Rosario and Adeli, 2013) gives an overview of non-invasive
EEG signals’ processing techniques for SSVEP-based applications
and similarly (Hong et al., 2018) presents a comprehensive
study of different useful features in fNIRS-EEG-based activities.
Likewise, Naseer and Hong (2015) and Zhang et al. (2019)
discussed different machine and deep learning techniques used
in fNIRS and EEG for hybrid BCI applications. Erkan and

Akbaba (2018) described that minimum energy combination
(MEC) and canonical correlation analysis (CCA) could be used
in the detection of SSVEP signals during EEG recording, and
MEC is recommended for synchronous SSVEP stimulus. Gao
et al. (2003) showed the feasibility of SSVEP using an electric
apparatus. In this study (Gao et al., 2003), the patient is
introduced to different flickering lights (boxes), which are flashed
at different rates and represents different actions against each
(chosen from amenu). In various other studies, fNIRS signals are
recorded to measure emotions and cognitive processing from the
PFC region (Asgher et al., 2018, 2019). Some studies employed
fNIRS to detect motor imagery and mental arithmetic tasks
(Thanh Hai et al., 2013; Naseer and Hong, 2015).

It is essential to have a brain signal acquisition mechanism to
ensure proper control for BCI and BMI. Along with brain signals,
a prober haptic and prosthetic system is required for the patient
to perform routines tasks. Research studies mostly focus on the
BMI techniques’ design while ignoring the neuroergonomic and
human–machine interaction’s (HMI) design factors like design
parameters of the haptic device and appropriate integration with
BMI. The role of EEG-based assistive mobile robots for patients
with disabilities are identified in various studies (Brose et al.,
2010; Diez et al., 2013). In these studies, researchers presented
different applications of assistive BMI. Among the applications
of mobile robots, the wheelchair is the most prominent one.
Recently, some studies have emphasized more on the medical
ergonomic aspects of the patients. Liu et al. (2016) and Chen
et al. (2018) presented control of a seven-degree-of-freedom
(DOF) robotic arm using 15 different possible choices. In these
studies, the maximum number of commands per minute is
15, with an accuracy of 92%. The patients who suffered from
tetraplegia (those unable to move their upper limbs) are studied
(Pfurtscheller et al., 2008). They integrated EEG with functional
electrical stimulation (FES) ascertained that integrated signals
work better than EMG signals with the applied frequencies of 12,
15, and 20Hz, and the average accuracy achieved was 70%.

High-speed BCI spellers are also essential to give the facility of
communication to the people, who cannot speak irrespective of
the cause. Diez et al. (2013) and Nakanishi et al. (2014) presented
a high-speed BCI speller with a frequency resolution of 0.2Hz
and simulation time from 2 to 3 s. Meng et al. (2016) showed
another technique similar to that of Zhang et al. (2017), where
the subject was “pick and place” the object using a three-DOF
robotic arm. The Intention-Driven Semi-autonomous Intelligent
Robotic (ID-SIR) system is discussed in the study (Zhang et al.,
2017), which is designed for assistive drinking tasks using P300
BMI and operation time of 82 s. For obtaining an object’s
boundary, the region-growing algorithm is applied by Khan
et al. (2014), which gave a hybrid NIRS-EEG-based control with
four different commands and Khan and Hong (2017) with eight
different commands for quadcopter’s control. In Asgher et al.
(2019), the authors classify two-state mental workloads (MWL)
from subjects using fNIRS, and the signals can be further utilized
in neurofeedback. Rea et al. (2014) used fNIRS signals to detect
lower limb movement for gait rehabilitation in chronic stroke
patients with an acquired accuracy of 67.77 ± 11.35%. In Khan
et al. (2018), the authors presented an fNIRS-based neurorobotic
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interface for gait rehabilitation. S. Perry, in his opinion article
(Perrey, 2014), discussed fNIRS-based neural gait control to
relevant cortical areas.

Various studies investigate the use of fNIRS as an objective
guage of MWL and its serviceability testing and applied MWL-
BCI in ecological environments (Karran et al., 2019). In a BCI
system, the central nervous system (CNS) activities are measured
and converted into output that enhances and improves CNS
output by changing the interactions among the CNS and external
environmental factors (Wolpaw and Wolpaw, 2012). In fact,
BCIs may not necessitate or require any deliberate muscle’s
control, and dependent relative on brain’s hemodynamic and
motor response, so the choice of using BCI system mainly relies
on the patient’s adaptableness, ergonomics and so BCI roles
and assists as a viaduct to get sensory input into the brain.
Therefore, BCI systems are mostly designed as user specific
and according to the abilities and capabilities of patients in
a specific environment (Tariq et al., 2018). The BCI system’s
accurateness is also effected and decreased owing to the lack
of patient’s ability to hold and retain similar cognitive mental
states in various experimental trials conducted in few studies
as it is ascertained during these studies that that long periods
of procedure may introduce mental cognitive fatigue for the
patients (Papanastasiou et al., 2020). The applications of BCI
systems are modest in clinical and medical environments owing

to various factors like the BCI accuracy, BCI reliability of
sensory system interface and control translation algorithms that
encompasses constraints like time, ITR, the number of optodes
or electrodes, and the number of distinguished emotions (Al-
Nafjan et al., 2017). This study tries to address these limitations
by utilizing cognitive load acquisition with fNIRS for BMI
system. The present study gauges its operational effectiveness
neuroergonomic factor MWL in BMI settings, and the purpose
was to engage the cognitive load in operational environment,
where normal motor or encoded open and close commands
signals are not always possible especially under stress conditions.
fNIRS-BMI studies on soft exoskeleton control are very limited
(Lalitharatne et al., 2013; Gao et al., 2016; He et al., 2018). The
proposed study utilizes fNIRS signals in operational BMI and
tries to explain that fNIRS-based exoskeleton can be a potential
research area for BMI, and comparison is performed with mostly
existing literature on BCI-EEG studies.

