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    Introduction 
 Haploid yeast cells of opposite mating types undergo cell and 

nuclear fusion to form diploids. The haploid cell types (a and  � ) 

produce mating pheromones that bind to receptors on the plasma 

membrane of the opposite mating type, causing the cells to dif-

ferentiate into mating cells or shmoos. Physiological changes 

associated with shmoo formation include transcriptional induc-

tion of genes required for mating, cell cycle arrest in G1, and 

polarization toward the source of pheromone. After the cells 

make contact, the cell walls between the mating partners are 

broken down, after which the plasma membrane and nuclear 

membranes can fuse ( Ydenberg and Rose, 2008 ; for reviews see 

 Marsh and Rose, 1997 ;  White and Rose, 2001 ). 

 Interaction of  �  factor with its receptor stimulates guanine 

nucleotide exchange on the  �  subunit of a heterotrimeric G pro-

tein, causing it to release the  �  �  subunit ( Gustin et al., 1998 ; 

 Elion, 2000 ;  Naider and Becker, 2004 ;  Bardwell, 2005 ). Free 

G �  �  recruits the MAPK scaffold Ste5p to the plasma membrane, 

allowing phosphorylation and activation of the MAPK kinase 

kinase Ste11p ( Pryciak and Huntress, 1998 ). After Ste11p acti-

vation of the MAPK kinase Ste7p, Ste7p phosphorylates and 

activates the MAPK Fus3p, which is required for many aspects 

of pheromone-induced differentiation. However,  fus3  mutants 

are still capable of responding to pheromone as a result of the 

presence of the partially redundant Kss1 protein ( Elion 

et al., 1991 ;  Kusari et al., 2004 ). Fus3p and Kss1p both activate 

the transcription factor Ste12p and therefore induce an overlap-

ping set of genes ( Dolan et al., 1989 ;  Madhani and Fink, 1997 ; 

 Roberts et al., 2000 ). In addition,  fus3  mutants are defective for 

G1 cell cycle arrest, but this phenotype can be suppressed by 

mutations in the G1  CLN3  ( Elion et al., 1990 ). Fus3p also plays 

a key role in cell polarization that is not shared with Kss1p 

( Metodiev et al., 2002 ;  Matheos et al., 2004 ). 

 Mating requires wholesale reorganization of the micro-

tubule and actin cytoskeletons. In addition, many components 

of the mating and mitotic programs are shared but devoted to 

distinct tasks. For example,  KAR3  encodes a microtubule motor 

protein with different roles in mating and mitosis ( Meluh and 

Rose, 1990 ;  Saunders and Hoyt, 1992 ;  Page et al., 1994 ;  Saunders 

et al., 1997 ). Kar3p is associated with cytoplasmic microtubules 

in shmoos and nuclear microtubules during mitosis. If cycling 

cells are treated with pheromone, what prevents morphological 

induction of the mating response before G1? Recent results 

indicate that during late G1 through S phase, the cyclin (Cln)-

dependent kinase Cdc28p phosphorylates Ste5p, preventing its 
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asynchronous populations of cells with pheromone and exam-

ined the localization of Fus2p over time and with respect to cell 

cycle stage ( Fig. 1 A ). For these experiments, we used an internal 

GFP tag described previously ( Paterson et al., 2008 ), which ex-

hibits  � 90% of wild-type function. Cdc3p, a septin tagged with 

mCherry fl uorescent protein (FP), served as a marker for the cell 

cycle. Septins form a single ring at the bud neck throughout G2 

but split into two distinct rings during cytokinesis ( Longtine and 

Bi, 2003 ), marking the time of cell division. 

 Although all cells were exposed to pheromone for the 

same amount of time, because the initial population was asyn-

chronous, we observed two classes of cells, those in G1 at the 

start of the experiment and those that completed mitosis and en-

tered G1 during the course of the experiment. The G1 cells 

formed shmoos immediately; the remaining cells were at vari-

ous positions within the cell cycle and required different lengths 

of time to complete mitosis and form shmoos. In G1 cells, 

Fus2p-GFP was not observed in the nucleus at the fi rst time 

point (30 min) but was already accumulated at the presumptive 

shmoo tip ( Fig. 1 B , top; 16/16 cells). In cells that completed the 

cell cycle and underwent cytokinesis during imaging, Fus2p-

GFP was initially nuclear. Nuclear exit was coincident with 

septin ring division in 23/38 cells or occurred within the time 

point immediately after septin ring division in 13/38 cells 

( Fig. 1 B , middle and bottom). In 2/38 cells, nuclear exit took 

 ≥ 40 min after division. Therefore, Fus2p exit from the nucleus 

coincided with cell division and was not simply correlated with 

the amount of time the cells were treated with pheromone. 

  FUS2  transcription is strongly induced by pheromone ( Elion 

et al., 1995 ), leading to an increase in total fl uorescent signal 

during the experiment. However, because a low level of nuclear 

Fus2p-GFP was detected in untreated cells, we wanted to ensure 

that Fus2p-GFP expression was actually being induced by phero-

mone in G2 cells before shmoo formation. Accordingly, we 

compared GFP fl uorescence levels in cells treated with phero-

mone for 30 min to untreated control cells. Examining only 

budded cells with fully formed single septin rings, we found that 

Fus2p-GFP levels were signifi cantly higher in pheromone-

treated cells than in untreated cells (103  ±  19,  n  = 30; vs. 28.6  ±  

5.4,  n  = 25, respectively; P = 0.0018; numbers represent mean  ±  

SEM). Together, these results show that  FUS2  is induced before 

cell division but that exit only occurs after cell division. 

 To ensure that increasing Fus2p-GFP levels were not re-

sponsible for the observed change in localization, we expressed 

Fus2p-GFP under the  GAL1  promoter. To examine the effect of 

pheromone on Fus2p localization independent of its role in pro-

moting synthesis, cells were pregrown in galactose and trans-

ferred to glucose and pheromone simultaneously. Localization 

of  GAL1 -expressed Fus2p-GFP was similar to localization of 

Fus2p-GFP expressed under the native promoter. Fus2p-GFP 

remained nuclear until cell division and then exited in 22/22 

cells in which septin ring division occurred during the experi-

ment ( Fig. 1 C ). Therefore, Fus2p nuclear exit was not depen-

dent on increasing Fus2p levels. If no pheromone was added, 

Fus2p-GFP remained nuclear regardless of cell cycle position 

( Fig. 1 D ). We conclude that mating pheromone signaling and 

the cell cycle together regulate Fus2p localization. 

recruitment to the plasma membrane and thereby inhibiting ac-

tivation of the pheromone response pathway ( Strickfaden 

et al., 2007 ). However, cell synchrony experiments, genetic 

studies overexpressing the Clns, and in vitro kinase assays all 

show that Ste5p phosphorylation is specifi c to Cln1p/Cdc28p 

and Cln2p/Cdc28p and that pheromone-dependent transcription 

becomes fully active in G2/M ( Oehlen and Cross, 1994 ,  1998 ; 

 Wassmann and Ammerer, 1997 ;  Strickfaden et al., 2007 ). Pro-

teins promoting the mating response are therefore present in 

pheromone-treated cells in G2/M, but major effects such as cyto-

skeletal rearrangements do not take place. 

 Protein localization is an ideal readout for cell cycle –

 regulated signal transduction because it can be studied in unper-

turbed asynchronous cells. We previously found that the cell 

fusion protein Fus2p localizes to the shmoo tip after pheromone-

induced cell cycle arrest but is nuclear when ectopically ex-

pressed in mitotic cells ( Paterson et al., 2008 ). This change 

suggests that Fus2p localization is regulated by pheromone sig-

naling, the cell cycle, or both. Fus2p interacts with an amphi-

physin homologue, Rvs161p, which plays distinct roles in cell 

fusion and endocytosis ( Munn et al., 1995 ;  Brizzio et al., 1998 ). 

Although the biochemical function of Fus2p is unknown, the 

protein sequence contains a Dbl homology domain ( Paterson 

et al., 2008 ), making it likely that Fus2p promotes cell fusion 

via Rho proteins, which are central regulators of cell polarity, 

exocytosis, and cell wall integrity during both mating and mi-

totic growth ( Park and Bi, 2007 ). Regulation of Fus2p localiza-

tion after induction may be critical to prevent interference with 

housekeeping functions. 

