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Abstract: Electrical impedance tomography (EIT) is a non-invasive, radiation-free imaging technique
with a lot of promise in clinical monitoring. However, since EIT image reconstruction is a non-linear,
pathological, and ill-posed issue, the quality of the reconstructed images needs constant improvement.
To increase image reconstruction accuracy, a grey wolf optimized radial basis function neural network
(GWO-RBFNN) is proposed in this paper. The grey wolf algorithm is used to optimize the weights in
the radial base neural network, determine the mapping between the weights and the initial position
of the grey wolf, and calculate the optimal position of the grey wolf to find the optimal solution for
the weights, thus improving the image resolution of EIT imaging. COMSOL and MATLAB were used
to numerically simulate the EIT system with 16 electrodes, producing 1700 simulation samples. The
standard Landweber, RBFNN, and GWO-RBFNN approaches were used to train the sets separately.
The obtained image correlation coefficient (ICC) of the test set after training with GWO-RBFNN is
0.9551. After adding 30, 40, and 50 dB of Gaussian white noise to the test set, the attained ICCs with
GWO-RBFNN are 0.8966, 0.9197, and 0.9319, respectively. The findings reveal that the proposed
GWO-RBFNN approach outperforms the existing methods when it comes to image reconstruction.

Keywords: electrical impedance tomography; grey wolf optimization algorithm; image reconstruction;
radial basis function neural networks

1. Introduction

Electrical impedance tomography (EIT) is a novel functional imaging approach that
uses electrical information at field boundaries to reconstruct an image of the electrical
conductivity distribution within an object [1]. Because of its benefits of radiation-free
viewing, quick reaction, non-invasive and simple structure, the EIT technique has been
a focus of study and is extensively employed in industrial processes [2] and medical
monitoring [3,4].

According to Maxwell’s equations, the potential distribution measured from electrodes
and the exciting current density determine the electrical conductivity distribution of the
internal material. On the other hand, the image reconstruction of the EIT is a non-linear,
pathological, and ill-posed issue [5].

The traditional image reconstruction methods can be divided into dynamic algorithms
(isotropic inverse projection method [6], sensitive matrix method, and conjugate gradient
method [7] and static algorithms (Gaussian Newton method [8], layer peeling method [9],
static imaging algorithm for isotropic inverse projection, etc.). Dynamic algorithms are
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quicker to image and are often used for online reconstruction, but they need less precision
from the data gathering apparatus and produce images of lower quality, as well. On the
other hand, although the quality of reconstructed images generated using static methods
has been improved, the repetitive search for incredibly small value points is computation-
ally taxing, slowing down imaging and increasing noise sensitivity. Traditional image
reconstruction techniques commonly utilize a linear equation to establish a mathematical
model of the relationship between border voltage levels and conductivity distribution
inside the object field [10]. The linearization procedure loses a lot of crucial information,
resulting in substantial distortion of the rebuilt image.

Neural networks are distributed information storage structures that avoid the lin-
earized analysis of sensitive matrix computing and image reconstruction by having huge
parallelism, non-linearity, high self-adaptability, and strong self-learning capacity [11].
Many academics have committed themselves in recent years to solving the EIT image
reconstruction challenge using various neural networks [12]. The BP neural network, con-
volutional neural network [13], and radial basis function are three typical effective and
reliable neural network models.

A radial basis function neural network (RBFNN) is a high-performing feed-forward
neural network. It has a remarkable global approximation capacity for nonlinear models,
and can approximate any nonlinear function with arbitrary precision, which sets it apart
from other neural networks. Additionally, due to its straightforward structure, rapid rate of
learning convergence, and absence of sensitive matrix computation, the RBFNN satisfies the
requirements of EIT image reconstruction [14]. The weights in RBFNN have a substantial
influence on the network model’s overall performance and are directly connected to the
predictability of the outcomes. When there is a lot of noise in the training data, the least
squares method (LSM) will lead the neural network to fit an inaccurate surface. This will
make the network less versatile. Furthermore, as the number of input samples increases,
the disparity between the members of the generated weight matrix also increases. This will
lead to an unstable solution, ultimately resulting in low-quality EIT reconstruction images.

