
ORIGINAL RESEARCH
published: 10 January 2020

doi: 10.3389/fnhum.2019.00458

Edited by:

Maja Rogić Vidaković,
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Deficits in basal ganglia-based inhibitory and timing circuits along with sensorimotor
internal modeling mechanisms are thought to underlie stuttering. However, much
remains to be learned regarding the precise manner how these deficits contribute
to disrupting both speech and cognitive functions in those who stutter. Herein, we
examine the suitability of electroencephalographic (EEG) mu rhythms for addressing
these deficits. We review some previous findings of mu rhythm activity differentiating
stuttering from non-stuttering individuals and present some new preliminary findings
capturing stuttering-related deficits in working memory. Mu rhythms are characterized
by spectral peaks in alpha (8–13 Hz) and beta (14–25 Hz) frequency bands (mu-
alpha and mu-beta). They emanate from premotor/motor regions and are influenced
by basal ganglia and sensorimotor function. More specifically, alpha peaks (mu-alpha)
are sensitive to basal ganglia-based inhibitory signals and sensory-to-motor feedback.
Beta peaks (mu-beta) are sensitive to changes in timing and capture motor-to-sensory
(i.e., forward model) projections. Observing simultaneous changes in mu-alpha and
mu-beta across the time-course of specific events provides a rich window for observing
neurophysiological deficits associated with stuttering in both speech and cognitive
tasks and can provide a better understanding of the functional relationship between
these stuttering symptoms. We review how independent component analysis (ICA)
can extract mu rhythms from raw EEG signals in speech production tasks, such that
changes in alpha and beta power are mapped to myogenic activity from articulators.
We review findings from speech production and auditory discrimination tasks
demonstrating that mu-alpha and mu-beta are highly sensitive to capturing sensorimotor

Abbreviations: ANOVA, analysis of variance; ASR, artifact subspace reconstruction; AWS, adults who stutter; CV,
consonant-vowel; CWS, child/children who stutter(s); EEG, electroencephalography/electroencephalographic; EMG,
electromyography/electromyographic; ERP, event-related potential; ERSP, event-related spectral perturbation; fMRI,
functional magnetic resonance imaging; IC, independent component; ICA, independent component analysis; MARA,
multiple artifact rejection algorithms; MEG, magnetoencephalography; PWM, phonological working memory; PWS,
person(s) who stutter(s); SLP, syllable load performance; TFS, typically fluent speaker; OASES, Overall Assessment of
the Speaker’s Experience of Stuttering.
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and basal ganglia deficits associated with stuttering with high temporal precision. Novel
findings from a non-word repetition (working memory) task are also included. They show
reduced mu-alpha suppression in a stuttering group compared to a typically fluent group.
Finally, we review current limitations and directions for future research.

Keywords: stuttering, mu rhythm, sensorimotor integration, speech production, speech perception, working
memory, internal models, basal ganglia

INTRODUCTION

Decades of research have converged on two distinct yet
related neural mechanisms implicated in the neurophysiology
of stuttering. These mechanisms are: (1) the basal ganglia
mechanism that helps provide timing cues for speech and
inhibit irrelevant neural information (Alm, 2004; Civier et al.,
2010; Chang and Zhu, 2013; Chang et al., 2019); and (2) the
sensorimotor system that helps guide articulatorymovements via
internal modeling (Max et al., 2004; Loucks and De Nil, 2006;
Mersov et al., 2016; Chang et al., 2019). Despite the identification
of compromise in these mechanisms, much remains to be
understood regarding the neurophysiological breakdowns in
these mechanisms that result in overt stuttering behaviors, how
these breakdowns can be overcome to reinstate fluency and, how
they may contribute to differences in cognitive function that
are associated with stuttering. The developmental, intermittent
and highly variable nature of stuttering combined with a
limited temporal resolution that is inherent to some functional
neuroimaging techniques have created challenges in separating
trait- from state-related patterns of neural activity (Belyk et al.,
2015, 2017) and thus, the separation of cause and effect when
interpreting data.