The prospects of BCI system applicability beyond the
laboratories by designing applications in ecological applications
is defined as passive brain–computer interface (pBCI) (Aricò
et al., 2018). In pBCI he system identifies the impulsive and
spontaneous brain’s response related to the cognitive states
(emotional state, mental workload, stress, vigilance, fatigue,
attention level), and utilizes this kind of data to enhance and
regulate the interface among persons and the environment

FIGURE 1 | Mental workload (MWL) command-based brain–machine interface (BMI) system.
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or system. Thus applied pBCIs are designed to meet the
requirements of the system w.r.t (Zander and Jatzev, 2012).
In this study, the task selection is also considered specific to
evoke a functional response of potential patient’s brain and type
of activity suitable for the potential patient as well as healthy
participant. In case of a stroke patient, operational commands
were tried to be generated, the neural blood flow and pathways
of the patients are different in case of the injury or disease
(Birbaumer and Cohen, 2007; Chodobski et al., 2011; Käthner
et al., 2017). The reported accuracy in the case of patients is less
compared with that in healthy patients owing to the differences
in neural and hemodynamic patterns either due to disease or
injury (Burns et al., 2014; Costa et al., 2016; Käthner et al., 2017;
Rieke et al., 2020). The MA tasks are widely used in literature
to engage a certain amount of MWL (Schudlo et al., 2013;
Kosti et al., 2018; Asgher et al., 2019). MWL is proposed as a
specific task, so that even under stress and cognitive load, the
patients could generate control command signals to operate the
exoskeleton, and the study gauge its operational effectiveness.
Moreover, MWL commands may be efficiently gauged with
NASA TLX (Mansikka et al., 2019; Mingardi et al., 2020).
This study assessed cognitive load using National Aeronautics
and Space Administration’s Task Load Index (NASA TLX),
a multi-dimensional assessment method with six sub-scales:
including mental demands, performance, effort, and frustration
(Felton et al., 2012). fNIRS system measures and application
of machine and deep learning classification algorithms able to
discriminate between cognitive states even in cases of verbal
or spatial tasks. Various studies investigate that verbalization
also do not affect the fNIRS measurements as artifacts and
fNIRS provide a strong indication of the participants cognitive
load (MWL), and that may be utilized to ascertain the MWL
objectively during various cognitive tasks (Maior et al., 2015).
Using a combination of NASA-TLX and fNIRS methodology,
task validation was performed.

In this research, the neuroergonomic aspects of MWL are
taken into consideration while designing the data acquisition
fNIRS system from the brain (PFC) as well as the translation
of brain signals to soft lightweight wearable robotic exoskeleton
hand. Here in this study, a conceptual BMI designed is
proposed with a soft exoskeleton hand. A novel fNIRS-
based lightweight wearable exoskeleton hand mechanism for
potential hemiplegic patients (performing daily routine tasks)
is presented. Unlike previous studies (Ramadan and Vasilakos,
2017; Wang et al., 2019), the designed wearable exoskeleton
has separately controllable five fingers as an added HMI factor
with improved accuracy. A 12-channel fNIRS system is used
for data acquisition recording (Asgher et al., 2019). The system
acquired fNIRS signals and measured the two-state MWL. Data
of 14 subjects with a mean age of 23.7 years participated
in this study were utilized in classification and analysis.
Two optimal feature combinations from the hemodynamic
(HbO and HbR) signals, namely, mean and slope, were
extracted and employed using a support vector machine (SVM)
classifier. The maximum accuracy is 91.31%, with the average
accuracy of 87.9%. The complete BMI system is summarized
in Figure 1.

MATERIALS AND METHODS

Experimentation
Methodology
The proposed architecture consists of two different parts. First
is an experimental setup based on MWL assessment generated
during the cognitive load assessed with fNIRS. The second
is a wearable robotic exoskeleton hand. In this study, 12
channels with a two-wavelength continuous wave (CW) fNIRS
“P-fNIRSSyst” system (Asgher et al., 2019) is employed to
compute neuronal activation in the form of hemodynamic
concentration changes in the brain. The obtained changes in
concentration, intensity values of hemoglobin, are transformed
into relative concentration changes of 1HbO and 1HbR using
the modified Beer–Lambert law (MBLL). Samples are attained at
8Hz sampling rate. The placement of fNIRS optical optodes is
shown in Figure 2. Figure 2A is the neuroergonomic headband
designed for easy use on the human head’s PFC, and Figure 2B

shows the placement of sources and detectors. The rectangles
represent the sources, and the circle represents the detector. The
distance between the source and detector is a channel, and there
are 12 channels in the fNIRS system (Asgher et al., 2020a).

FIGURE 2 | (A) Compact data acquisition fNIRS system (P-fNIRSSyst) with

optodes placement and head-band. (B) Twelve channels of P-fNIRSSyst

system with three sources and eight detectors.
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Participants
A total of 16 subjects (11 males and 5 females) initially
participated in this study with age ranging from 20 to 27
years, mean age of 23.5 years, and standard deviation of 5.5
years. All the participants were engineering graduates. Medical
screening of participants was performed under the medical
doctor’s supervision to assess any physical, neurological, or
psychological issues or disease. None of the participants had
any disability. They were given the details about the experiment
before the start of the experimentation (task, time, and number
of trials for MWL). The fNIRS recording of one subject (16th)
was more than 10% contaminated with channel noise and so
that specific subject’s data were excluded from further analysis.
The remaining 15 subjects’ (10 males and 5 females) data were
then analyzed and classified. After data cleaning, bad channel
rejection, and data modeling, the final data of 14 subjects
were used in the final analysis. Pre-assessment was conducted
in the form of an interview to gauge their mathematical and
analytical skills with control conditions like similar educational
background and experience. The experimentation procedure was
conducted under the Declaration of Helsinki and approved by
the Ethical Research Council of RISE lab at SMME-National
University of Sciences and Technology (NUST).

Hardware: Design Optimization of Robotic
Exoskeleton Hand
In this study, the RISE Lab-SMME locally built robotic
exoskeleton hand is used. This exoskeleton hand novel design

is completely wearable and capable of controlling five (5)
fingers separately. Each finger’s movement is controlled by
one servo motor mounted on the hand’s backside, as shown
in Figure 3. An indigenously developed five-degree-of-freedom
(DOF) exoskeleton hand used in this research is shown in
Figure 3B. The device features a servo-tendon actuation for
controlling each finger’s position and the thumb allowing
various grasping motions and poses complying with those
needed for daily life activities (ADL). The proposed mechanism
has a five-DOF design with each of the finger and the
thumb being independently controlled by servo motors. The
transmission mechanism comprises a combination of linkages
and threads, utilizing the natural finger’s joints. It has the
following salient features:

– Top-mounted
– Axis alignment
– Effective force transfer
– Smooth trajectories
– Lightweight design

The mechanism used for the fingers and the thumb is shown in
Figure 3A, where l i-j is the link length between joints i and j.
Joint motion, by varying the angle at joint 4 (between linkages l
0–4 and l 3–4, called the actuating joint) of themechanism, can be
performed to move the individual finger from its normally open
position to the full close position.

The joint angles between linkages l 7–8 to l 7–9 and l 11–
13 to l 10–11 are both fixed. This allows the extra motion of
the fingers as the hand closes. The main aim was to achieve

FIGURE 3 | (A) Kinematic model, (B) CAD model, and (C) fabricated model.