 In this study, we show that Fus2p expressed in G2/M cells 

in response to pheromone is sequestered in the nucleus until 

mitosis is completed, after which it exits and accumulates at the 

shmoo tip. Fus2p nuclear exit requires Fus3p-dependent phero-

mone signaling, and only the G1 phase of the cell cycle is 

permissive for exit. During the rest of the cell cycle, Cdc28p 

activity blocks Fus2p exit by at least two mechanisms; during 

late G1 through S phase, Cln/Cdc28 inhibits pheromone signal-

ing and Fus3p activation, but during G2/M, Cdc28p blocks exit 

without inhibiting pheromone signaling. The antagonistic regu-

lation of Fus2p nuclear exit by Fus3p and Cdc28p provides a 

novel pathway by which cells carefully control the transition 

from mitosis to mating. 

 Results 
 Fus2p exits the nucleus after mitosis in 
pheromone-treated cells 
 A previous study of the localization of Fus2p-GFP in phero-

mone-treated cells showed that it fi rst appeared in the nucleus, 

after which it redistributed to the shmoo tip and cytoplasmic 

puncta ( Paterson et al., 2008 ). Although Fus2p-GFP was con-

centrated in anaphase nuclei, it was apparently exported after 

anaphase because nuclear localization was not readily distin-

guishable in shmoos. We sought to determine whether the change 

in localization was caused by (a) the length of pheromone treat-

ment, (b) increasing Fus2p levels during the pheromone treat-

ment, or (c) a cell cycle – regulated switch. To do this, we treated 
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pairs) of the progeny cells ( Fig. 2 A ) for a total of 26 (8 + [9  ×  2]) 

out of 42 cells. In seven of the eight asymmetrical cell pairs, the 

daughter cell exported Fus2p, whereas the mother retained it in 

the nucleus ( Fig. 2 A , middle). In the remaining cell, it was not 

possible to identify the mother. Importantly, cytoplasmic local-

ization of Fus2p-GFP in the  far1  �  mutants was transient. In 9 

of the 26 individual cells in which exit occurred, Fus2p returned 

to the nucleus during the time course ( Fig. 2 A , top and middle), 

 Fus2p transiently exits in  far1  mutants 
  FAR1  encodes an inhibitor of Cln-dependent kinases that promotes 

pheromone-induced cell cycle arrest ( Chang and Herskowitz, 

1990 ;  Peter et al., 1993 ). The  far1  mutants respond to phero-

mone at the transcriptional level but fail to arrest in G1. Like 

wild-type cells, before cell division, Fus2p-GFP was nuclear in 

pheromone-treated  far1  �  cells. After cytokinesis, Fus2p-GFP 

left the nucleus in one (8 of 21 cell pairs) or both (9 of 21 cell 

 Figure 1.    Fus2p is expressed in pheromone-treated cells before cytokinesis but remains in the nucleus until after cell division.  (A) Experiment schematic. 
An asynchronous cell population expressing Fus2p-GFP and Cdc3-mCherryFP, an indicator of cytokinesis (red), was treated with pheromone for 110 min 
(black arrows) and examined microscopically over time. If Fus2p-GFP nuclear exit is solely dependent on pheromone signaling, exit should occur at similar 
times after exposure for all cells (blue arrows). If Fus2p-GFP nuclear exit requires completion of the previous cell cycle, exit should occur soon after cyto-
kinesis independent of the length of pheromone signaling (green arrow). (B) Fus2p-GFP expressed under its own promoter. Strain MY10176 containing 
 FUS2::GFP 104   and  CDC3-mCherry  was pregrown in selective medium, and  �  factor was added at  t  = 0. Representative cells are shown in which cytokinesis 
occurred before 30 min, between 30 and 50 min, and between 90 and 110 min (top, middle, and bottom, respectively). (C) Fus2p-GFP expressed under 
the  GAL1  promoter. Strain MY10177 containing  P GAL1 -FUS2::GFP 104   and  CDC3-mCherry  was pregrown in selective medium with galactose;  �  factor and 
glucose were added at  t  = 0. (D) Pheromone is required for Fus2p-GFP exit G1. MY10177 was examined as in C except that no  �  factor was added. 
Bars, 1  μ m.   
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cytoplasmic and became localized at the bud tip ( Fig. 2 B , bottom). 

Of these, Fus2p-GFP remained at the bud tip for the duration of 

the experiment in two cells, returned to the nucleus in one cell, 

and the remaining cell died. These data suggest that  CLN2  is re-

quired to keep Fus2p in the nucleus specifi cally during G1/S. 

 Fus3p is required for Fus2p exit 
 Previously, we found that MAPK Fus3p was required for Fus2p 

nuclear exit ( Paterson et al., 2008 ). The failure of Fus2p to be 

exported in  fus3  could be consequence of the inability of cells 

to arrest, reduced transcriptional activity, or loss of other Fus3p 

functions. The cell cycle arrest defect in  fus3  can be suppressed 

by  cln3  ( Elion et al., 1991 ); we exploited this property to test 

the role of Fus3p in Fus2p exit. 

 In  fus3  �  cells, Fus2p-GFP failed to exit the nucleus after 

cytokinesis as expected ( Fig. 3 A ; 33/33 cells). Fus2p-GFP also 

failed to exit in  fus3  �   cln3  mutant cells, which remained ar-

rested in G1 ( Fig. 3 B ; 13/13 cells). Therefore, the requirement 

for Fus3p in Fus2p ’ s nuclear exit is independent of Fus3p ’ s role 

in promoting cell cycle arrest. 

 The transcriptional response of  fus3  mutants is partially 

defective, activating a  fus1-LacZ  reporter construct to  � 50% of 

wild-type levels ( Elion et al., 1991 ) and showing an overall 

a phenotype was never observed in wild type ( Fig. 1 ). It is likely 

that the asymmetry between mothers and daughters arises be-

cause G1 mother cells accumulate Clns faster than daughter 

cells and reenter the cell cycle earlier ( Laabs et al., 2003 ). These 

results show that prolonged cell cycle arrest by itself is not re-

quired for Fus2p to exit the nucleus but rather suggest an in-

verse relationship between Cln levels and Fus2p-GFP export. 

Increased Cln/Cdc28p activity and reestablishment of the mi-

totic program in G1/S would coincide with Fus2p return to 

the nucleus. 

 The  far1  defect in pheromone-induced cell cycle arrest 

can be suppressed by mutation of  CLN2  ( Chang and Herskowitz, 

1990 ). To ensure that  far1  was affecting Fus2p localization 

via its effect on the cell cycle, we examined Fus2p-GFP local-

ization in  far1  �   cln2  double mutants. Upon pheromone treat-

ment, the  far1  �   cln2  cells arrested at G1 and did not reenter the 

cell cycle. In cells with a medium to large bud at the start of the 

time course, Fus2p-GFP was exported only after cytokinesis 

and remained cytoplasmic ( Fig. 2 B , top; 22/23 cells), indicat-

ing that  cln2  suppressed the  far1  defect. These data confi rm 

that, with respect to Fus2p localization, Far1p is required only 

to prevent reentry into the cell cycle by inhibiting Cln levels. 

Remarkably, in four cells all with small buds, Fus2p-GFP was 

 Figure 2.    Fus2p transiently localizes to the cytoplasm in  far1  mutants.  (A) Fus2p-GFP localization was examined in a  far1  mutant (MY10320) as described 
in  Fig. 1 B . In representative images, Fus2p-GFP transiently localized to the cytoplasm in both cells (top), in the bud alone (middle), or in neither (bottom). 
(B) In medium- to large-budded  far1 cln2  mutant cells (MY10321), Fus2p-GFP exited after cytokinesis, and cells arrested in G1 (top). In small-budded cells, 
Fus2p-GFP was present in the cytoplasm. Similar results were obtained when Fus2p-GFP was expressed from the  GAL1  promoter. Bars, 1  μ m.   
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mine whether Fus3p activity is required to maintain cytoplas-

mic Fus2p, we used an inhibitor-sensitive mutant,  fus3 - Q93G  

( Bishop et al., 2000 ). Cells grown in the presence of pheromone 

for 90 min were placed on slides with or without the inhibitor, 

and the location of Fus2p was examined. As shown in  Fig. 4 A , 

in cells containing the  fus3 - Q93G  mutation, Fus2p-GFP re-

turned to the nucleus in response to inhibitor. Wild-type cells 

were unaffected, showing that the inhibitor is specifi c to Fus3p-

Q93G. Therefore, Fus3p activity is required to maintain cyto-

plasmic Fus2p. 