To overcome the development barrier, neuroimaging data
must continue to be acquired from children as close to the
onset of stuttering as possible (Chow and Chang, 2017). Other
barriers may be overcome by careful experimental design and
the use of high temporal resolution neuroimaging tools such as
electroencephalography (EEG) and magnetoencephalography
(MEG). To identify mechanisms underlying stuttering in
speech production, it is necessary to eliminate, or at least
control for, the effects of overt stuttering on neural activation.
By the same logic, it also is necessary to preclude the use
of fluency enhancing techniques (e.g., speech restructuring
strategies, choral speech, delayed auditory feedback, etc). As
such, the best means of identifying trait-related differences
in speech is to compare neural activity from spontaneously
fluent utterances in people who stutter (PWS) and matched
typically fluent speakers (TFSs; Jenson et al., 2018; Mersov
et al., 2018). However, it should be noted even the perceptually
fluent speech of PWS might be influenced by effects of
the underlying pathology and therefore, interpretations
need to be made cautiously (Armson and Kalinowski, 1994;
Belyk et al., 2015).

Enhanced understanding of stuttering neurophysiology may
be acquired through the study of related, non-speech cognitive
functions. Perceiving speech has long been known to activate
the same sensorimotor mechanisms that are involved in speech

production (Callan et al., 2010; Bowers et al., 2013), with
activation levels that typically correlate with task difficulty
(Szenkovits et al., 2012). Thus, increased sensorimotor activity
appears to be associated with cognitive resource allocation
(e.g., attention and working memory) that increases to support
more difficult tasks (e.g., discriminating in noisy backgrounds).
The activity is likely because the same dorsal stream sensorimotor
regions involved in speech production also can subserve general
cognitive mechanisms such as attention and phonological
working memory (PWM). Internal modeling mechanisms that
drive sensorimotor integration are also strongly implicated
in attention (Schröger et al., 2015) and working memory
(Hickok et al., 2003; Buchsbaum and D’Esposito, 2019). Given
the functional overlap, it perhaps does not seem surprising
that the effects of stuttering can transcend speech production
and impact cognitive function. Thus, the growing behavioral
evidence of these cognitive effects in PWS (Byrd et al., 2015;
Eggers and Jansson-Verkasalo, 2017; Eichorn et al., 2018;
Coalson et al., 2019), make it necessary to understand their
neural correlates. An added advantage of studying the effects
of stuttering on cognitive function is that it can provide a
valuable window into understanding how sensorimotor function
differs in PWS without the potentially contaminating effects of
overt stuttering.

Improving Temporal Resolution
One reason for continued limitations in understanding the
neurophysiology of stuttering is the dearth of temporally precise
neuroimaging data. Sensorimotor activity for speech begins
prior to the onset of production as the speech mechanism
prepares for movement. It is maintained throughout production
and even persists after speech movements are complete as the
system resets. All these different phases of motor execution
contain potentially valuable information about the nature of
sensorimotor compromise associated with stuttering. However,
without precise temporal resolution and the ability to map
neural activity to articulator movement, it is not possible to
discern changes in sensorimotor control as they occur over
the time course of speech production. Similarly, in perceptual
tasks, improved temporal precision can differentiate between the
contributions of various cognitive processes such as attention
and working memory. EEG offers the temporal resolution
necessary to address the dynamics of sensorimotor integration
described above. Applied to stuttering, a number of recent studies
have examined event-related potentials (ERPs) in speech motor
preparation (Daliri and Max, 2015, 2018; Vanhoutte et al., 2016;
Ning et al., 2017). Other studies have examined oscillatory
power within specific frequency bands. For example, measures

Frontiers in Human Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 458

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Jenson et al. Mu Rhythms in Stuttering Research

of alpha rhythm (8–13 Hz) power have been used to compare
emotional reactivity in children who stutter (Arnold et al.,
2011). Beta rhythms (15–25 Hz) are also receiving considerable
attention as they are thought to encode information about
motor-to-sensory predictions (e.g., forward models) and are
particularly sensitive to temporal variability in the auditory
domain (Fujioka et al., 2015). Beta power differences related
to stuttering have been observed in a number of studies (Joos
et al., 2014; Etchell et al., 2016; Mersov et al., 2016; Mock
et al., 2016; Sengupta et al., 2017). Given the presence of
stuttering-related differences across alpha and beta bands, our
labs have conducted a series of studies (‘‘Speech Production’’
‘‘Auditory Discrimination Tasks’’ and ‘‘Phonological Working
Memory’’ sections below) focused on the EEG mu rhythm
which is characterized by the power in both alpha and
beta frequencies.