Frontiers in Neurorobotics | www.frontiersin.org 5 March 2021 | Volume 15 | Article 605751

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Asgher et al. Brain Machine Interface (BMI) Using MWL

better force and torque transmissibility at the end effector.
Therefore, after manipulating different designs, we came up with
the final mechanism design employing rigid V links for torque
transmission, as shown in Figure 4. The force at the end effector
changes as the fingers tend to move into a grasping position.
Therefore, we tried to achieve an optimal design in which force
has been optimized for the grasping position.

In Figure 4, when the rigid V link EDC rotates anticlockwise,
i.e., the finger moves toward grasping position, angles FED and
ACD tend to reduce toward 90◦. This results in the maximum
transmission of force from link AC to link EF because torque
remains constant. Moreover, the force can also be increased from

FIGURE 4 | Conceptual depiction with V’s and joint angles.

TABLE 1 | Range of motion.

Joint Functional range of

motion

Proposed design

range of motion

MCP 62.70 63.10

PIP 78.30 118.20

DIP 610 63.10

FIGURE 5 | Stroke vs. joint angles of the exoskeleton hand.

its initial value if the length of link ED is less than the link CD’s
length. Based on the linkage design, the joint motion ranges of
the metacarpals (MCP), the proximal phalanges (PIP), and the
distal phalanges (DIP) are shown in Table 1.

The kinematics of the fingers based on the ranges of motion
mentioned in Table 1 can be determined. Figure 5 shows the
relation between actuator stroke in mm and MCP, PIP, and
DIP joint angles for flexion or extension motion of the index
finger. The extreme limits for the MCP, PIP, and DIP joint angles
are 243.10, 298.20, and 243.10, respectively, for stroke equal to
25.5mm. Figure 6 depicts the joint trajectories (PIP and DIP)
and the trajectory of the fingertip. It also shows the smooth and
logarithmic curve of the fingers.

The mechanism utilizes a unique servo-tendon actuation
technique to drive the actuating joint. Tower Pro MG 995
servo motor was used because it produces enough torque,
approximately 13 kg-cm. The actuators are subjected to stress
during the system’s functioning and need a suitable rigid base
that holds them in place. The actuators were accommodated
on the rear end of the hand’s base. To completely lock the

FIGURE 6 | Joint trajectory of the exoskeleton hand.

FIGURE 7 | Double string arrangement.
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motors in place, slots of each motor dimension were cut, and
then the motor was fixed in those slots with the help of a nut
and bolt, providing a solid foundation for the actuators. The
power transmission was a crucial decision in the execution of
the project. As the system’s efficiency was prioritized during
the execution, the transmission decision was also primarily
influenced by this scenario. The transmission’s proposed options
were as follows: A double string arrangement rotates the link l 3–
4. In this arrangement, a strand of string was revolved around
the servo pulley and then revolved around another pulley on
the initial link. As the strings work under tension, they would
not help return action to the initial form. Another strand was
passed over the pulley and revolved in such a manner that it was
opposite to that of the first string (Figure 7). This enabled tension
above and below the pulley, and hence, a constant input of force
was expected. The proposed system design is a soft exoskeleton-
based BMI system having an easy plug-and-play interface.
The system can be interfaced with different methodologies
like EEG, fNIRS, and EMG. A video demonstration of the
exoskeleton system in the Supplementary Video 1 exoskeleton
hand application, is demonstrated while doing exoskeleton
physical grasping tasks (glass lifting) using EMG signals showing
different joint movements (DOFs) as a generalized assistive
prosthetics technology.

Brain–Machine Interface and Data
Acquisition
fNIRS headset P-fNIRSSyst (Asgher et al., 2019) is used,
which the potential patient has to apply on the PFC area,
for the data acquisition. The P-fNIRSSyst is a continuous-
wave fNIRS system consisting of 12 channels arranged in an
array-like structure, integrated with three near-infrared (NIR)
sources having a dual-wavelength of 760 and 850 nm and
eight photodetectors. The sampling rate of P-fNIRSSyst is 8Hz.

The fNIRS system estimates the brain’s neuronal activity by
measuring hemodynamic concentration changes in the PFC in
the form of oxygenated (HbO) and deoxygenated hemoglobin
(HbR). The features acquired brain hemodynamic concentration
changes (1HbO and 1HbR), which are then used to generate
the BCI systems’ commands. The complete architecture and
system structural design is shown in Figure 8. The subject
with the robotic exoskeleton hand wears the fNIRS device on
the PFC region, which continuously measures hemodynamic
concentration changes in the PFC, as shown in Figure 8. The
proposed BMI system has several neuroergonomic features like
an adaptable head band with PFC mounted curve design,
lightweight, portable, easy integration with soft exoskeleton
hand, independent finger movement, and comfort in a physical
grasping action.

Experimental Paradigm
Participants were briefed about the tasks and wore both fNIRS
PFC band and bionic arm connected with fNIRS signals. The
subjects had to concentrate on mental math for a few seconds
to induce brain activity, and then fNIRS signals were taken from
the fNIRS headset and processed as mentioned in the benchmark
study (Asgher et al., 2019). The experiments are considered
to discriminate between difficulty levels of MWL. The mental
arithmetic tasks are selected to evoke brain activities and employ
a certain amount of MWL (Schudlo et al., 2013; Kosti et al.,
2018). Participants restrict their physical movements to prevent
artifacts and noise. Participants were presented with mental math
task shown on the laptop screen placed at 70 cm. The initial
146 s were provided as a rest period to set the baseline (Asgher
et al., 2020b). The baseline period is followed by MWL level-1,
in which subjects performed mental arithmetic tasks for 20 s and
then had 20 s of rest period. The same procedure was repeated
for 10 trials. The MWL level-1 consists of a simple math task

FIGURE 8 | The BMI system architecture of the proposed method.
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FIGURE 9 | Experimental paradigm.