 To examine the kinetics of the response, a similar experi-

ment was performed using a fl ow cell to allow rapid image ac-

quisition after addition of the inhibitor. Before inhibitor addition, 

Fus2p was concentrated at the shmoo tip as expected ( Fig. 4 B ). 

Within 1 min after inhibitor addition, Fus2p-GFP had begun to 

transcriptional profi le consistent with compromised signaling 

( Roberts et al., 2000 ). Overexpression of Ste12p, the transcrip-

tion factor downstream of Fus3p, increases transcription of 

pheromone-responsive genes. However, overexpression of Ste12p 

did not allow Fus2p to exit the nucleus ( Fig. 3 C ; 13/14 cells), 

indicating that the transcriptional defect in  fus3  mutant cells 

was not responsible for the failure of Fus2p to exit the nucleus. 

These two lines of evidence suggest that Fus3p must regulate 

another pathway to promote Fus2p export. 

 Fus2p rapidly returns to the nucleus when 
Fus3p is inhibited 
 Because Fus3p is localized in the nucleus and shmoo tip ( van 

Drogen et al., 2001 ), Fus3p kinase activity could be required for 

Fus2p export, maintenance in the cytoplasm, or both. To deter-

 Figure 3.    Fus3p is required for Fus2p nuclear exit.  (A – C) Fus2p-GFP localization was examined in  fus3  (MY10318; A),  fus3 cln3  (MY10319; B), and  fus3  
[2 μ   STE12 ] (MY10322; C) as described in  Fig. 1 B . Similar results were obtained when Fus2p-GFP was expressed from the  GAL1  promoter. Bars, 1  μ m.   

 Figure 4.    Fus3p activity is required to 
maintain Fus2p in the cytoplasm.  (A)  FUS3  
(MY10011) or  FUS3-Q93G  (MY10012) strains 
were pregrown in selective medium and in-
duced with  �  factor for 90 min. Cells were 
placed on an agarose slide containing  �  fac-
tor with or without 1-NA-PP1, a selective inhibi-
tor of Fus3p-Q93G ( Matheos et al., 2004 ), 
and examined microscopically. (B) The  fus3-
Q93G  strain (MY10012) was grown as in A 
and placed in a microscope fl ow cell chamber. 
Inhibitor was added at  t  = 0, and images were 
collected at 1-min intervals. (C) GFP fl uores-
cence in the nucleus and at the shmoo tip was 
measured in 11 cells treated as in B and ex-
pressed as a fraction of  t  = 20 min (nucleus) or 
 t  = 0 (tip). Closed symbols, relative shmoo tip 
fl uorescence; open symbols, relative nuclear 
fl uorescence (see Materials and methods). Error 
bars represent  ±  SEM. Bars, 1  μ m.   
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 Figure 5.    Fus2p phosphorylation regulates localization.  (A) The N-terminal domain of Fus2p is suffi cient to localize GFP to the nucleus in mitotic cells 
and the cytoplasm in  �  factor – arrested cells. MY9181 containing full-length  P GAL1 -FUS2::GFP 104   (pMR5469) or the truncation mutant  P GAL1 -fus2 1-104 -GFP  
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return to the nucleus. Approximately 90% of tip-localized Fus2p-

GFP returned to the nucleus within 6 min with a  t  1/2  of  � 90 s 

( Fig. 4 C ). The remaining  � 10% of Fus2p-GFP persisted at the 

shmoo tip for  > 20 min. These results show that constant Fus3p ki-

nase activity is required to keep Fus2p in the cytoplasm and sug-

gest that Fus3p might regulate Fus2p by direct phosphorylation. 

 Fus2p localization is controlled by 
Fus3p-dependent phosphorylation 
 To identify the region of Fus2p responsible for pheromone-

regulated localization, we generated a series of deletion mu-

tations in Fus2p expressed under the  GAL1  promoter (our 

unpublished data). A region encompassing the N-terminal 104 

amino acids was both necessary and suffi cient ( Fig. 5 A ) for local-

ization of Fus2p-GFP to the nucleus in mitotic cells and will be 

referred to as the nuclear targeting domain (NTD). In  �  factor –

 treated cells, Fus2 NTD -GFP became diffusely cytoplasmic but did 

not localize to the shmoo tip like full-length Fus2p ( Fig. 5 A ). 

Thus, NTD may regulate nuclear/cytoplasmic distribution but 

is not functional for cortical tip localization. Proteomic analysis 

identifi ed four sites in NTD that are phosphorylated in pheromone-

arrested cells (T20, S67, S84, and S100;  Li et al., 2007 ). T20, 

S84, and S100 are followed by prolines and are good candidates 

for Fus3p phosphorylation sites. To identify the sites that are 

important for nuclear/cytoplasmic regulation, mutations in 

Fus2 NTD -GFP were made, changing each phosphorylated serine 

or threonine residue to alanine or valine, respectively. The ratio 

of GFP fl uorescence in the nucleus (N) relative to an equal area 

of the cytoplasm (C; N/C ratio) was measured in mitotic and 

pheromone-arrested cells expressing the mutant proteins ( Fig. 5 B ). 

The N/C ratio for wild-type Fus2 NTD  in mitotic cells was 3.6  ±  

0.2 (SEM;  n  = 20), which was reduced to 1.55  ±  0.05 (SEM; 

 n  = 37) after pheromone treatment. Mutations T20V, S84A, and 

S100A had no signifi cant effect on the N/C ratio in mitotic cells 

(3.1  ±  0.2,  n  = 26; 3.6  ±  0.2,  n  = 25; and 4.1  ±  0.2,  n  = 20, re-

spectively). An S84 S100 double mutant also showed normal 

localization in mitotic cells (3.2  ±  0.2,  n  = 20). The mutation 

S67A signifi cantly reduced localization to the nucleus under 

mitotic conditions (2.4  ±  0.1,  n  = 21), suggesting that this resi-

due may be part of a nuclear localization sequence. 

 In  �  factor – arrested cells, the T20V, S67A, and S100A mu-

tations had no signifi cant effect on the cytoplasmic localization of 

Fus2 NTD -GFP (N/C ratios of 1.6  ±  0.1,  n  = 18; 1.4  ±  0.1,  n  = 19; 

and 1.7  ±  0.1,  n  = 21, respectively). In contrast, in pheromone-

treated cells, the S84A and S84A-S100A double mutant pro-

teins remained nuclear, exhibiting high N/C ratios (2.6  ±  0.1, 

 n  = 23; and 2.5  ±  0.1,  n  = 23), indicating that phosphorylation 

of S84 is important for negatively regulating nuclear localization. 

In support of this, the phosphomimetic S84D and S84E alleles 

resulted in proteins that were signifi cantly cytoplasmic in mitotic 

cells (2.5  ±  0.1,  n  = 21; and 2.3  ±  0.1,  n  = 20) and pheromone-

arrested cells (1.8  ±  0.1,  n  = 21; and 1.7  ±  0.1,  n  = 22). 

 To determine whether NTD was phosphorylated in vivo, 

we expressed Fus2 NTD -GFP in wild-type and  fus3 cln3  mutant 

cells and looked for phosphoisoforms by SDS-PAGE and West-

ern blot analysis ( Fig. 5 C ). Standard SDS-PAGE did not resolve 

different phosphorylated forms of Fus2 NTD -GFP. However, elec-

trophoresis using Phos-tag acrylamide, which reduces the mo-

bility of phosphorylated proteins ( Kinoshita-Kikuta et al., 2007 ), 

revealed two slower migrating species upon pheromone treat-

ment ( Fig. 5 C , bottom). The faint upper band was eliminated, 

and the major middle band was diminished in the S84A mutant. 

Both bands were eliminated in the S84A-S100A double mutant. 

Both bands were also eliminated when Fus2 NTD -GFP was ex-

pressed in the  fus3 cln3  mutant. Furthermore, a bacterially ex-

pressed fragment of Fus2p containing NTD was phosphorylated 

by Fus3p in vitro ( Fig. 5 D ). We conclude that S84 and S100 are 

phosphorylated by Fus3p and that phosphorylation at S84 con-

trols the nuclear/cytoplasmic distribution of Fus2 NTD . 