A grey wolf optimized radial basis function neural network (GWO-RBFNN) is pro-
posed in this paper to improve the network’s accuracy for image reconstruction of EIT in
the presence of noise. The method adjusts the network center using the K-means algorithm
and determines the network base width using the KNN (K-nearest neighbors) algorithm.
Then, it uses the grey wolf optimization algorithm instead of the LSM to obtain more stable
network weights, achieving the goal of improving the network model’s prediction accu-
racy. It was shown that the GWO-RBFNN approach proposed in this paper successfully
improves the reconstruction quality of EIT images and boosts the artifact removal ability
by comparing the reconstruction outcomes of other algorithms.

2. Theory
2.1. Mathematical Model

The diagram of the EIT system is shown in Figure 1. There are 16 electrodes evenly
distributed on the sensor. The electrode width in this work is 10 mm. The length of the
electrode is 25 mm and the height of the electrode sensor is 100 mm. The geometric center
of the electrode is located 50 mm from the electrode sensor.

When a safe AC excitation current signal is applied to the electrode sensor at the field
boundary, the multiplexer can measure the voltage signal of the remaining electrode pairs
at the field boundary, send the resulting analog signal to the data acquisition section, and
then uses an image reconstruction algorithm and the collected voltage data to reconstruct
the conductivity distribution inside the field [15].
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Figure 1. Diagram of EIT system. 

2.2. Building an RBFNN for EIT 
The fundamental construction of an RBFNN is shown in Figure 2, which is a kind of 

forward neural network. It is made up of three layers: the input layer, the concealed layer, 
and the output layer. The signal is sent from the input layer to the hidden layer, which 
completes the non-linear transformation from the input layer to the hidden layer space by 
using the radial basis function as the activation function. The RBFNN can approximate 
any non-linear function, which not only speeds up convergence and eliminates the issue 
of local minima, but also fits the EIT image reconstruction requirements. 

Figure 1. Diagram of EIT system.

The EIT measures the field domain, which satisfies Maxwell’s equations and electro-
magnetic field theory, and can be mathematically modeled as follows:

∇ · [σ(x, y)∇ϕ(x, y)] = 0, (x, y) ∈ ∂Ω (1)

where Ω denotes the field, σ(x, y) indicates the internal conductivity distribution of the
field, and ϕ(x, y) represents the distribution function of the field potential.

The EIT field boundary condition is set to:

σ(x, y)∂φ(x, y)
∂n

= −j(x, y), (x, y) ∈ ∂Ω (2)

φ(x, y) = U(x, y) (3)

where ∂Ω denotes the field boundary, j(x, y) denotes the current density of the injected
current on the boundary, n denotes the normal unit vector outside the field, and U(x, y)
denotes the potential distribution at the field boundary.

The boundary excitation current j is chosen as a fixed value, and a constant current
source is used as the excitation current in the experiment. The frequency and amplitude
of the excitation current are constant, and then the image reconstruction becomes an
investigation of the relationship between the conductivity distribution σ and the potential
distribution φ in the field.

2.2. Building an RBFNN for EIT

The fundamental construction of an RBFNN is shown in Figure 2, which is a kind of
forward neural network. It is made up of three layers: the input layer, the concealed layer,
and the output layer. The signal is sent from the input layer to the hidden layer, which
completes the non-linear transformation from the input layer to the hidden layer space by
using the radial basis function as the activation function. The RBFNN can approximate
any non-linear function, which not only speeds up convergence and eliminates the issue of
local minima, but also fits the EIT image reconstruction requirements.
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Figure 2. The classical RBFNN algorithm flow. The K-means algorithm is used to adjust the network
center, the KNN algorithm to determine the network base width, and the LSM algorithm to calculate
the connection weights to finally obtain the predicted conductivity of the EIT reconstructed image.