with three-digit addition with another three-digit number. MWL
level-1 was modeled so that it provokes a minimal amount of
MWL (Galy et al., 2012). After 10 trials of MWL level-1, subjects
were presented with MWL level-2 with a delay of 25 s (base
line). The MWL level-2 also follows the same pattern of 20-s
activity and 20-s rest with 10 trials. The MWL level-2 contains
arithmetic operations on equations and their answers (ans) being
utilized in the next calculation (e.g., 768–5, ans ×4, ans −32, ans
+912).MWL level-2 involvesmental arithmetic tasks, short-term
memory, and mental math (Herff et al., 2013; Hosseini et al.,
2018). The difficulty level of MWL level-2 is greater than that
of MWL level-1 and induces more MWL. For the confirmation
of experimental paradigm, task difficulty of MWL tasks were
gauged with the NASA-TLX. NASA-TLX is a subjective mental
workload evaluation method to measure the cognitive loads
in different environments. It is a multi-dimensional evaluation
tool that rates recognized mental workload to assess the task
difficulty and gauge its cognitive workload, effectiveness, and
performance (Noyes and Bruneau, 2007; Paulhus and Vazire,
2007; Cao et al., 2009; Felton et al., 2012). The experiment
followed a within-participants design with control variable
conditions like participants’ age limit and education level, and the
order of the scenarios was counterbalanced using 10 consecutive
trials in average, and the experimental paradigm is repeated,
and the questionnaires were filled with subjects’ input after
MWL-1 and MWL-2, respectively. During the trials of MWL,
the performance of participants remains at a satisfactory level
(with less deviation). On the other hand, in case of fatigue or
overload triggered by previous perceived stress, this may lead
to impairment of performance (Kocalevent et al., 2011; Fan and
Smith, 2017), which was not experienced in our case (trials).
The performance of the participants was gauged both in time
and accuracy. Moreover, the proposed methodology of fNIRS
distinguishes different cognitive states and provides a robust
gauge of mental effort measured from PFC and an effective
method of measuring cognitive states (Peck et al., 2013). After
the completion of the first task (MWL-1), participants filled out
the NASA-TLX questionnaire and similarly for MWL-2. Results
show the reliability of experimental tasks and the difficulty levels

of two MWLs. The TLX (index) weight of MWL-2 >MWL-1
is also shown in the Supplementary Material (Results NASA
Tlx MWL-1, and MWL-2). These outcomes are in line with the
literature, in particular, an increased level of MWL is correlated
with the tasks of very high difficulty (Rubio et al., 2004; Mansikka
et al., 2019; Lowndes et al., 2020). The task timeline sequence of
two MWL difficulty levels and rest period is shown in Figure 9.

Translation Algorithm and System Architecture
These processed signals are translated into two commands, i.e.,
“open” and “close” and then fed into the robotic exoskeleton
hand, as shown in Figure 9. The experimental settings are
designed to differentiate two levels of MWL. In previous studies
(Schudlo and Chau, 2014; Kosti et al., 2018), mental arithmetic
and programming tasks were used to provoke the brain and
create a certain amount of MWL and can be used to generate
discriminative signal feed to BMI systems. Targeted channels in
this study are PF1, PF2, and PFz of the PFC region (Asgher et al.,
2019). The designed pseudocode of the translation algorithm
may consist of three main steps, along with an initialization
state. In initialization, first, a vector variable is initialized along
with three other pre-processor directives named “close,” “open,”
and “tied.” In step 1, the data, in the form of MWL vectors
read by serial read function. In step 2, previously read data is
further checked using the “if ” statement. Three “if ” statements
are used to cover “open,” “close,” and “tied” conditions. These
two steps are repeated until the termination of the whole process
(step 3). The complete algorithm is designed in MATLAB 2019a
(MathWorks, Inc.).

Data Preprocessing for fNIRS Signals
Brain activity is detected by measuring changes in the
concentration of oxygenated and deoxygenated hemoglobin
(1HbO and 1HbR). The modified Beer–Lambert Law (MBLL)
was used for measuring concentration changes by using the
intensities of detected NIR light at two different time instants
(Pucci et al., 2010). The MBLL notation with change in
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concentration of HbO and HbR is shown in Equation (1).
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High-frequency artifacts (due to breathing, blood pressure, and
heartbeat) are removed by passing signals through a low-passed
fourth-order, zero-phased Butterworth filter (Franceschini et al.,
2006; Barker et al., 2016). Brain hemodynamic fNIRS signals
are passed through a low-passed band, fourth-order filter with
a cutoff frequency of 0.3Hz to remove high-frequency artifacts.

Hemodynamic Response Function
The temporal resolution of fNIRS usually depends on the
properties of the underlying evoked neuronal and vascular
changes. The time series blood oxygenated level-dependent
(BOLD) response function depends on the nature of applied
stimuli and hemodynamic response to neuronal events and
is known as the hemodynamic response function (HRF). The
metabolic rate in brain tissues increases with the activity and, as a
result, increases the1HbOwith a relative decrease in1HbR. The
standardHRF shows the signal peaks during 5–8 s after triggering
neuronal events, since neuronal activity increases metabolic
demands that lead to an increase in the influx of oxygenated
blood. Since the inflow of oxygenated blood continues and results
in more supply than demand, the HRF becomes straightened

roughly after 10–12 s (Naseer and Hong, 2015; Khan and Hong,
2017). TheHRF in this study was calculated by spatially averaging
across all channels and then temporally averaging the obtained
vector from the previous step with respect to the number of trials,
i.e., 10 for each MWL state.

Statistical Significance and Data Modeling
The acquired hemodynamic signals can be affected by external
and internal factors from accusation through optodes,
transmission from fNIRS device to the computer, artifacts
(Meyers waves, breathing), and the channel noise. To determine
the validness of data acquired from the P-fNIRSSyst system,
and that each channel has significant information, a statistical
significance of data per channel is computed to measure the bad
channel rejection. Independent-sample t-test and p-test were
performed on the channel data. A discrete signal having an equal
step size of mental workload activities (20 s) and the rest period is
modeled and further compared with the acquired data to gauge
the statistical significance. Data from only those channels are
considered, which fulfill the criteria (p < 0.05). The percentage
threshold under which the alternate hypothesis is deemed valid,
known as alpha, is set to 5%. The data significance per channel
computed from the acquired data is set at a threshold of 89.16%
for a channel to be significant, as mentioned in detail (Asgher
et al., 2020b). The channel numbers 1 and 10 did not satisfy
this criterion and were excluded from further analysis. After
data cleaning and bad channel rejection, and data modeling,
the final data of 14 subjects are used in the final analysis, as
shown in Table 2 and Figure 10. The obtained signals were also
visually inspected for any artifacts like muscle movement effects,
optode slippage, and other motion artifacts. The data recording

FIGURE 10 | Experimental setup with bionic control.
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of a subject with more than 10% contamination was excluded
from further analysis. The data are analyzed and modeled based
on the standard fNIRS data. The changes in concentration
of 1HbO and 1HbR are plotted to depict the hemodynamic
response function (HRF) by taking the spatial average of HbO
and HbO at channels. The channels at which the HRF with the
MWL is not exactly recorded due to the channel noise, and a
second standard mathematical model of HRF (having 1HbO
rise in the activity region) of the signal is used to construct the
HRF of the acquired data and applied on the data per channel.
This allows the signal data during brain activity to be modeled
close to the actual standard HRF model and discriminated for
further utilization in the translation commands signals for the
BMI system.