 To determine whether phosphorylation of S84 is relevant 

in the context of full-length Fus2p, we introduced S84A and 

S84E into Fus2p-GFP ( Fig. 5, E and F ). Expressed under the 

 GAL1  promoter, in mitotic cells, full-length Fus2p-GFP was 

strongly nuclear localized, exhibiting a mean N/C ratio of 6.0  ±  

0.4 (SEM;  n  = 24). Note that the N/C ratio measures only the 

enrichment of the nuclear signal relative to the cytoplasm and 

does not measure changes in the tip localization of Fus2p. The 

higher N/C ratio relative to NTD suggests that the full-length 

protein may contain additional determinants that affect local-

ization. In pheromone-arrested cells, full-length Fus2p-GFP 

exhibited an N/C ratio of 1.5  ±  0.1 (SEM;  n  = 26), which is 

identical to NTD. In contrast, Fus2p S84A -GFP was signifi cantly 

more nuclear localized in both mitotic- and pheromone-arrested 

cells (N/C ratios of 8.1  ±  0.6,  n  = 21; and 9.6  ±  1.1,  n  = 23, 

respectively) compared with the wild-type protein in mitotic 

cells (P = 0.01 and 0.001, respectively). Interestingly, the small 

(pMR5774) were pregrown in selective media with galactose;  �  factor was added 2 h before imaging. (B) Mutations at S84 affect the nuclear/cytoplasmic 
distribution of NTD. MY9181 containing  P GAL1 -fus2 1-104 -GFP  (pMR5774) with the indicated point mutations ( Table II ) were grown as in A. For each strain, 
18  ≤   n   ≤  37. Asterisks indicate mutants signifi cantly different from the wild-type control (P  ≤  0.0001 by one-way analysis of variance and Dunnett ’ s mul-
tiple comparison). (C) NTD is phosphorylated in a Fus3p-dependent manner during pheromone signaling. MY9181 (wild type [WT]) or MY10273 ( fus3 
cln3 ) containing  P GAL1   vector (YCpIF5),  P GAL1 -fus2 1-104 -GFP  (pMR5774), or pMR5774 with the indicated S84 and S100 mutations were grown in selective 
medium containing galactose and treated with  �  factor as indicated. Samples were run on standard gels (top) or gels containing 25  μ M Phos-tag (bottom) 
to resolve phosphoisoforms. Proteins were detected by Western blot using  � -GFP. SS, SA, and AA refer to the specifi c amino acids at residues 84 and 100. 
(D) Fus3p phosphorylates Fus2p in vitro. Flag-tagged Fus3p or kinase-dead (KD) Fus3p K42R  was immunoprecipitated from  �  factor – treated yeast cultures 
and used to phosphorylate 6xHN-tagged Fus2 1 – 328  purifi ed from  Escherichia coli . (E) Mutations at S84 affect the nuclear/cytoplasmic distribution of full-length 
Fus2p-GFP. MY10174 containing  P GAL1 -FUS2::GFP 104   (pMR5469) or derivatives containing the indicated point mutations were grown and examined as 
in A. (F) Quantifi cation of the experiment shown in E. For each strain/condition, 20  ≤   n   ≤  26. (G)  S84E  is insensitive to Fus3p for export. MY10174 
or MY10273 containing either wild-type  P GAL1 -FUS2::GFP 104   (pMR5469) or the  S84E  mutant were grown, treated with  �  factor, and examined as in A. 
(H) Quantifi cation of the experiment shown in G. For each strain, 22  ≤   n   ≤  25 cells. (B, F, and H) Box and whisker plots of the ratio of GFP fl uorescence 
in the nucleus relative to an equal area of the cytoplasm are shown. Rectangles show the two inner quartiles separated by the median. Error bars indicate 
the entire range, and circles indicate outliers. Bars, 1  μ m.   
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defective, suggesting the existence of additional layers of Fus3p-

dependent regulation. 

 Cdc28p inhibits Fus2p nuclear export in 
G1/S through down-regulation of Fus3p 
 During the transition from G1 to S phase, Cln1p/Cdc28p and 

Cln2p/Cdc28p phosphorylate the MAPK scaffold Ste5p, modu-

lating activation of the pheromone response pathway and Fus3p 

( Oehlen and Cross, 1994 ,  1998 ;  Wassmann and Ammerer, 1997 ; 

 Strickfaden et al., 2007 ). Because Fus3p activity is necessary 

for Fus2p export, this regulation alone may be suffi cient to keep 

Fus2p in the nucleus during G1/S. Therefore, we examined the 

localization of Fus2p-GFP in  STE5-8A , which abolishes Ste5p 

phosphorylation by Cdc28p ( Strickfaden et al., 2007 ). In 10/23 

 STE5-8A  cells, Fus2p-GFP accumulated in the nucleus before 

cell division, which is similar to wild type ( Fig. 6 A , top). How-

ever, in the remaining 13 cells, Fus2p was observed outside the 

nucleus, usually at the bud tip, before cell division ( Fig. 6 A , 

bottom). The cells in which Fus2p-GFP remained nuclear had 

larger buds at the start of the time course than those cells in 

which premature Fus2p-GFP exit was observed (ratio of bud di-

ameter to mother diameter was 0.83 vs. 0.50, respectively; P = 

0.005), which is consistent with  STE5-8A  playing a role primarily 

quantity of Fus2p S84A -GFP in the cytoplasm became localized 

to the shmoo tip, indicating that S84 phosphorylation is not 

required for cortical localization. Nuclear localization of the 

phospho mimetic mutant Fus2p S84E -GFP was signifi cantly reduced 

in mi totic cells relative to the wild-type protein, and a consider-

able amount was cytoplasmic (N/C = 3.4  ±  0.2, SEM,  n  = 21, 

P  <  0.0001). After pheromone treatment, the relative fraction of 

nuclear Fus2p S84E -GFP was further reduced (N/C = 2.5  ±  0.2, 

SEM,  n  = 22), which may simply refl ect localization of cyto-

plasmic protein to the shmoo tip. Therefore, mutations preventing 

phosphorylation or acting as a phosphomimetic at S84 affect 

nuclear localization in the context of full-length Fus2p just as 

they affect Fus2 NTD . 

 We next sought to determine whether the phosphomimetic 

 FUS2  mutant could bypass the loss of Fus3p for Fus2p nuclear 

exit. Although Fus2p-GFP remained largely nuclear in pheromone-

treated  fus3 cln3  cells, (N/C = 5.2  ±  0.5, SEM,  n  = 22;  Fig. 5, G 

and H ), Fus2p S84E -GFP localization to the nucleus was signifi -

cantly reduced (N/C = 3.5  ±  0.2, SEM,  n  = 25, P = 0.0004). The 

N/C ratio of Fus2p S84E -GFP was not different between  fus3 cln3  

and wild type (3.3  ±  0.2, SEM,  n  = 23, P = 0.91), indicating that 

nuclear localization of the mutant was insensitive to Fus3p. 