EEG Mu Rhythm
Mu rhythms have been observed in raw EEG traces since at
least the 1950s (Gastaut and Bert, 1954). They are typically
characterized by a Rolandic (sensorimotor) source that is
proximal to sites of integration for two basal ganglia loops
involved in motor control (Dillon and Pizzagalli, 2007). Thus,
power fluctuations in the mu rhythm may be influenced by both
basal ganglia and sensorimotor functioning. Further, power in
mu rhythms is highly sensitive to both movement-related and
cognitive tasks. Traditional EEG measures often continue to
define the mu rhythm within alpha frequencies (Pineda, 2005;
Fox et al., 2016). However, since 1989 (Tiihonen et al., 1989;
Taniguchi et al., 2000), MEG studies have been able to identify
mu rhythms with single dipolar sources that include a smaller
amplitude beta (15–25 Hz) peak, in addition to the traditionally
observed and dominant alpha peak (Jones et al., 2009; Cheyne,
2013). Some researchers have claimed that the beta peak is a
functionally non-distinct simple harmonic of the alpha band,
based on observations that activity in the two bands is often
highly correlated, especially inmovement studies (Carlqvist et al.,
2005; Brismar, 2007). Others acknowledge the importance of beta
activity when looking at movement, but do not consider beta
frequencies as part of the mu rhythm (McFarland et al., 2000;
Hobson and Bishop, 2016).

However, there now exists ample evidence to support
notions of unified mu rhythms consisting of both alpha and
beta peaks with distinct yet functionally related responsivity
patterns. Though mu rhythms can often be mapped to single
dipole sources within sensorimotor cortex, when filtered into
constituent frequencies, alpha bands tend to map to post-central
sources, whereas beta bands map to precentral sources (Hari
et al., 1997; Jurkiewicz et al., 2006; Ritter et al., 2009).
However, perhaps most importantly, power in alpha and beta
bands of the mu rhythm (henceforth mu-alpha and mu-
beta) does not change at the same rate in movement studies
(Hari et al., 1997; Hari, 2006; Stolk et al., 2019) and power
in the two frequency bands can completely dissociate in
cognitive studies (e.g., speech perception), clearly suggesting a
functional distinction (Bowers et al., 2013; Brinkman et al., 2014;
Jenson et al., 2014).

EEG Mu Rhythms Identified via
Independent Component Analysis
Rather than using traditional channel-based measures of
mu-alpha power, our labs have conducted a series of studies
using independent component analysis (ICA) to identify mu
rhythms (i.e., mu components) from raw EEG data. ICA is a
blind source separation technique which assumes the underlying
source signals are statistically independent and mix linearly
at the level of the scalp (Stone, 2002). The application of
ICA to scalp-recorded signals helps to overcome some of the
weaknesses of EEG as a brain-imaging tool (Onton et al.,
2006; Delorme et al., 2012). First, sources of neural activity
identified by ICA are temporally independent and spatially fixed.
Therefore, they are not influenced by volume conduction which
is inherent to channel-based EEG measures. Second, ICA acts
as an excellent filter for separating neural activity from muscle
artifact. This attribute can be particularly valuable as myogenic
components (e.g., from speech articulators) can be identified,
such that neural activity can be mapped to muscle movement
in speech production tasks (Jenson et al., 2014, 2018). Third,
the use of realistic three-dimensional head models allows neural
components identified through ICA to be back-projected to
hypothesized cortical sources. Though spatial resolution may
never reach the level of functional magnetic resonance imaging
(fMRI), the use of more dense electrode arrays and individual
head models provide source localizations with accuracy on the
level of 15 mm3 (Mégevand et al., 2014; Sohrabpour et al.,
2015), that combined with the spectral information and excellent
temporal resolution, provide an effective means of mapping
neural activity to behavior.