FEATURE ENGINEERING AND
CLASSIFICATION

The standard procedure is to extract features from fNIRS data,
and the extraction is directly carried from concentration changes
of 1HbO and 1HbR. Features are selected based on data
information in terms of important details; these features contain
subsequent optimal classification (Naseer et al., 2016). Different
types of features can be extracted from acquired hemodynamic
signals. These features are calculated from temporal 1HbO and
1HbR data. Themost commonly used features havingmaximum
data information are signal mean, signal slope, signal variance,
signal skewness, kurtosis, and signal peak reported in various
studies (Naseer and Hong, 2015; Naseer et al., 2016) were also
computed in this study.

Mean
The arithmetic mean is a single value referring to the central
tendency of given data. It is determined by the sum of all the data
points over the total number of data points. Mathematically, the
mean is expressed as:

µ =
1

n

∑

n
i=1xi (2)

where x refers to the data points of a given data set from 1 to n.

Standard Deviation
Standard deviation is used to quantify the dispersion of data
points within a distribution from a mean value. Statistically, it
is calculated as:

σ=

√

1

n− 1

∑

n

i=1
(xi− µ)2 (3)

where x refers to the data points from 1 to n; n refers to the
total number of data points, and µ is the arithmetic mean of the
data set.

Variance
Variance is the squared standard deviation used to quantify the
deviation of data points of a distribution from the mean value.

Mathematically, the variance is expressed as:

σ 2=
1

n− 1

∑

n

i=1
(xi− µ)2 (4)

Slope
The slope or gradient of a line is a value referring to both
the steepness and the direction of the line. It is the ratio of
the vertical difference to the horizontal difference between two
distinct points on a line and thus mathematically expressed as:

m =
1y

1x
(5)

where, 1y and 1x are the vertical difference and horizontal
difference between two points on a line, respectively.

Kurtosis
Kurtosis is the measure of peak around the mean distribution.
Mathematically, it is calculated using the equation:

Kurtosis =

∑n
i=1

(xi− µ)4

n

σ 4
(6)

where xi is the data points of the distribution, µ is the mean,
σ is the standard deviation of the distribution, and n is the
sample size.

Skewness
Skewness is the measure of the asymmetry of a distribution
about its mean. It can be positive, negative, or undefined.
Mathematically, it is calculated using the equation:

Skewness=

∑

n

i=1

(xi− µ)3

n

σ 3
(7)

where xi is the data points of the distribution, µ is the mean,
σ is the standard deviation of the distribution, and n is the
sample size.

Feature Extraction and Support Vector
Machines
There are several possible features, features of which ones with
the maximum data information are utilized in this study. In
this study, commonly used features from HbO and HbR are
calculated. After computing several feature combinations (signal
mean, signal slope, signal variance, signal skewness, kurtosis, and
signal peak) and the corresponding SVM accuracies, only two
features, mean and slope, are selected due to their optimal feature
combination for classification eventually. These features were
spatially computed across significant channels with a moving
overlapping window of 2 s. With a set of labeled training data
in supervised learning, SVM draws hyper-planes to separate the
closest training points (support vectors) with maximum distance
outputs assigned to the categories of classification (Fernandes
de Mello et al., 2018). The SVM, a powerful machine learning
classifier, is employed for classification and is given in Equation
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(8). It maximizes the distance between the closest training points
with a separating hyper-plane.

f (x) = r.x+ b (8)

b is the scaling factor and r, x ǫ. The loss function of SVM is given
in Equation (9)

J(θ) =
∑

m
i=1y

(i)Cost1(θ
T(x(i))+ (1− y(i))Cost0(θ

T(x(i)) (9)

In Equation (9), m represents the total number of data points.
The cost function is given by:

Cost(hθ (x), y) = {
max(0,1−θTx) if y =1
max(0,1+θTx) if y =0

(10)

The data are classified with SVM into two categories of MWL-
1 and MWL-2 based on the features. The labeled MWL trails
are compared with performed actions, and the classification
accuracy is determined with 1HbO and 1HbR and total
hemoglobin (HbT), as shown in Table 2. In the study, the
models of classification were subject specific. For the train-test
split analysis, different paradigms including leave-one-out cross-
validation (LOOCV), K-fold cross-validation, and 70:30 train-
test split ratio were considered and analyzed. The purpose of the
train-test split is to avoid overfitting of the model and checks
how well a model generalizes to new unseen data from the
same distribution. Each of the train-test methods has their own
advantages; the 70:30 train-test split ratio for subject-specific data
was used in this study. This avoids the distributional mismatch
of the subjects’ data in training and testing datasets. The leave-
one-out cross-validation and K-fold cross-validation were not
used because they were computationally and time expensive

(Fushiki, 2011; Xu andGoodacre, 2018; Vabalas et al., 2019; Farias
et al., 2020). Complete classification algorithms were trained
and tested on the system MSI GE62VR Apache Pro Laptop
with NVIDIA GEFORCE R© GTX 1060 having a 3GB GDDR5
graphic card. SVM classification was performed on MATLAB
2019a (MathWorks, Inc.) using themachine learning application.

Data Transfer Rate and Information Transfer Rate
The data transfer rate (DTR) and information transfer Rate
(ITR) are the assessment metrices used in BMI studies to
estimate the amount of information in bits passed on by
the system’s output to operate the interface and evaluate the
applicability of classification (Obermaier et al., 2001; McFarland
et al., 2003). ITR was first introduced in information theory
and used to quantify the reliability of information (Obermaier
et al., 2001) to gauge the number of mental tasks with the
reliability of classification accuracy and the rate at which the
information or command signals are translated to the robotic
exoskeleton arm. DTR and ITR depend on the number of
classes, task duration, and the classification accuracy. fNIRS-
ITR can be increased with increasing number of classes, but
with more classes, the classification accuracy decreases. Multi-
task classification in this study with two classes (two-state MWL)
with appropriate accuracy and task duration are employed to
generate considerable ITR to operate the BMI system. In case of
data transfer, EEG is preferred over fNIRS, and the ITR of EEG
and EMG are large compared with the fNIRS owing to its less
sampling frequency and temporal resolution (Obermaier et al.,
2001; Power et al., 2012; Shin and Jeong, 2014). DTR is denoted
by Bm and is calculated using ITR (Bt—bits/trail):

Bt = log2N + P log2 (P) + (1− P) log2
1− P

N− 1
(11)

TABLE 2 | Evaluated parameters (accuracy and ITR) of the proposed system.