In the network operation structure, the input layer is X = [x 1, · · · , xp
]T . When a

Gaussian function is used for the basis function in the radial basis neural network, the
predicted conductivity Y = [y 1, · · · , yn]

T can be expressed as:

yn =
n

∑
i=1

wn exp

(
− 1

2b2
i

∥∥xp − ci
∥∥2
)

(4)

where ‖xp − ci‖ is the Euclidean parametrization, C = [c 1, · · · , ci]
T is the center of the

Gaussian function, B = [b 1, · · · , bi]
T is the base width vector, and W = [w 1, · · · , wn]

T is a
vector of connection weights.

The center vector of the function, the base width vector, and the vector of weights
from the hidden layer to the output layer are the unknown parameters that the network
must learn. The following are the stages in its learning algorithm:

1. Finding the center of the basis function based on the K-means method.
The center can be adjusted by the following formula:

ct+1
i = {ct

i+η(Xt
p−ct

i ), j=j(Xt
p)

ct
i , j 6=j(Xt

p)
(5)

where Xt
p is the training sample vector of the input p, ct

i is the i center of RBF at the t
iteration, j is the cluster center, η is the iteration step, and 0 < η < 1. After learning all
the training samples, and when the cluster center change satisfies the iteration condition,
the iteration stops.

2. Solving for variance bi.
The basis function of this neural network is a Gaussian function, and the variance can

be solved as follows:
bi =

cmax√
2h

, i = 1, 2, . . . , h (6)

where cmax is the maximum distance between the selected centers.
3. Calculating the weights between the implied and output layers.
The weights of neuron connections between the implicit layer and the output layer are

directly calculated by the LSM with the following equation:

wn = exp
(

h
c2

max

∥∥xp − ci
∥∥2
)

, i = 1, 2, . . . , p (7)

Through the above learning steps, the learning algorithm of RBFNN is constructed.

3. Grey Wolf Algorithm for Optimizing RBFNN Models

To improve the accuracy of RBFNN reconstructed images, we propose to use the
improved grey wolf optimization algorithm to obtain stable network weights. Firstly, it
is necessary to construct a grey wolf social hierarchy model when designing the GWO
algorithm. Secondly, we should calculate the fitness of each individual in the population.
Lastly, we should mark the three grey wolves with the best fitness in the pack as α, β, and δ
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in turn, while the remaining grey wolves are marked as ω. The hunting behavior is shown
in Figure 3.
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follows these three wolves.

The behavior of the grey wolf for hunting its prey is defined as shown in Equations (8)
and (9):

D =
∣∣C · Xp(t)− X(t)

∣∣ (8)

X(t + 1) = Xp(t)− A · D (9)

where Equation (8) represents the distance between an individual and its prey, and
Equation (9) is the position update formula for the grey wolf, where t is the number
of generations of the current iteration, A and C are the coefficient vectors, and X and Xp are
the position vector of the prey and the position vector of the grey wolf, respectively. A and
C are calculated as follows:

A = 2a · r1 − a (10)

C = 2 · r2 (11)

where a is a convergence factor that decreases linearly from 2 to 0 with the number of
iterations, and the norms of r1 and r2 fall into a random number between [0, 1]. The C
vector provides random weights for the prey. In order to simulate approaching prey, the
value of a is gradually reduced. During the iterations, as the value of a decreases linearly
from 2 to 0, and its corresponding value of A also varies within the interval [−a, a].

The connection weights of RBFNN are crucial parameters that directly affect the
reliability of the predicted EIT reconstruction results. The LSM algorithm subjectively
regards the mapping from the implicit layer to the output layer as a linear mapping and
needs to calculate the inverse matrix, ignoring the circumstance that the inverse matrix
does not exist. To solve this problem, we optimize the connection weights W to improve
the prediction accuracy of RBFNN through the GWO algorithm, instead of calculating the
inverse matrix. The specific optimization process of the proposed algorithm is shown in
Figure 4, and described as follows:

(1) The EIT using 16 electrodes was modeled and simulated. The dataset was acquired
using COMSOL in combination with MATLAB simulation and then separated into a test
and training set based on this model.