Spectral and Time-Frequency Analyses
EEG mu components identified via ICA are characterized by
spectral peaks in both alpha and beta bands (Bowers et al.,
2013; Jenson et al., 2014; Denis et al., 2017). This spectral
characteristic is the primary heuristic for identification of mu
rhythms, with localization to canonical sensorimotor regions
serving as a confirmation of mu component identification
following ICA. However, in the absence of depth recordings for
comparison, it is impossible to categorically exclude the influence
of non-sensorimotor sources of noise. Nonetheless, given the
relative ubiquity within the field of cognitive neuroscience
of using ICA to identify neural sources from scalp-recorded
EEG data (over 1,500 studies listed in Google Scholar) we
are confident that this represents a valid means for capturing
sensorimotor activity. Once identified, basic spectral information
(e.g., peak frequency and amplitude) can be compared across
experimental conditions or between experimental groups. To
this end, EEG spectral information has proven to be useful in
identifying conditions such as dyslexia (Papagiannopoulou and
Lagopoulos, 2016) and Parkinson’s disease (Caviness et al., 2016).

EEG mu rhythm spectra reflect the average power across
frequencies during the time interval measured (i.e., an event).
However, the clear advantage of EEG when measuring neural
activity is the ability to perform time-frequency decomposition
analyses. Time-frequency decomposition references spectral
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power across the time course of an event to the spectral power
recorded during a (silent) baseline period to reveal fluctuations in
oscillatory power known as event-related synchronization (ERS)
and event-related desynchronization (ERD). Synchronization
(higher oscillatory power) is typically interpreted as cortical
inhibition whereas desynchronization (lower oscillatory power)
is interpreted as cortical excitation (i.e., release from inhibition;
Pfurtscheller and Lopes da Silva, 1999; Neuper and Pfurtscheller,
2001; Neuper et al., 2006). The ability to map neural activity
in time is particularly useful in cognitive studies where it is
important to identify attentional mechanisms that precede an
event and working memory contributions that follow an event.
Similarly, in motor tasks (such as speech production) neural
activity can be traced from motor preparation, through the
course of execution, and following execution as the system
resets. In ‘‘Mu-alpha and Mu-beta in Movement and Cognitive
Tasks’’ section below, we describe responsiveness patterns of mu
rhythms in various tasks that we believe make them well-suited
for stuttering research.

Mu-alpha and Mu-beta in Movement and
Cognitive Tasks
Table 1 summarizes some general findings from studies in
our lab (Bowers et al., 2013, 2019; Jenson et al., 2014;
Saltuklaroglu et al., 2017; Thornton et al., 2019) showing
response patterns ofmu-alpha andmu-beta in speech production
and auditory discrimination tasks. Interpretations of the activity
are also provided with further elaboration in ‘‘Mu-alpha and
Mu-beta Responses in Movement’’ and ‘‘Mu-alpha and Mu-beta
Responses in Cognitive Tasks’’ sections.

Mu-alpha and Mu-beta Responses in Movement
Many movement studies have demonstrated that mu-alpha
typically localizes to post-central gyrus (Hari et al., 1997)
and begins to desynchronize prior to movement, continues
to desynchronize more strongly during movement, and then
resynchronizes as it rebounds past baseline power immediately
following movement (Hari et al., 1997; Pfurtscheller and
Lopes da Silva, 1999; Hari, 2006). Fluctuations in mu-alpha
power prior to and following the movement clearly indicate
sensitivity to sensorimotor processing. This is corroborated
by findings of mu-alpha desynchronization in the absence
of movement to motor imagery tasks along with visual
and auditory perception tasks (e.g., speech) that convey
movement. Such findings have typically been interpreted
as mu-alpha desynchronization indexing sensory-to-motor
feedback. However, in real movement tasks, the strongest
mu-alpha suppression, found during movement, is thought
to capture a primary somatosensory response in addition to
sensorimotor feedback (Jenson et al., 2018).

Mu-beta shows very similar response properties in movement
tasks to mu-alpha, with slight differences in the timing of
pre-movement desynchronization and post-movement rebound
(Hari et al., 1997; Hari, 2006). Also, similar to mu-alpha, mu-beta
desynchronizes in response to motor imagery (McFarland
et al., 2000) and in visual or auditory perception tasks that
represent or imply biological movement. Consistent with sources

in pre-central gyrus, mu-beta desynchronization is associated
with motor activity (Hari et al., 1997; Hari, 2006). In the
absence of movement, it is thought to capture motor-to-
to sensory transformations (i.e., forward models that are
predictions of sensory consequences and compared to available
feedback). Given that stuttering is hypothesized to be related
to weak/unstable forward modeling (Max et al., 2004), mu-beta
fluctuations in speech are likely to continue to prove sensitive
to influences of stuttering (Jenson et al., 2018). However,
analogous tomu-alpha, duringmovement, the strongest mu-beta
desynchronization is thought to result from both a primary
motor combined with the sensorimotor response.