Subjects Gender Accuracy

HbO

Accuracy

HbR

Accuracy

HbT

ITR HbO ITR HbR

S1 Male 89.05 87.53 88.29 1.45 1.43

S2 Male 89.11 86.83 87.97 1.44 1.40

S3 Female 91.31 88.84 90.07 1.52 1.47

S4 Male 91.47 88.87 90.17 1.52 1.47

S5 Male 86.90 87.97 87.43 1.42 1.44

S6 Female 85.66 84.35 85.01 1.34 1.31

S7 Male 89.63 87.74 88.68 1.47 1.43

S8 Female 88.69 86.89 87.79 1.43 1.40

S9 Male 89.01 88.98 88.99 1.48 1.48

S10 Male 80.15 83.75 81.95 1.24 1.29

S11 Male 90.09 89.47 89.78 1.51 1.50

S12 Female 83.99 86.66 85.32 1.35 1.39

S13 Female 89.90 88.99 89.44 1.50 1.48

S14 Male 85.67 86.51 86.09 1.37 1.39

Average 87.9 ± 3.01 87.38 ±

1.65

87.64 ±

2.24

1.43 1.42
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where N is the number of targets (stimulus) or number of classes,
and P is the classification accuracy. DTR is computed in bits
per minute using Equation (12), where Cn is the number of
classifications, and T is the processing time in second (Wolpaw
et al., 1998; Erkan and Akbaba, 2018).

Bm =
60

T
Cn.Bt (12)

RESULTS

Each subject undertook 10 trials for each MWL difficulty level.
The subject had to evoke mild mental activity (open action) first
and then higher and intense mental activity (immediate action to
close action).

The SVM classifier is used on channels having considerable
statistical significance and calculated in the previous step
(Statistical Significance and Data Modeling section). The total

FIGURE 11 | (A) The hemodynamic response function (HRF)–fNIRS signal at mental workload (MWL)-1 (hand open), (B) the HRF-fNIRS signal at MWL-2 (hand close),

(C) distal phalanges (DIP) joint’s plot against the opening command, (D) MIP joint’s plot against the closing command, (E) exoskeleton hand opened, and (F)

exoskeleton hand closed.
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length of the recorded fNIRS signal is 546 s. The averaged
accuracy achieved through HbO, HbR, and HbT is 87.9% ±

3.01, 87.38% ± 1.65, and 87.64% ± 2.24, respectively. ITR is
calculated from HbO, HbR, and HbT to examine the successful
information transferred for the deigned soft exoskeleton system.
The results attained with HbO and HbR are shown in Table 2.

The averaged ITR achieved with HbO is 1.43. The MWL control
signals are applied to the exoskeletal hand online, but the results
show that real-time testing can be applied but with a limited
capability of ITR compared with EEG, which has high ITR and
faster control translations (Spüler, 2017; Xing et al., 2018). The
analysis is not real time; however, this limitation is due to the
inherent limitation in fNIRS with small ITR that takes some
time to process the data. The HRF plots of acquired fNIRS
signals are shown in Figures 11A,B, controlling commands for
open and close after pre-processing, and Figures 11C,D show
the corresponding opening and closing angles of hand’s MIP
and DIP joints data and implementation on exoskeleton hand as
mentioned in Figures 11E,F.

DISCUSSION

In this study, a wearable soft exoskeleton hand is designed,
and its controlling technique proposed for the potential patients
suffering from a stroke or severe disability for grasping tasks.
A low-cost servo tendon-driven exoskeleton hand is designed,
which is controlled using the proposed fNIRS-based MWL
paradigm, and each finger can move independently, unlike the
previous studies (Shahid et al., 2018), where all fingers were tied
except the thumb in most of the studies (Ramadan and Vasilakos,
2017; Wang et al., 2019). In this study, conversion of low and
highMWLwas utilized as operational commands in opening and
closing of the robotic exoskeleton. MWL is subjective, and signals
from PFC are cognitive in nature.MWL is considered as a specific
task that could be utilized in the BMI especially in situations

like overload, fatigue, and stress, and to evoke a functional brain
response. Sixteen right-handed (11 males and 5 females) healthy
participants took part in this research. After screening and bad
channel correction, the accuracy performance and ITR of the
final 14 subjects are shown in Table 2. Figure 12 shows that
both operations were performed equally by each subject, with an
average performance accuracy of 87.9%. The total length of the
recorded fNIRS signal is 546 s. The maximum accuracy achieved
is 91.31%, while the minimum accuracy is 80.15%, as shown
in Table 2 and Figure 10. The major takeaway of the system
is the brain–machine interface (BMI) aspect in the form of a
portable PFC fNIRS-based interface with lightweight exoskeletal
hand, and limited non-ergonomic advantages are the system’s
portability, MWL applicability, ease of use, curve shape fitting on
PFC, and translating controls to the lightweight exoskeletal hand.
Since the main neuroergonomic advantages to the exoskeleton
are the human brain at work using MWL, we tried to design the
soft exoskeleton hand that may assist a person’s daily working,
whether in physical grasping or holding tasks (von Lühmann
et al., 2015; Lotte and Roy, 2018). In the case of a stroke patient,
when he or she tries to generate operational commands, the
neural blood flow and pathways of the patients are different
in case of the injury or disease (Birbaumer and Cohen, 2007;
Chodobski et al., 2011; Käthner et al., 2017). MWL is a proposed
task that could be applied even under stress and cognitive
load, and the patients could generate control command signals
to operate the exoskeleton. The results obtained using NASA-
TLX and fNIRS MWL data pattern validate the experimental
paradigm for assessment and analysis. The overall focus of the
study is the design for a soft exoskeleton system interfacing with
the brain’s PFC communication in an ecological environment.

Many researchers (Brose et al., 2010; Meng et al., 2016; Zhang
et al., 2017; Chen et al., 2018) presented different techniques
in similar research areas and used different neuroimaging
techniques. The relevant research is presented in a few EEG

FIGURE 12 | The average performance and accuracies of all subjects against (open96close) exoskeleton hand commands.
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and fNIRS studies (Li et al., 2017; Shin et al., 2017; Khan et al.,
2018) for gait rehabilitation and increasing accuracy for the BMI
system. In this study, a BMI system is proposed, which pertains
to physical hand grasping tasks in a controlled environment. In
Rea et al. (2014), used the fNIRS signal to detect lower-limb
movement for gait rehabilitation. They acquired fNIRS signals
in stroke patients during preparation for hip movement with
67.77± 11.35% accuracy. Zhao et al. (2017) proposed a prosthetic
controller to control and operate a bipedal robot. A walking gait
cluster pattern was initiated for the robotic system, and an online,
optimized transfemoral prosthesis control technique [control
Lyapunov function (CLF)-based quadratic programs (QPs)] was
examined on the knee and ankle joints of the prosthetic device.
Perrey (2014) extensively studied the neural gait control using
fNIRS. The proposed system was not real-time tested, and the
offline classification is performed on the healthy subjects in a
lab. The MWL control signals are applied to the exoskeletal hand
online. The results show that real-time testing can be applied but
with a limited capability of ITR compared with EEG, which has
high ITR and faster control transitions (Spüler, 2017; Xing et al.,
2018).