(2) Initializing the grey wolf algorithm. Firstly, the positions of the individual artifi-
cial grey wolves are generated randomly in the definition domain. Secondly, a mapping
between the grey wolf position dimensions and the connection weights W is established.
Lastly, the weight matrix W from the hidden layer to the output layer of the neural net-
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work is mapped into the position vector of the artificial grey wolves to construct the
RBFNN model.

(3) Calculating the fitness. The RMSE (root mean square error) of the output of the
neural network, as described in Equation (12). It is used as the fitness function of the
grey wolf algorithm. The fitness function is a measure of the merit of the position of the
individual grey wolf. The smaller the value of the fitness function S, the better the position,
which is defined as follows:

S =

√√√√ 1
n

N

∑
i=1

(Di −Yi)
2 (12)

where Yi is the training output, Di is the expected value, and N is the capacity of the entire
training sample.

(4) Updating the location of the grey wolf. The optimal wolf position is calculated by
the grey wolf algorithm and remapped to the connection weights of the RBFNN hidden
layer to the output layer.

(5) The end condition is satisfied and the iteration is stopped. The optimized weights
are obtained, and the optimal solution is applied to the RBFNN. Then, the trained RBFNN
model is obtained by inputting the optimized weights into the training set, and the recon-
structed image of the EIT is predicted using the test set.
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4. Results
4.1. Acquisition of Datasets

The quality of the dataset has a substantial influence on the network model’s general-
ization capability, and neural network learning needs a high number of samples to train the
network model. Simulation datasets were created using combined COMSOL and MATLAB
simulations. They will be used to solve the issue, which is a large number of samples with
actual conductivity distributions and accompanying boundary voltage measurements not
being accessible in real systems.

A 16-electrode configuration is chosen in this work because a 16-electrode EIT system
has been widely used with a satisfactory resolution. Then, using a 16-electrode EIT system
with adjacent current excitation and adjacent voltage measurement modes, simulations
were run to reconstruct the field’s internal conductivity distributions. When choosing the
target shape, we need to consider the convenience between the target and the reconstructed
image to highlight the effect of the algorithm optimization. Compared to other shapes of
targets, circles have very good image reconstruction results. Therefore, the classical circular
target object is chosen. Circular targets with a diameter of 10 mm were randomly formed
in a circular physical field with a diameter of 95 mm, as shown in Figure 5. When the
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difference between the conductivity of the background solution and the conductivity of the
target is greater, the more sensitive the change in boundary voltage is. Therefore, the better
the image reconstruction will be. Thus, in order to obtain good image reconstruction, the
conductivity of the background solution was set to 5.5 × 10−4 S/m and the conductivity
of the circular target was chosen as 5.5 × 10−8 S/m. To obtain the internal conductivity
distributions, the 0.5 mA excitation current was applied, and the measurement frequency
was set to 50 kHz. Since the targets in this paper are basically near the boundary, the
adjacency excitation method was chosen so high sensitivity to changes in conductivity near
the boundary can be obtained.
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Single, double, and triple circular targets were investigated. To obtain the conductivity
distributions and accompanying boundary voltage values, each group underwent 1700 nu-
merical simulations with varied target locations. The remaining 200 samples were utilized
for testing, while 1500 samples were used for training. This ensured that the training and
testing sets did not overlap.

4.2. Simulation Results

The improved model was then utilized to predict the reconstructed images of the
test sets after training with 1500 samples. Typical models from the noise-free test set
and their reconstructed images with different algorithms are shown in Figure 6. Two
commonly-used algorithms, Landweber and RBFNN, were also employed for comparison
to demonstrate the prediction accuracy of the proposed GWO-RBFNN. The findings reveal
that all of the algorithms can reassemble images of targets in various configurations. At the
same time, the proposed GWO-RBFNN outperforms the other two algorithms in terms of
prediction precision, especially when a single circular target is positioned in the center of
the background solution.