Interestingly, tip localization of Fus2p S84E -GFP was partially 

 Figure 6.    Cdc28p inhibits Fus2p nuclear export in G1/S through down-regulation of Fus3p.  (A) Activation of Fus3p during G1/S allows Fus2p to exit 
before cell division. Fus2p-GFP localization was examined in  STE5-8A  as described in  Fig. 1 B . Fus2p-GFP exited after cytokinesis in large-budded cells 
(top). Fus2p-GFP expressed from its own promoter was cytoplasmic and localized to the cortex in small-budded cells. Similar results were obtained when 
Fus2p-GFP was expressed from the  GAL1  promoter. (B and C) Pheromone signaling in cells arrested at G2/M.  cdc28-as1  (MY10451; B) or  cdc28-as1 
STE5-8A  cells (MY10481; C) were arrested at G2/M by adding the Cdc28p-as1 inhibitor 1-NM-PP1 for 3 h. 85 – 92% of cells were budded under these 
conditions. After washing out inhibitor, the culture was split and treated with  �  factor alone (open symbols) or with Cdc28p-as1 inhibitor and  �  factor 
(closed symbols). Induction of pheromone-responsive genes was measured using  fus1-LacZ  expression (see Materials and methods). Activity is expressed 
relative to the 60-min time point of the arrested population. Error bars indicate SEM of three independent experiments. WT, wild type;  � -Gal,  � -galactosidase. 
Bar, 1  μ m.   
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 Cdc28p inhibits Fus2p nuclear exit in G2/M 
 Given the lack of signifi cant Cdc28p-dependent down modula-

tion of Fus3p signaling in G2/M, we next asked whether Cdc28p 

plays any role in keeping Fus2p in the nucleus during this phase 

of the cell cycle. Fus2p-GFP was expressed under the  GAL1  

promoter in the  cdc28-as1  background to compare pheromone-

treated and untreated cells. When the  cdc28-as1  mutant was 

treated with inhibitor alone, Fus2p-GFP remained in the nu-

cleus, showing the requirement for pheromone signaling ( Fig. 7 

A ; 29/29 cells). When  cdc28-as1  cells were treated with inhibi-

tor and  �  factor simultaneously, Fus2p-GFP exited the nucleus 

and accumulated at the tip of the bud ( Fig. 7 B ). Unlike  STE5-8A , 

this effect was almost fully penetrant (34/36 cells), affecting 

cells at all stages of the cell cycle. Strikingly, 11/36 cells died 

during image acquisition ( Fig. 7 B , bottom). In addition, in par-

allel experiments, cell viability was reduced by 43% ( ± 4% 

SEM;  n  = 3) within 1 h after treatment. The addition of inhibitor 

or  �  factor alone did not lead to any loss of cell viability. These 

data suggest that premature loss of Cdc28p activity during  �  

factor treatment induces a physiological state that is detrimental 

to cell survival. We conclude that active Cdc28p is required to 

keep Fus2p in the nucleus. Furthermore, the lack of a signifi cant 

effect of Cdc28p activity on pheromone signaling during G2/M 

argues strongly that Cdc28p regulates Fus2p localization by a 

different mechanism during this part of the cell cycle. 

 Discussion 
 Fus2p is a key regulator of cell fusion, which localizes to the 

shmoo tip in pheromone-arrested cells. A previous study dem-

onstrated that the localization of Fus2p-GFP is surprisingly dy-

namic ( Paterson et al., 2008 ) and was altered in mutants affecting 

mating and cell fusion. Fus2p-GFP was found to be nuclear in 

 fus3  mutants or when expressed under the  GAL1  promoter in 

mitotic cells, i.e., when the pheromone pathway is compromised 

during G1/S. Interestingly, 8 of the 13 cells in which Fus2p-

GFP exited prematurely also failed to reach cell division during 

the experiment. This phenotype was also observed by  Strickfaden 

et al. (2007) , who noted that many  STE5-8A  cells became ar-

rested in G2 in response to pheromone. We conclude that the 

primary block to Fus2p export in G1/S is the inhibition of Fus3p 

activity via Ste5p phosphorylation. 

 Given that the Clns can keep Fus2p in the nucleus by 

modulating Fus3p activity via Ste5p phosphorylation during 

G1/S, what is responsible for keeping Fus2p nuclear during 

other stages of the cell cycle? One possibility is that G2/M cells 

with active B-type Clns might also down modulate pheromone 

signaling. Previous studies ( Oehlen and Cross, 1994 ,  1998 ; 

 Wassmann and Ammerer, 1997 ;  Strickfaden et al., 2007 ) have 

only observed repression during G1/S. However, these studies 

used short pheromone treatments in synchronized cells; sus-

tained exposure to pheromone during G2/M might reveal sig-

nifi cant cell cycle – dependent down modulation of pheromone 

signaling. Accordingly, inhibitor-sensitive  cdc28-as1  cells 

were treated with 1-NM-PP1 3 h, after which  > 85% were ar-

rested at the G2/M boundary. The culture was then split; one 

part was released from inhibitor and treated with  �  factor, 

whereas the other part was treated with both  �  factor and 

inhibitor to continue the arrest. If Cdc28p activity inhibited 

pheromone signaling during G2/M, we expect the culture with 

the inhibitor to show a substantially higher level of pheromone 

signaling. Allowing cells to reenter mitosis produced only a 

minor reduction in the rate of  fus1-LacZ  induction ( Fig. 6 B ). 

The difference was largely gone in the  STE5-8A  mutant ( Fig. 6 C ), 

suggesting that a low level of residual Cln/Cdc28p activity 

accounts for the delay. Regardless, these results confi rm that 

pheromone signaling leads to robust induction during G2/M 

and that it is unlikely that the inhibition of Fus2p nuclear ex-

port in G2/M is regulated by global down modulation of phero-

mone signaling. 

 Figure 7.    Cdc28p inhibits Fus2p-GFP nuclear 
exit in G2/M.  Localization of  GAL1 -expressed 
Fus2p-GFP was examined as described in 
 Fig. 1 D  in  cdc28-as1  (MY10324). (A) Cdc28p-
as1 inhibitor was added without  �  factor. 
(B) Cdc28p-as1 inhibitor and  �  factor were 
added together. The images show cytoplasmic 
and cortical localization in large-budded cells 
before cytokinesis. The bottom panel shows a 
cell dying during the course of the experiment. 
Similar results were obtained when Fus2p-
GFP was expressed under its own promoter. 
Bars, 1  μ m.   
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tween the nucleus and cytoplasm (e.g., Fus3p and Ste5p;  Choi 

et al., 1999 ;  Mahanty et al., 1999 ;  van Drogen et al., 2001 ). 

To our knowledge, Fus2p is unique in being subject to two 

different pathways of regulation. Two other proteins with dif-

ferent roles in mitosis and mating, Kar3p and Far1p, also show 

mating-regulated localization patterns being largely nuclear 

in mitotic cells but cytoplasmic in mating cells ( Meluh and 

Rose, 1990 ;  Nern and Arkowitz, 1999 ). It is not yet known 

whether the transition between these patterns is restricted dur-

ing the cell cycle. 

 Cell cycle requirement for exit 
 Prolonged arrest in the cell cycle by itself is not required for 

Fus2p exit. Instead, it appears that Fus2p exit is negatively cor-

related with Cln levels in G1. First,  far1  mutants do not arrest in 

the presence of pheromone, yet many  far1  cells showed transient 

Fus2p exit as they progressed from cytokinesis into G1. Fus2p 

usually returned to the nucleus as the cells progressed into the 

cell cycle when Cln levels would be rising. Second, we observed 

frequent mother – daughter asymmetry in  far1  mutants, with daugh-

ters showing exit more often than mothers. This is most likely 

because mothers have higher Cln levels immediately after cell 

division and progress into the cell cycle before daughter cells 

( Laabs et al., 2003 ). Third, introduction of the  cln2  deletion, 

which removes a G1 Cln, allowed cell cycle arrest and Fus2p 

exit in all  far1  mutant cells. Moreover, in the  far1 cln2  mutant, 

we observed Fus2p at the bud tip only in small-budded cells 

when the G1 Cln would be expected to be active. Fourth, inhibi-

tion of Cdc28p allowed Fus2p export in all stages of the cell 

cycle but only in the presence of pheromone. Thus, high Cdc28p 

activity is correlated with Fus2p nuclear localization, and low 

Cdc28p activity is permissive for Fus2p nuclear exit. 

 Pheromone requirement for exit 
 Previous results showed that Fus2p does not exit the nucleus in 

 fus3  mutants ( Paterson et al., 2008 ). This is not simply a result 

of the inability of  fus3  mutants to cell cycle arrest because the 

 cln3  mutation suppressed arrest but not Fus2p exit. Moreover, it 

is not likely that Fus3p is only required for the transcriptional 

induction of a protein required for Fus2p exit. First, the  fus3  

mutant was not suppressed by high copy  STE12 . Second, Fus2p 

that had already localized to the shmoo tip returned very rap-

idly to the nucleus when Fus3p kinase activity was chemically 

inhibited. It is much more likely that Fus2p is regulated directly 

by Fus3p. First, the Fus2 NTD  fragment is phosphorylated at S84 

in vivo in response to pheromone. Second, the phosphorylation 

is dependent on Fus3p, and Fus3p can phosphorylate Fus2p in 

vitro .  Third, mutation of Ser84 to alanine prevented export of 

both Fus2 NTD  and full-length Fus2p. Conversely, mutation of 

Ser84 to glutamate or aspartate (negatively charged residues 

that mimic a phosphoryl group) allowed constitutive export of 

Fus2p-GFP in mitotic cells. Collectively, these results are most 

consistent with a direct requirement for Fus3p activity for 

Fus2p exit. 