Based on the descriptions above, in movement tasks including
speech, both mu-alpha and mu-beta desynchronization
likely capture primary somatosensory and motor responses
respectively during movement concomitantly with sensorimotor
responses during and surrounding (i.e., preceding and following)
the movement. In the context of speech production, the
contributions to mu desynchronization may be akin to
those from internal and external loops, with internal loops
representing the sensorimotor contributions and the external
looping representing the primary motor and somatosensory
feedback contributions (Houde and Nagarajan, 2011, see
Figure 1). Thus, when making comparisons of mu activity from
motor tasks, it is necessary to control as much as possible for
the movement to ensure that primary motor/somatosensory
contributions to mu desynchronization are similar and therefore,
differences observed can be attributed to sensorimotor function.
For this reason, making comparisons of mu activity in stuttered
and fluent speech may prove difficult. Even when controlling for
primary motor/somatosensory contributions (e.g., within fluent
speech), robust contributions to mu desynchronization from
primary somatosensory and motor responses to the signal may
decrease sensitivity in contrasts of sensorimotor activity (Jenson
et al., 2018).

Consequently, measurements of mu activity prior to
and following speech production are likely to provide the
best measures of sensorimotor activity. Pre-movement
beta oscillations are influenced by anticipation errors and
uncertainty (Engel and Fries, 2010; Torrecillos et al., 2015;
Palmer et al., 2016), whereas post-movement beta rebound
(resynchronization) is thought to provide an index of error
evaluation from the preceding movement (i.e., uncertainty; Tan
et al., 2014), both of which may be influenced by stuttering.
Further insight into stuttering also may be gleaned by using
covert (imagined) speaking tasks that recruit the sensorimotor
system without the need for overt production (Tian et al.,
2016) or, the use of cognitive tasks which are known to recruit
sensorimotor function.

Mu-alpha and Mu-beta Responses in Cognitive Tasks
Links between speech-related motor and cognitive processes
have been investigated since the controversial Motor Theory
of Speech Perception (Liberman et al., 1967). The discovery
of mirror neurons linking perception to action provided
some support for this theory (Rizzolatti and Arbib, 1998).
However, it is now generally accepted that speech perception

Frontiers in Human Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 458

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Jenson et al. Mu Rhythms in Stuttering Research

TABLE 1 | Descriptions and tentative interpretations of typical mu-alpha and mu-beta response patterns across time in movement and cognitive tasks from
experiments in our lab (Bowers et al., 2013; Jenson et al., 2014; Saltuklaroglu et al., 2017; Thornton et al., 2019).

Typical response patterns observed over time with underlying processes

Task Frequency band Before During After

Motor
Mu-alpha ERD

• Preparatory evaluation of sensory
feedback

ERD

• Sensory feedback processing
• Primary somatosensory

response

ERS (expected)1

• Sensorimotor reset

Mu-beta ERD

• Preparatory forward modeling

ERD

• Forward modeling
• Primary motor response

ERS (expected)

• Sensorimotor reset

Cognitive
Mu-alpha ERS

• Inhibitory response supporting
attentional allocation

ERD

• Sensory to motor
transformations

• Consistent with mirror neuron
activity2

ERD

• Inverse modeling supporting working
memory retention of stimuli

Mu-beta ERD

• Forward modeling supporting
attention through predictive coding

ERD

• Stimulus processing
• Evaluation of prediction

ERD

• Forward modeling supporting
working memory retention of stimuli

1To date, our labs have not measured mu oscillations in this time period. However, ERS is predicted based on extant literature showing rebound following movement. 2Though our
findings are not interpreted as evidence of mirror neuron activity, mu alpha ERD observed during stimulus presentation only might be considered evidence of a mirror neuron response.