The RMSE and the ICC were selected as the rating criteria to quantitatively assess the
image reconstruction quality of various algorithms. The RMSE gives a good indication of
the accuracy of the observations. The smaller the value of RMSE, the better the reconstruc-
tion of the conductivity value. On the other hand, the closer the correlation coefficient is
to 1 or −1, the stronger the correlation. The closer the correlation coefficient is to 0, the
weaker the correlation. They are described by the following formulae:

RMSE =

√√√√ 1
n

N

∑
i=1

(
Y∗i −Yi

)2 (13)

ICC =

n
∑

i=1

(
Y∗i −Y∗

)(
Yi −Y

)
√

n
∑

i=1

(
Y∗i −Y∗

)2 n
∑

i=1

(
Yi −Y

)2
(14)

where Y∗i and Y∗ are the estimated conductivity and its average value, respectively; Yi and
Y are the original conductivity and its average value, respectively; and n is the number
of elements in the finite element model. The estimated RMSE and ICC averages of the
reconstructed images based on Equations (13) and (14) for all test sets with various ap-
proaches are shown in Table 1. The proposed GWO-RBFNN approach clearly outperforms
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the Landweber and RBFNN algorithms in terms of image reconstruction quality, with
the lowest RMSE value of 0.0848 and the greatest ICC value of 0.9519. The values of
RMES decreased by 46.3% and 20.2%, respectively. The values of ICC improved by 14.4%
and 9%, respectively.
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Table 1. Averages of RMSE and ICC in the noiseless test set.

Average RMES ICC

Landweber 0.1579 0.8347
RBFNN 0.1062 0.8756

GWO-RBFNN 0.0848 0.9551

4.3. Robustness of the GWO-RBFNN

To test the robustness of the proposed method against noise, Gaussian white noises
of 30 dB, 40 dB, and 50 dB were added to the test sets. Exemplary models with various
Gaussian white noises created using the proposed GWO-RBFNN are shown in Figure 7.
The findings reveal that all of the models have high-quality image reconstructions.

The average values of RMSE and ICC derived by the three alternative approaches,
with varied noise levels in the test sets, are shown in Tables 2 and 3. The simulation results
with noise show that when different levels of noise are applied to the test set, the average
RMSE increases while the average ICC decreases. Under Gaussian white noises of 30 dB,
40 dB, and 50 dB, the RMSEs of the proposed approach in this paper are raised from
0.0848 to 0.1139, 0.0962, and 0.0915, respectively. They increased by 34.3%, 13.4%, and 7.9%
respectively. The ICCs of the proposed method decreased from 0.9551 to 0.8966, 0.9197, and
0.9319, respectively. They decreased by 6.1%, 3.7%, and 2.4%, respectively. However, it can
be seen that all the RMSEs with the proposed GWO-RBFNN are lower than the other two
algorithms, and all the ICCs with the proposed GWO-RBFNN are higher than the other
two algorithms. The results show that the algorithm proposed in this paper exhibits better
robustness than the frequently used Landweber and RBFNN algorithms.
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Figure 7. The reconstructed images of typical models with different noise levels using the proposed
GWO-RBFNN.

Table 2. Average RMSE with noise test set.

Averages No Noise 50 dB 40 dB 30 dB

Landweber 0.1579 0.1778 0.1974 0.2254
RBFNN 0.1062 0.1029 0.1045 0.1151

GWO-RBFNN 0.0848 0.0915 0.0962 0.1139

Table 3. Average ICC with noise test set.