 Because general inhibition of the mating signaling pathway 

is known to occur in late G1 through S phase, down-regulation 

of Fus3p would account for inhibition of Fus2p exit during this 

or not active. In this study, we dissect the conditions necessary 

for nuclear versus cytoplasmic localization and show that both 

the pheromone pathway and the cell cycle play a role in regulat-

ing Fus2p localization. Pheromone signaling dependent on Fus3p 

plays a positive regulatory role in Fus2p exit, whereas cell cycle 

signaling via Cdc28p plays a negative role. 

 When asynchronous cultures are exposed to pheromone, 

most cells will be post-START and must complete the current 

round of cell division before cell cycle arrest. Immediately after 

START, Clns associated with Cdc28p block pheromone signaling 

and downstream cellular responses ( Strickfaden et al., 2007 ). 

However, as the cells enter G2, the pheromone signaling path-

way becomes active, and the transcription of pheromone-regulated 

genes is allowed to proceed. Along with other pheromone-

induced genes, Fus2p-GFP is expressed in G2 but localized to 

the nucleus until after mitosis. Because Fus2p is required for 

cell fusion and localizes to the site of cell fusion during conju-

gation, it is likely that the nuclear form is inactive with Fus2p 

sequestered away from its site of action. Although the specifi c 

function of Fus2p is not yet known, its homology with Rho –

 guanine exchange factor proteins suggests that it regulates a 

Rho-type G protein at the cell cortex. Because all of the Rho-

type G proteins are constitutively expressed and play important 

roles during mitosis, premature activation by a pheromone-

dependent regulatory protein would likely interfere with normal 

cell cycle progression. Thus, cells are faced with the problem of 

how to stockpile adequate levels of proteins required for mating 

while limiting their activity until after they have completed 

mitosis and are ready to mate. 

 We envision that four simple ways allow for delayed ex-

port and activation of Fus2p. First, Fus2p expression might 

be a delayed response to pheromone, perhaps by making ex-

pression dependent on an intermediate transcription factor like 

Kar4p ( Lahav et al., 2007 ). Second, a protein required for 

Fus2p exit may be expressed in a delayed manner. Third, Fus2p 

exit might depend on its reaching a critical concentration that 

triggers export. Fourth, exit may be coupled to cell cycle –

 dependent regulation. Because the timing of Fus2p exit was 

correlated with the time of cell division in an asynchronous 

population and not with the length of time in pheromone, the 

fi rst two scenarios are unlikely. Separating expression of Fus2p 

from pheromone signaling response using the  GAL1  promoter 

also had no effect. Thus, export was not a consequence of in-

creased Fus2p levels, making the third scenario unlikely. In 

contrast, the observed coupling of exit to posttranslational cell 

cycle regulation provides an elegant solution to the problem of 

transition between mitotic growth and cell cycle arrest. Pro-

teins required for mating can be synthesized before they are 

needed and sequestered until their activation will not compro-

mise cell cycle progression. 

 We do not know how general the mechanism of cell 

cycle – dependent nuclear localization is to regulate mating-

specifi c proteins. Several proteins are known that show cell 

cycle – regulated (e.g., Swi5p and Cdc24p;  Moll et al., 1991 ; 

 Nern and Arkowitz, 2000 ) or signaling-regulated nuclear lo-

calization (e.g., Msn2p and Msn4p;  Jacquet et al., 2003 ), and 

several proteins required for pheromone signaling shuttle be-
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 We have described a novel mechanism regulating mating-

dependent processes in yeast. Before pheromone-treated cells 

complete mitosis,  FUS2  becomes active at the transcriptional 

level, but Fus2p is negatively regulated at the level of localiza-

tion. As cells enter G1, two antagonistic signaling pathways 

converge to regulate the export Fus2p to the cytoplasm: posi-

tive regulation by the pheromone response pathway and relief 

of negative regulation by the cell cycle. We suggest that similar 

patterns of regulation impact other genes involved in the mat-

ing pathway as well as other differentiated states of the cell. 

Elucidation of the mechanism of Fus2p control will help us 

further understand the intricacies of this highly regulated bio-

logical process. 

 Materials and methods 
 Strains and general yeast methods 
 Yeast media, general methods, and transformations were performed as de-
scribed previously ( Adams et al., 1997 ). Yeast strains are listed in  Table I . 
MY10011 and MY10012 were derived from MY9211 (provided by J. 
Paterson, Princeton University, Princeton, NJ).  CDC3  was tagged with 
 mCherry  using the method described by  Longtine et al. (1998)  using 
pMR5598 as a template.  FUS3  and  FAR1  deletion constructs were created 
by amplifying  natMX6  with primers containing homology to regions just 
outside the coding sequence of each gene.  CLN2  and  CLN3  disruption 
constructs were derived by amplifying these loci from strains already con-
taining the disruptions ( Epstein and Cross, 1992 ). The  cln3::URA3  disrup-
tion was replaced with  cln3::ura3::LEU2  using the method of  Cross (1997) . 
In all cases, deletions were confi rmed by PCR. 

 The  STE5-8A  mutation was integrated by the loop-in/loop-out proce-
dure using XbaI-cut pPP2330 ( Strickfaden et al., 2007 ). Loop outs were 
screened via a SmaI digest of a PCR product spanning the mutated region 
and confi rmed by sequencing this same PCR product. The  cdc28-as1  muta-
tion was integrated by the loop-in/loop-out procedure using Afl II-cut 
pJAU01 ( Bishop et al., 2000 ). Loop outs were confi rmed by cell cycle ar-
rest in the presence of 500 nM 1-NM-PP1. 

 Plasmids used in this study are listed in  Table II . To create pMR5642, 
 FUS2::GFP 104   was cut out of pMR5482 with XhoI and SpeI and cloned into 
the XhoI-SpeI sites of pRS415 ( Sikorski and Hieter, 1989 ). To create 
pMR5774, a stop codon was introduced into pMR5469 at the 3 �  end of 
 GFP  by dut ung mutagenesis ( Kunkel, 1985 ). Point mutations were created 
in pMR5469 and pMR5774 by dut ung mutagenesis. To create pMR5630, 
a fragment of  FUS2  comprising codons 1 – 328 was amplifi ed using prim-
ers containing XhoI and PstI sites. This fragment was cloned into the SalI 
and PstI sites of pPROTet.E133 (Clontech Laboratories, Inc.). 

 Live cell imaging 
 For time-course experiments, cells were grown to early log phase in selec-
tive medium at 30 ° C. At  t  = 0, 6  μ M  �  factor (Princeton University Molecu-
lar Biology Syn/Seq facility), 2% glucose, and 500 nM of the  cdc28-as1  
inhibitor 1-NM-PP1 was added (provided by K. Shokat, University of Cali-
fornia, San Francisco, San Francisco, CA) as indicated. In most experi-
ments, the fi rst image was acquired at 30 min, and subsequent images 
were acquired every 20 min. Differential interference contrast images 
were taken before and after the fi rst and last fl uorescent image. For experi-
ments in which  FUS2::GFP 104   was expressed under the native  FUS2  pro-
moter, the culture was shifted to 23 ° C at  t  = 0 to allow GFP to fold. After 
15 min, 5  μ l of cells was placed on a 2% agarose pad containing the same 
media, which was mounted on a microscope slide. 

 For experiments using the inhibitor-sensitive  fus3-Q93G  allele, cells 
were grown to early log phase in selective medium at 30 ° C and treated 
with 6  μ M  �  factor for 90 min. For still images, 5  μ l of cells was placed on 
agarose pads with or without the inhibitor (1-NA-PP1; fi nal concentration 
100  μ M; provided by K. Shokat). Experiments showing addition of the in-
hibitor during acquisition were conducted in a similar manner except using 
a homemade fl ow cell. Cells in selective medium containing  �  factor were 
immobilized on coverslips using concanavalin A. The coverslip was affi xed 
to Scotch tape walls overlaid on a glass slide fl oor to create an  � 0.1-mm-
thick chamber. To remove unbound cells, the fl ow cell was fi rst fl ushed three 
times with selective medium containing  �  factor by pipetting from one end 

part of the cell cycle. Consistent with this, Fus2p was frequently 

found at the bud tip of small-budded  STE5-8A  cells, which are 

defective in the G1/S inhibition of Fus3p. Inhibition of Fus3p 

most likely accounts for the return of Fus2p to the nucleus 

observed in  far1  mutant cells; as Cln levels accumulate at the 

end of G1, the mating pathway would be shut off and Fus3p 

made inactive. 