FIGURE 1 | (A) The spectral plot of mu rhythm with alpha and beta symbols identifying the frequency peaks. Plot derived from data presented in Jenson et al.
(2014). (B) Simplified schematic of State Feedback Control with the internal sensorimotor loop outlined in blue and the external primary motor/sensory loop outlined
in red. Alpha and beta symbols indicate the sensitivity of mu bands to the distinct internal and external loop processes. Within the internal loop, mu-beta captures
forward models, which represent sensory predictions of the upcoming motor plan and are encoded in projections from the premotor cortex to auditory and
somatosensory cortices. Following a comparison between forward model predictions and sensory targets in auditory and somatosensory cortices, any mismatch is
mapped onto corrective motor commands and returned to the premotor cortex via an inverse model (encoded in mu-alpha) for ongoing motor planning. Within the
external loop, mu-beta encodes the primary motor response, while mu-alpha encodes sensory feedback to the premotor cortex based on the available reafference.

does not entail an obligatory motor response, though when
observed, motor activity tends to increase with perceptual
task demands (Szenkovits et al., 2012). In addition, temporally
sensitive measures have demonstrated that motor activity in
speech perception can occur prior to and following perception,
suggesting that it plays a larger role than simply a direct
mirror neuron-induced sensory-to-motor transformation that is
observed only while speech is being perceived (Jenson et al.,
2014). Thus, it is becoming clearer thatmotor activity observed in
perception is related to sensorimotor function. The sensorimotor
system alongside the basal ganglia, and in coordination with

the prefrontal cortex appear to engage prior to and following
perception to support cognitive processes (i.e., attention and
working memory) in which perception is grounded (Heald and
Nusbaum, 2014).

Heightened attention to a task is often marked by early
beta desynchronization prior to stimulus processing. Similar
to interpretations of mu-beta desynchronization in movement,
mu-beta desynchronization in cognitive tasks is considered
an indicator of top-down forward modeling used to make
predictions about forthcoming stimuli (Arnal and Giraud,
2012). Interestingly beta fluctuations in cognitive tasks are
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influenced by auditory input, and especially to sound omissions
and changes in the timing of auditory stimuli (Fujioka et al.,
2015). Attentional mechanisms also influence alpha rhythms
including mu-alpha oscillations. Early alpha synchronization,
conveying cortical inhibition, is often observed in cognitive
tasks. Inhibition is thought to reflect active inhibition of
information that is irrelevant to a task or, of cortical regions
that are not involved in tasks (Jensen and Mazaheri, 2010;
Jenson et al., 2014). When observed in mu-alpha, it may
be considered an indicator of the basal ganglia exerting
inhibitory influences on sensorimotor processes (Bönstrup
et al., 2015). Access to inhibitory mechanisms such as these
may be particularly useful when applied to stuttering, which
is thought to be associated with reduced inhibitory capacities.
Given the oscillatory patterns described above, mu activity
in early attentional mechanisms is particularly interesting. It
is possible to observe a clear dissociation between mu-alpha
(synchronization) and mu-beta (desynchronization) across time,
showing how these functionally distinct bands of the same
rhythm contribute to attentional mechanisms via cooperative
inhibition and prediction mechanisms. As forward modeling,
inhibitory processes, and attentional mechanisms are implicated
in stuttering, it is highly likely that measurements from this
time early time period will be sensitive to differences between
stuttering and non-stuttering populations (see discussion
of Saltuklaroglu et al., 2017 in ‘‘Auditory Discrimination
Tasks’’ section).

This rich source of combined excitatory and inhibitory
information measured across time is not available via other
techniques such as fMRI due to poorer temporal resolution and
the inability to distinguish spatially co-located predictive and
inhibitory processes. This is because the balance of neural activity
within a given patch of the cortex (i.e., voxel) is governed by
both excitatory and inhibitory processes, leading to increases and
decreases of cerebral blood flow, respectively (Devor et al., 2007;
Goense et al., 2012). Hemodynamic signals related to opposite
changes within a given voxel may cancel each other out, with
the observed hemodynamic response reflecting the difference
between co-localized excitatory and inhibitory processes rather
than absolute measures of excitation and inhibition (Xu, 2015).