Similarly, in Ortner et al. (2011), the authors used SSVEP
for rehabilitation (the channel used was O1 along with Fz as
a reference node at 256Hz sampling rate), and the accuracy
reported was more than 60%, while the proposed fNIRS-
BMI technique’s average accuracy is 87.9% at 1.43 ITR. The
ITR can be further improved by reducing the task duration
or number of classes, but in that case, the accuracy would
reduce. The tradeoff between performance accuracy and ITR
is tried to be placed near-optimal in the proposed system
design. Li et al. (2017) proposed a hybrid EEG-fNIRS BCI
system’s highest classification accuracy of 91.02 ± 4.08%, while
using the EEG classification accuracy of 85.64 ± 7.4%, and
with fNIRS, the study stated an average accuracy of 85.55
± 10.72%. The authors in Ortner et al. (2011) used PSD
along with discrete Fourier transform (DFT). More detailed
data of previous studies and comparisons are presented in
Table 3, including classifier, hardware, electrodes, and nature
of the study. Ortner et al. (2011) and Downey et al. (2016)
had presented the wearable exoskeleton hand, but all fingers
were tied, making the upper part of the hand fixed like a
palm to reduce the number of actuators. In this proposed
study, we tried to address this issue by eliminating this
limitation, and all fingers of the exoskeleton hand are capable of
moving independently as shown in the Supplementary Video 1

exoskeleton hand application.
In BMI, the research studies are primarily focused on

validating the experimental paradigm, authenticating the
new custom-built devices, procedures for controlling devices,
verifying the applicability of hardware for healthy participants
or patients (stoke, motor disability, ALS), and conducting
experimental lab trials on healthy patients and reporting their
findings and results (Abiri et al., 2019). Shirley Coyle et al.
designed a simplified fNIRS device, while Wyser et al. designed
a wearable modular fNIRS device, and both studies were tested
and findings validated on healthy subjects (Coyle et al., 2007;
Wyser et al., 2017). In different studies, Noah et al., Oh et al.,

and Asgher et al. designed and validated their experimental
paradigms: naturalistic task, attentive locomotion task, and
mental arithmetic task, respectively, performed on healthy
participants (Noah et al., 2015; Oh et al., 2018; Asgher et al.,
2020b). In another study, the authors designed an fNIRS-based
neurorobotic interface for gait rehabilitation and reported
findings on healthy patients (Khan et al., 2018). Costa et al.
(2016) evaluated an association among the cortical signals
and the cognitive mechanisms associated with the attention
during gait using offline analysis on healthy participants and
SCI patients, and analyzed their brain activation. Similarly,
Magosso et al. (2019) analyzed alpha rhythm and detected
changes in attention during human interaction with an artificial
environment, using EEG with a framework for the potential end
users (patients). The reported accuracy in the case of patients
is slightly less compared with the healthy patients owing to
differences in neural and hemodynamic patterns either due to
disease or injury. The proposed methodology is unique as it
is designed, keeping in view both BMI and ergonomic factors.
The first significant lead is a wearable and lightweight servo
tendon-driven design of an exoskeleton hand with a portable
fNIRS system for brain data (MWL) acquisition. Second, all
fingers are operated separately along with the thumb, and they
can move independently with one actuator for each finger.
Third, the overall average accuracy is comparable and, in some
cases, higher than previous similar studies (Müller-Putz and
Pfurtscheller, 2008; Ortner et al., 2011; Looned et al., 2014).
A comparative analysis is presented in Table 3. The direct
comparison cannot be established between EEG and fNIRS, and
the tasks are also not comparable because of several differences
like spatial and temporal resolution and prominently the ITR
in BCI and BMI applications. Several EEG studies show that a
prosthetic hand can be controlled using brain signals, although
the fNIRS-BMI studies on the soft exoskeleton control are
very limited (Lalitharatne et al., 2013; Gao et al., 2016; He
et al., 2018). In our study, by analyzing the TLX, it could be
also possible to assess subscale scores affected by the mental
workload related to a specific task. In experiments where mental
demand is increased, participants mentioned higher perceived
mental demand, effort, and frustration, with lower subjective
perception of their task performance (Mingardi et al., 2020).
The task duration of 20 s is required to acquire that data to
generate the commands, and around 1 s is needed to execute
that command. This may be a long duration for a healthy
person, but for a stroke patient or amputee who cannot move
the arms, this execution time may be useful for the patients
to perform motor task on their own. Further experimentation
with small task duration windows could help in faster command
generation with time reduction while keeping accuracy and
ITR at desired levels (Shin and Jeong, 2014). The comparison
of the proposed system with existing EEG studies in Table 3 is
mentioned to indicate that an fNIRS-based exoskeleton can be a
potential research area for BCI and BMI applications. Borgheai
et al. (2020) proposed an fNIRS-based BCI system that shows
communication and control for late-stage ALS patients (lose
voluntary muscle control) with a maximum average accuracy of
81.3± 5.7%.
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TABLE 3 | Comparison of brain–machine interface (BMI) and prosthetics control studies.

References Classifier Hardware Electrodes Technique Brain

activation

Wearable/non-

wearable

Chen et al. (2018) CCA 7 DOF Robotic arm P3, Pz, P4,

PO3, PO4,

T5, T6,O1,

Oz, and O2

SSVEP Neural Non-wearable

Zhang et al. (2017) CNN ID-SIR system FPz, Oz SSVEP and

P300

Neural -do-

Meng et al. (2016) Event related

synchronization/

desynchronization

6 DOF Robotic arm C3, C4 Thoughts/imaginationNeural -do-

Brose et al. (2010) *** Wheelchair/robotic

manipulator

*** *** Neural -do-

Downey et al. (2016) BMI decoding Robotic Manipulator *** BMI and

Comp. Vision

Muscles and

Neural

-do-

Fukuma et al. (2018) Variational

Bayesian

multimodal

Prosthetic hand *** MEG/eSCP Muscles and

Neural

-do-

Yang et al. (2018) SVM Robotic Manipulator Pz, P3, P4,

PO3, PO4,

PO7, PO8,

Oz, O1,O2

SSVEP Neural -do-

Müller-Putz and

Pfurtscheller (2008)

DTF/HSD

Motor imaginary

Prosthetic hand O1 and O2 SSVEP Neural -do-

Looned et al. (2014) Linear/binary

classifier

Upper extremities (UE) All (14

channels)

Functional

electrical

stimulation

Neural Wearable

Rea et al. (2014) LDA Lower limb movement All (48

channels)

fNIRS Hemodynamic -do-

Ortner et al. (2011) Weighted PSD

along with discrete

FF

Prosthetic hand O1, and Fz SSVEP Neural -do-

Khan et al. (2018) LDA and SVM Prosthetic leg Left

hemisphere of

M1

fNIRS Hemodynamic -do-

Costa et al. (2016) LDA, SVM, K-NN,

NB, and DTL

Participant’s attention

to the gait

Significant

channels

EEG with

gamma band

Neural -do-

Borgheai et al.