 Interestingly, pheromone regulation plays a separate 

role in the recruitment of cytoplasmic Fus2p to the plasma 

membrane because Fus2p S84E  is diffusely cytoplasmic in mi-

totic cells, whereas it is tip localized in shmoos. Moreover, 

cytoplasmic Fus2p S84E  also fails to localize to the cortex in 

the  fus3 cln3  mutant treated with pheromone, suggesting that 

the defect is not simply a result of the absence of pheromone-

induced proteins. 

 Mechanism of cell cycle regulation 
in late G2 
 Inhibition of Fus3p activation via Ste5p is limited to G1/S. Even 

upon extended pheromone treatment, active Cdc28p has, at 

best, a very minor effect on pheromone-dependent transcription 

during G2, arguing that Fus3p is fully active during G2. Ac-

cordingly, we favor a model in which the pheromone pathway 

and Cdc28p converge to regulate Fus2p localization. 

 How could such regulation work mechanistically? We 

envisage two general classes of models that differ in whether 

Cdc28p acts directly or indirectly. As an example of direct regu-

lation, Cdc28p might phosphorylate Fus2p, causing nuclear im-

port (or blocking export) independent of Fus3p phosphorylation. 

Alternatively, Cdc28p phosphorylation of Fus2p might block 

phosphorylation by Fus3p. If Fus2p is phosphorylated by 

Cdc28p, it is unlikely to occur within the NTD based on the 

mobility of the mitotically expressed protein in Phos-tag poly-

acrylamide gels. Arguing against the fi rst model is the fact that 

the S84E mutant has constitutively greater cytoplasmic distribu-

tion than the wild-type protein, making it unlikely that Cdc28p 

phosphorylation can override S84 phosphorylation. 

 Examples of indirect regulation include the possibility that 

Cdc28p-dependent regulation controls the specifi city of nuclear 

import or export receptors, thereby controlling Fus2p localiza-

tion independent of Fus3p regulation. Alternatively, Cdc28p 

might regulate Fus3p substrate specifi city in such a way that 

targets required for the transcriptional response to pheromone 

(Dig1p and Dig2p) can be phosphorylated, but Fus2p and possi-

bly other targets required for later events in mating are not. 

 Ultimately, phosphorylation at S84 impacts the nuclear/

cytoplasmic distribution of the protein. Phosphorylation is known 

to regulate the nuclear import of many proteins. For example, in 

Msn2p, phosphorylation by cAMP-dependent protein kinase 

interferes with NLS function ( Gorner et al., 2002 ). The S84 res-

idue in Fus2p does not lie in a predicted NLS; indeed, there is 

no predicted NLS within the Fus2 NTD  fragment that is both nec-

essary and suffi cient for nuclear localization. Elucidation of the 

mechanism of Fus2p localization will require identifi cation of 

the true NLS and nuclear export signal and determining the im-

pact of S84 phosphorylation and possibly phosphorylation at 

other sites. 
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deconvolved using the softWoRx program (Applied Precision, LLC), and 
projections were made using a summing algorithm. 

 Figures were prepared for publication using Photoshop and Illustra-
tor (Adobe). For presentation purposes, pixel density was increased using 
bicubic resampling where necessary. The brightness of the red channel 
showing Cdc3p-mCherryFP was increased in some panels to allow the 
separation of the septin rings to be seen clearly. 

 Time courses on each strain were collected during at least two differ-
ent imaging sessions. In some cases, data collected using Fus2p-GFP 
expressed from both the  FUS2  promoter and the  GAL1  promoter were 
pooled. Except where indicated, time courses were counted only if a cyto-
kinesis event occurred during imaging. 

and inserting the corner of a tissue paper at the other. After the fi rst images 
were acquired, this medium was exchanged for medium containing  �  fac-
tor and 1-NA-PP1 by the same procedure. 

 Images were acquired using a microscopy system (DeltaVision; 
Applied Precision, LLC) using an inverted microscope (TE200; Nikon), a 
charge-coupled device camera (CoolSNAP HQ; Roper Scientifi c), and a 
100 ×  objective with a 1.4 NA. Time course images (Fus2p-GFP and Cdc3-
mCherryFP) are composed of either six z sections spaced 0.8  μ m apart 
with 2  ×  2 binning or 10 z sections spaced 0.45  μ m apart without binning. 
Rhodamine and FITC fi lter sets were used to visualize Cdc3p-mCherryFP 
and Fus2p-GFP, respectively. All other images are composed of 24 z 
sections spaced 0.2  μ m apart using the FITC fi lter set. All images were 

 Table II.    Plasmids used in this study  

Plasmid Markers Source

pRS413  CEN HIS3  Sikorski and Hieter, 1989 

pSB231  CEN URA3 fus1-LacZ  Trueheart et al., 1987 

pJAU01  URA3 cdc28-as1  Bishop et al., 2000 

pSY1  2  μ   LEU2 STE12  Dolan et al., 1989 

pPP2330  URA3 STE5-8A  Strickfaden et al., 2007 

YCpIF5  CEN URA3 P GAL1   Foreman and Davis, 1994 

pPROTet.E133  P tet -6xHN Cm r  Clontech Laboratories, Inc.

pMR4937  CEN URA3 FLAG-FUS3  Matheos et al., 2004 

pMR4938  CEN URA3 FLAG-fus3 Q93G   Matheos et al., 2004 

pMR5048  CEN HIS3 FLAG-FUS3 D. Matheos  c  

pMR5469  a   CEN URA3 P GAL1 -FUS2::GFP 104   Paterson et al., 2008 

pMR5482  CEN URA3 FUS2::GFP 104   Paterson et al., 2008 

pMR5598 pFa6a- mCherry-kanMX6 S. Clark  c  

pMR5630  P tet -6xHN-fus2 1 – 328  Cm r  This study

pMR5642  CEN LEU2 FUS2::GFP 104  This study

pMR5774  b   CEN URA3 P GAL1 -fus2 1 – 104 -GFP This study

 a Point mutations in  FUS2::GFP  used in  Fig. 5 D  were created for this study and are derived from pMR5469.

 b Point mutations in  fus2 1 – 104 -GFP  used in  Fig. 5 (B and C)  were created for this study and are derived from pMR5774.

 c Princeton University, Princeton, NJ.

 Table I.    Strains used in this study  

Strain Genotype Source

BY4741  a   MAT  a     ura3  �  0 his3  �  200 leu2  �  0 met15  �  0  Brachmann et al., 1998 

MY9181  fus2  � :: HIS3  Paterson et al., 2008 

MY10011  fus2  � :: HIS3 fus3 � ::kanMX  pMR5642 [ FUS2::GFP 104  LEU2 CEN ] pMR4937 [ FUS3 CEN URA3 ] This study

MY10012  fus2  � :: HIS3 fus3 � ::kanMX  pMR5642 [ FUS2::GFP 104  LEU2 CEN ] pMR4938  
    [ fus3-Q93G CEN URA3 ]

This study

MY10174  fus2  � :: HIS3 CDC3-mCherry :: kanMX This study

MY10176  fus2  � :: HIS3 CDC3- mCherry :: kanMX  pMR5482 [ FUS2::GFP 104  URA3 CEN ] This study

MY10177  fus2  � :: HIS3 CDC3- mCherry :: kanMX  pMR5469 [ P GAL1 -FUS2::GFP 104  URA3 CEN ] This study

MY10273  fus2  � :: HIS3 CDC3- mCherry :: kanMX fus3 � ::natMX cln3::ura3::LEU2 This study

MY10318  fus2  � :: HIS3 CDC3- mCherry :: kanMX fus3 � ::natMX  pMR5482 This study