Averages No Noise 50 dB 40 dB 30 dB

Landweber 0.8347 0.8347 0.7383 0.5252
RBFNN 0.8754 0.8656 0.8325 0.8284

GWO-RBFNN 0.9551 0.9319 0.9197 0.8966

From Figures 6 and 7, it can be seen that the GWO-RBFNN approach developed in
this work not only has some noise immunity, but it also has some generalization capacity
to adapt to the scenario of multi-target detection. According to the image reconstruction
results of the multi-target test sets, when the GWO-RBFNN approach is used for multi-
target imaging, the number of target objects is clearly recognized, and the position and size
of the detected targets can be correctly displayed. The related RMSE and ICC averages
still provide more acceptable results without considerable deterioration, indicating that the
approach proposed in this paper is capable of satisfactory generalization.

5. Conclusions

A GWO-RBFNN approach is proposed in this paper to increase the accuracy of EIT
image reconstruction. In order to improve the prediction accuracy of the network model,
we first use the K-means method to adjust the network center. Then, we use the KNN
algorithm to determine the network base width, and finally, we use the grey wolf algorithm
to optimize the connection weight. A joint simulation using COMSOL and MATLAB was
constructed to obtain 1700 EIT simulation samples for training and testing the performance
of the proposed method. The image reconstruction results with noisy test sets demonstrate
the robustness and generalization of the proposed GWO-RBFNN method. The GWO-



Micromachines 2022, 13, 1120 10 of 10

RBFNN approach provides superior image reconstruction outcomes and artifact removal
capacity compared to the Landweber and RBFNN methods, according to test findings from
the 16-electrode EIT system.

Author Contributions: Conceptualization, G.W. and W.T.; software, G.W.; writing—original draft
preparation, G.W. and D.F.; writing—review and editing, G.W. and W.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the China Postdoctoral Science Foundation (grant no.
2020M671450), the Jiangsu Planned Projects for Postdoctoral Research Funds (grant no. 2020Z042),
the Natural Science Fund for Colleges and Universities in Jiangsu Province (grant no. 20KJA460004),
and the Open Research Fund of Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano
Biomedical Instruments, Southeast University (grant no. KF202008).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jongschaap, H.C.; Wytch, R.; Hutchison, J.M.; Kulkarni, V. Electrical impedance tomography: A review of current literature. Eur.

J. Radiol. 1994, 18, 165–174. [CrossRef]
2. Tossavainen, O.P.; Vauhkonen, M.; Kolehmainen, V.; Kim, K.Y. Tracking of moving interfaces in sedimentation processes using

electrical impedance tomography. Chem. Eng. Sci. 2006, 61, 7717–7729. [CrossRef]
3. Gomez-Cortes, J.C.; Diaz-Carmona, J.J.; Padilla-Medina, J.A.; Calderon, A.E.; Gutierrez, A.I.B.; Gutierrez-Lopez, M.; Prado-

Olivarez, J. Electrical Impedance Tomography Technical Contributions for Detection and 3D Geometric Localization of Breast
Tumors: A Systematic Review. Micromachines 2022, 13, 496. [CrossRef] [PubMed]

4. Hannan, S.; Aristovich, K.; Faulkner, M.; Avery, J.; Walker, M.C.; Holder, D.S. Imaging slow brain activity during neocortical and
hippocampal epileptiform events with electrical impedance tomography. Phys. Meas. 2021, 42, 014001. [CrossRef] [PubMed]

5. Martins, T.D.; Sato, A.K.; de Moura, F.S.; de Camargo, E.; Silva, O.L.; Santos, T.B.R.; Zhao, Z.Q.; Moeller, K.; Amato, M.B.P.;
Mueller, J.L.; et al. A review of electrical impedance tomography in lung applications: Theory and algorithms for absolute images.
Ann. Rev. Control 2019, 48, 442–471. [CrossRef] [PubMed]

6. Bera, T.K.; Biswas, S.K.; Rajan, K.; Nagaraju, J. Projection Error Propagation-based Regularization (PEPR) method for resistivity
reconstruction in Electrical Impedance Tomography (EIT). Measurement 2014, 49, 329–350. [CrossRef]