(2020)

LDA with

single-trial

Visuo-Mental (VM)

Amyotrophic lateral

sclerosis (ALS)

F1, F2, AFz,

Fp1, and Fp2

fNIRS Hemodynamic -do-

Proposed method SVM with mental

math task

Five DOF with

independent control

Prosthetic hand

PF1, PF2,

and PFz

fNIRS Hemodynamic -do-

*** The specific details were not mentioned in those research studies.

The field of BMI is emerging as an assistive methodology and
aiding patients with different disabilities (Min et al., 2010; Teo
and Chew, 2014; Shik et al., 2020). Despite its potential role
in neurorehabilitation, the practicality of BMI depends on the
patient and environment specific to the patient, owing to the
human brain’s dynamic nature (Belda-Lois et al., 2011; Cervera
et al., 2018). The need for recalibrating and adjusting the BMI
system’s settings for every new session with a new subject due to
the patient’s dynamic brain electrical and hemodynamic profile
makes the actual applicability of BMI patient specific (Krauledat
et al., 2007; Millán et al., 2010; Rieke et al., 2020). Accounting

for the human brain’s uncertain behavior is due to variations
of in the users’ mental state and psychological state, miss-
concentration, attentiveness, and fatigue levels. It may also be
influenced by numerous measurement conditions, such as the
changes in the impedance of the electrodes due to sweating and
other hardware or external environmental factors (Azab et al.,
2018).

There are few limitations of the current study; the first is
analysis is not done in real time, and instead, online classification
is used on the participants’ data. However, this limitation is
due to the inherent limitation in fNIRS with small ITR that
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takes some time to process the data and generate command
translation signals. The second limitation is that the study
is conducted on healthy subjects and designed for potential
stroke patients. Different studies have already demonstrated
the feasibility of functional near-infrared spectroscopy (fNIRS)
to successfully control BCIs primarily for healthy participants
(Naseer and Hong, 2013, 2015; Borgheai et al., 2019). There are
promising outcomes for BMI in healthy subjects. The evidences
that BMI applications may also produce clinically significant
motor recovery results after stroke and in people with motor
disabilities are also reported in various studies. The accuracy
reported in these studies for patients is slightly less compared
with the healthy persons mainly due to the patients’ specific
experimental protocols compared with the healthy participants
and the difference in the hemodynamic behavior of the brain
(Burns et al., 2014; Costa et al., 2016; Käthner et al., 2017;
Borgheai et al., 2020; Rieke et al., 2020). In ecological settings,
the BCI systems face numerous challenges such as low BCI
signal strength, low data transfer rate, and high error percentage
due to high brain signal variance (Kameswara et al., 2012;
Ramadan et al., 2015). The accuracy of BCI system is also
effected and sometimes reduced owing to the lack of ability
of the patient to retain similar cognitive states in various
sessions as it is observed that long intervals of usage introduce
cognitive fatigue for the patients (Papanastasiou et al., 2020). The
tasks in this study were designed for potential stroke patients
who may generate control commands even under stress and
cognitive load. The signals are also affected by the person’s
eye blinks, muscular movements, and hearing sound (Cincotti
et al., 2008; Abiri et al., 2019). In this context, a methodology
is proposed in this study for stroke patients to utilize their
cognitive load signals in the form of MWL, due to its strong
association with the subject’s performance and related stress
(Aricò et al., 2016). Various fNIRS and EEG studies utilized
mental arithmetic tasks and cognitive brain data fromPFC in BCI
and neurorehabilitation applications (Shih et al., 2012; Naseer
and Hong, 2015; van Dokkum et al., 2015; Shin et al., 2016;
Ayaz et al., 2018; Chaudhary et al., 2020). In similar studies,
Khan et al. (2014) studied hybrid fNIRS-EEG for decoding
four movement directions, the study stimulate the changes
in concentration of HbO (acquired fNIRS signals) with MA
task as forward and backward directional signals and changes
induced in EEG through a hand tapping task as left and right
directional signals. Further, Hong et al. (2018) examined the
use of a hybrid (fNIRS-EEG) BCI for the patients with locked
in syndrome.

In this study, first, we validate the BMI hardware (soft
exoskeleton hand with the fNIRS system) design and
experimental paradigm of a two-state MWL offline classification
on healthy patients. The proposed system can be used as a
benchmark study for future fNIRS-based BMI applications.
The results suggest the plausible accuracy for fNIRS-based
servo tendon-driven exoskeleton system. The exoskeleton has
been used on healthy participants in the lab environment.
However, the full system has to be tested in the future on actual
patients with varying levels of MWL. Further experimentation
with small task duration windows could help faster command

generation with time reduction in future research while keeping
the accuracy and ITR at desired levels. For future research, we
would try to introduce the adaptive force control for grasping
tasks and GUI for the physiotherapist’s operational use. Also,
we intend to extend our experiments and perform real-time
classification on patients with motor disabilities. This study
serves as the feasibility study for detecting two-state MWL with
fNIRS and the execution of generated commands through a
servo tendon-driven exoskeleton system.

CONCLUSION

The integration of neuroergonomics with the brain–machine
interface (BMI) systems is the need of the hour. This study
is designed for potential stroke patients and performed online
classification of mental workload (MWL) on healthy participants
to gauge the BMI system’s applicability. The brain data of
participants are recorded in the form of MWL acquired using a
custom-built fNIRS system and translated into a soft exoskeleton
system, keeping the system’s weight and portability as flexible
as possible. Two MWL commands operate a lightweight bionic
arm with a servo tendon-driven exoskeleton designed explicitly
for hand-grasping tasks. Targeted channels and regional areas of
interest on the pre-frontal cortex (PFC) are PF1, PF2, and PFz.
The two-state MWL is recorded at 8Hz sampling frequency and
used to operate each finger (open and close) independently in the
soft exoskeleton hand. Support vector machine (SVM) classifiers
are used to generate command signals (open or close) for the
prosthetic hand. The maximum classification accuracy is 91.31%,
with an average accuracy of 87.9% and an average information
transfer rate (ITR) of 1.43. The results show the effectiveness of
the proposed brain–machine interface (BMI) system for potential
patients having difficulties in grasping tasks.
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