MY10319  fus2  � :: HIS3 CDC3- mCherry :: kanMX fus3 � ::natMX cln3::ura3::LEU2  pMR5482 This study

MY10320  fus2  � :: HIS3 CDC3- mCherry :: kanMX far1 � ::natMX  pMR5482 This study

MY10321  fus2  � :: HIS3 CDC3- mCherry :: kanMX far1 � ::natMX cln2::LEU2  pMR5482 This study

MY10322  fus2  � :: HIS3 CDC3- mCherry :: kanMX fus3 � ::natMX  pMR5482 pSY1 [2 μ   LEU2 STE12 ] This study

MY10324  fus2  � :: HIS3 CDC3- mCherry :: kanMX cdc28-as1  pMR5469 This study

MY10329  fus2  � :: HIS3 CDC3- mCherry :: kanMX STE5-8A  pMR5482 This study

MY10451  fus2  � :: HIS3 CDC3- mCherry :: kanMX cdc28-as1  pSB231 [ CEN URA3 fus1-LacZ ] This study

MY10481  fus2  � :: HIS3 CDC3- mCherry :: kanMX cdc28-as1 STE5-8A  pSB231 This study

EY700  MAT  a   fus3-6  � :: LEU2 ura3-1 his3-11,15 leu2-3,112 trp1-1 ade2-1 can1-100 G. Fink  b  

YM1933  � 2000  ura3  � 0  leu2  � 0  trp1  � :: hisG his2  �  hisG fus3 K42R -3 × FLAG :: kanMX  Bao et al., 2004 

 a All strains created for this study were derived from BY4741.

 b Massachusetts Institute of Technology, Cambridge, MA.
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resis buffer and boiling. Proteins were resolved on a 12% polyacrylamide 
gel and processed for autoradiography. 

 Cell cycle arrest and  � -galactosidase assays 
  cdc28-as1  cells were arrested at the G2/M transition by treating with 
500 nM 1-NM-PP1 for 3 h ( Bishop et al., 2000 ). The inhibitor was 
washed out by vacuum fi ltration. The cells were washed with 3 vol of 
fresh medium and resuspended in 1 vol of fresh medium. The culture was 
split and treated with either DMSO + 10  μ g/ml  �  factor or 500 nM 
1-NM-PP1 (in DMSO) + 10  μ g/ml  �  factor. At 15-min intervals, aliquots 
were taken for analysis of  � -galactosidase activity. Activity was mea-
sured by the permeabilized cell method of  Adams et al. (1997)  with 
minor modifi cations and is expressed relative to the 60-min time point of 
the arrested population in each experiment. 

 We thank Peter Pryciak, David Morgan, and Kevan Shokat for providing re-
agents and materials, Sean Clark for creation of the mCherryFP integration 
cassette, and Peter Houston for help with the fl ow cell experiments. We thank 
Rebecca Davis for excellent help with media and materials. 

 This work was made possible by the National Institutes of Health (grant 
GM37739 to M.D. Rose). 
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 Image analysis 
 Image quantifi cation was performed using softWoRx and ImageJ (National 
Institutes of Health). For experiments using the inhibitor-sensitive  fus3-Q93G  
allele, fl uorescence intensity was measured at three regions: overlapping 
the shmoo tip, inside the nucleus, and in the cytoplasm. The background 
intensity was subtracted from the tip intensity, and this adjusted tip intensity 
was normalized for each cell, taking the value at the 0-min time point to be 
1. Normalized intensities were averaged between all cells in the dataset 
for each time point. A similar method was used to calculate nuclear intensi-
ties except that normalization was done such that the value at the fi nal time 
point was 1. 

 For experiments comparing the nuclear/cytoplasmic distribution of 
the NTD point mutants, total fl uorescence intensity was measured on image 
projections in two equal areas inside the nucleus and inside the cytoplasm. 
Background autofl uorescence was measured in a separate population of 
cells not expressing GFP that were imaged on the same day. After subtract-
ing the mean autofl uorescence value from each measurement, the ratio of 
cytoplasmic to nuclear fl uorescence was calculated for each cell. Note that 
because the projected image contains fl uorescence from the entire volume, 
the N/C ratio underestimates the concentration of GFP in the nucleus. Sta-
tistical analysis was performed using one-way analysis of variance followed 
by Dunnett ’ s multiple comparison test or the Wilcoxon-Mann-Whitney rank 
sum test for non-normally distributed data. 

 To quantify total Fus2p-GFP levels in G2 cells, we measured total 
fl uorescence intensity in a box encompassing the whole cell and subtracted 
the background intensity of a congruent box in an empty fi eld. This proto-
col was used to measure the mean autofl uorescence in MY10174, which 
does not contain GFP. We measured MY10176 treated with pheromone as 
in the time-course experiments for 30 min or left untreated. Only budded 
cells with fully formed septin rings were selected for analysis. The mean 
autofl uorescence intensity was subtracted from each cell, and the popula-
tions were compared with Student ’ s  t  test. 

 Western blotting 
 Proteins were prepared for SDS-PAGE by TCA precipitation, resolved on a 
10% polyacrylamide gel with or without 25  μ M Phos-tag acrylamide (FMS 
Laboratory). Proteins were transferred to polyvinylidene difl uoride and de-
tected using monoclonal mouse anti-GFP (Roche) at 1:1,000 followed by 
incubation with a secondary antibody and standard chemiluminescence. 

 In vitro kinase assay 
 In vitro kinase assays were performed essentially as described by  Bao 
et al. (2004)  using bacterially expressed Fus2p fragment. BL21PRO cells 
containing pMR5630 expressing 6xHN-tagged Fus 21 – 328  or a vector 
control were grown in 100 ml LB medium, cooled to room temperature, 
induced with 100 ng/ml anhydrotetracycline for 4 h, collected by centrif-
ugation, and fl ash frozen. Cells were lysed in 1 ml TPB (50 mM Tris-HCl, 
pH 8.0, 1 mM MgCl 2 , 10 mM  � -mercaptoethanol, and protease inhibitor 
cocktail [Roche]) by incubation with 1 mg/ml lysozyme followed by 
sonication. The lysate was clarifi ed by centrifugation at 11,000 rpm for 
20 min in a tabletop centrifuge. Proteins were bound to 375  μ l nickel-
nitrilotriacetic acid Superfl ow beads (QIAGEN) and prewashed in TPB in 
batch format for 60 – 90 min. The beads were washed in column format 
with 3 ml TPB containing 250 mM NaCl and 10 mM imidazole. The col-
umn was eluted using a step gradient of imidazole in TPB, and fractions 
containing Fus2 1 – 328  were identifi ed by SDS-PAGE followed by Coomassie 
blue staining. 

 Flag-tagged Fus3p was immunoprecipitated from yeast extracts 
made from 200-ml cultures of EY700 containing pRS413 (vector control), 
pMR5048 (Fus3p), or YM1933 (Fus3p K42R ) induced with 6  μ M  �  factor for 
90 min. Cells were collected by centrifugation and fl ash frozen. Cells were 
thawed in 1 ml of TENNI buffer (50 mM Tris-HCl, pH 7.4, 250 mM NaCl, 
50 mM NaF, 5 mM EDTA, 0.1% NP-40, 1 mM PMSF, protease inhibitor 
cocktail, and phosphatase inhibitor cocktail [Roche]) and lysed using glass 
beads. The lysate was centrifuged for 10 min at 3,000 rpm, and the super-
natant was transferred to a new tube and centrifuged again for 15 min at 
11,000 rpm. 30  μ l anti-Flag affi nity gel (Sigma-Aldrich) prewashed in 
TENNI buffer was added to the extract, and proteins were adsorbed for 60 
min at 4 ° C. The beads were washed four times in TENNI buffer, two times 
in kinase buffer (50 mM Tris, pH 7.4, 20 mM MgCl 2 , 1 mM DTT, protease 
inhibitor cocktail, and phosphatase inhibitor cocktail), and resuspended in 
40  μ l of kinase buffer. 20  μ l slurry was combined with  � 200 ng Fus2 1 – 328  
eluate in a total volume of 60  μ l. After 5 min, 5  μ l of reaction buffer 
(2  μ Ci/ μ l  � -[ 32 P]ATP and 10  μ M ATP in kinase buffer) was added. Reactions 
were continued for 15 min at 30 ° C and stopped by addition of electropho-
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