7. Zhao, B.; Wang, H.X.; Chen, X.Y.; Shi, X.L.; Yang, W.Q. Linearized solution to electrical impedance tomography based on the
Schur conjugate gradient method. Meas. Sci. Technol. 2007, 18, 3373–3383. [CrossRef]

8. de Moura, B.F.; Martins, M.F.; Palma, F.H.S.; da Silva, W.B.; Cabello, J.A.; Ramos, R. Nonstationary bubble shape determination in
Electrical Impedance Tomography combining Gauss-Newton Optimization with particle filter. Measurement 2021, 186, 110216.
[CrossRef]

9. Ping, S.; Jiang, H.L. Design of electrical impedance tomography system based on layer stripping process. Appl. Mech. Mater. 2013,
329, 392–396. [CrossRef]

10. Adler, A.; Boyle, A. Electrical Impedance Tomography: Tissue Properties to Image Measures. IEEE Trans. Biomed. Eng. 2017, 64,
2494–2504. [PubMed]

11. Bianchessi, A.; Akamine, R.H.; Duran, G.C.; Tanabi, N.; Sato, A.K.; Martins, T.C.; Tsuzuki, M.S.G. Electrical Impedance
Tomography Image Reconstruction Based on Neural Networks. In Proceedings of the 21st IFAC World Congress on Automatic
Control-Meeting Societal Challenges, Berlin, Germany, 11–17 July 2020; pp. 15946–15951.

12. Martin, S.; Choi, C.T.M. Nonlinear Electrical Impedance Tomography Reconstruction Using Artificial Neural Networks and
Particle Swarm Optimization. IEEE Trans. Magn. 2016, 52, 7203904. [CrossRef]

13. Duran, G.C.; Sato, A.K.; Ueda, E.K.; Takimoto, R.Y.; Martins, T.C.; Tsuzuki, M.S.G. Electrical Impedance Tomography Image
Reconstruction using Convolutional Neural Network with Periodic Padding. In Proceedings of the 11th IFAC Symposium on
Biological and Medical Systems (BMS), Ghent, Belgium, 19–22 September 2021; pp. 418–423.

14. Michalikova, M.; Prauzek, M.; Koziorek, J. Impact of the Radial Basis Function Spread Factor onto Image Reconstruction
in Electrical Impedance Tomography. In Proceedings of the 13th IFAC and IEEE Conference on Programmable Devices and
Embedded Systems, Cracow, Poland, 13–15 May 2015; pp. 230–233.

15. Wu, Y.; Hanzaee, F.F.; Jiang, D.; Bayford, R.H.; Demosthenous, A. Electrical Impedance Tomography for Biomedical Applications:
Circuits and Systems Review. IEEE Open J. Circuits Syst. 2021, 2, 380–397. [CrossRef]

http://doi.org/10.1016/0720-048X(94)90329-8
http://doi.org/10.1016/j.ces.2006.09.010
http://doi.org/10.3390/mi13040496
http://www.ncbi.nlm.nih.gov/pubmed/35457801
http://doi.org/10.1088/1361-6579/abd67a
http://www.ncbi.nlm.nih.gov/pubmed/33361567
http://doi.org/10.1016/j.arcontrol.2019.05.002
http://www.ncbi.nlm.nih.gov/pubmed/31983885
http://doi.org/10.1016/j.measurement.2013.11.003
http://doi.org/10.1088/0957-0233/18/11/017
http://doi.org/10.1016/j.measurement.2021.110216
http://doi.org/10.4028/www.scientific.net/AMM.329.392
http://www.ncbi.nlm.nih.gov/pubmed/28715324
http://doi.org/10.1109/TMAG.2015.2488901
http://doi.org/10.1109/OJCAS.2021.3075302

	Introduction 
	Theory 
	Mathematical Model 
	Building an RBFNN for EIT 

	Grey Wolf Algorithm for Optimizing RBFNN Models 
	Results 
	Acquisition of Datasets 
	Simulation Results 
	Robustness of the GWO-RBFNN 

	Conclusions 
	References