Alongside attention, working memory function is critical to
the successful completion of cognitive tasks as perceived stimuli
are retained for task-related processing. Neural correlates of
working memory can be clearly observed in event-related EEG
data (Schneider et al., 2017; Jenson et al., 2019). Many lines of
research have demonstrated strong post-stimulus strong alpha
and beta desynchronization following stimulus offset, which is
interpreted as the processing of stimuli while held in working
memory. This also is the most consistent finding in our studies
that require participants to make same/different judgments
regarding pairs of auditory stimuli (Bowers et al., 2013; Jenson
et al., 2014; Thornton et al., 2018, 2019). It is interesting to
note that this is the same pattern that is observed in overt and
covert speech production (Jenson et al., 2014), suggesting that
at some level, perceived acoustic information is being covertly
replayed as is retained in working memory. It is also particularly
interesting that retention of information within PWM may

operate via the instantiation of the same forward and inverse
modeling mechanisms that drive overt speech (Alho et al., 2012;
Pickering and Garrod, 2013) and may be compromised in PWS.
Saltuklaroglu et al. (2017) (see ‘‘Time-Frequency Differences’’
section for more in-depth discussion) did not find post-stimulus
mu rhythm oscillatory differences between PWS and TFS in an
auditory discrimination task. However, they did not employ a
task that was designed to load working memory. In contrast, new
findings from the Bowers lab (see ‘‘Design and Hypotheses of
the Preliminary Study’’ section for a more detailed discussion)
employ tasks designed to load working memory for nonword
syllable sequences that have previously been associated with
differences in behavioral accuracy between PWS and TFS and are
revealing mu oscillatory differences during the task.

Based on the descriptions above, there are at least three
compelling reasons why we argue that measurements of mu
rhythms can shed much-needed light on the neurophysiology
of stuttering: (1) the anterior sensorimotor regions over which
they are recorded integrate input from both internal modeling
and basal ganglia loops; (2) mu-alpha and mu-beta can capture
distinct contributions from sensorimotor feedback and forward
modeling (respectively) with basal ganglia influences over the
time course of an event; and (3) the ability to capture patterns
of both synchronization and desynchronization of neuronal
populations provides valuable measures of inhibition and
activation that illuminates precisely how neural activity changes
within a single event. This stands in contrast to measures that
simply average neural activity across an event, possibly without
a means of capturing inhibitory contributions. To this end, we
will briefly summarize two of our published studies showing
differences between matched PWS and TFS in fluent speech
production and in auditory discrimination tasks. We will then
present some new data showing group differences in a repetition
task that recruits working memory processes.

SPEECH PRODUCTION

A number of studies have identified mu oscillatory activity
during speech production (Jenson et al., 2014;Mandel et al., 2016;
Kittilstved et al., 2018), and the sensitivity of mu oscillations
to internal modeling processes makes them well-suited to
interrogate notions of compromised sensorimotor processing in
PWS. However, in order to better understand how underlying
sensorimotor function for speech differs in PWS relative
to TFS, it is necessary to compare EEG recordings from
spontaneously fluent speech that is free from overt stuttering
or therapeutic fluency enhancing strategies. Jenson et al. (2018)
capitalized on the abilities of PWS to produce spontaneously
fluent simple utterances and the temporal precision of EEG
to compare mu oscillatory activity from PWS and TFS during
covert (i.e., imagined) and overt production of orthographically
presented syllable pairs and words. To ensure that subjects
refrained from movement during covert production trials, raw
channel data were visually inspected, and any trials in which
the peri-labial electromyographic (EMG) channel demonstrated
large deflections from baseline were excluded from further
analysis. The raw EMG channel data from covert and overt
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FIGURE 2 | Peri-labial electromyographic (EMG) channel data from all subjects in covert (SylC) and overt (SylP) syllable production following a visual inspection. The
vertical dashed line in each graph represents the cue to initiate production. While peri-labial EMG activity in SylP is characterized by preparatory activity prior to the
cue to speak followed by robust activity following the speech cue, minimal peri-labial activity is observed over the time course of SylC. Data has been adapted from
Jenson et al. (2018).

syllable production trials is shown in Figure 2 to demonstrate
the effectiveness of visual inspection for exclusion of trials
containing movement. Neural data from stuttered trials were
also excluded from the analysis. Using ICA, Jenson et al.
(2018) were able to identify mu components and peri-labial
EMG components. Time-frequency decompositions of the EMG
component confirmed that the two groups were behaviorally
equivalent on speech tasks with respect to timing and strength of
muscle activity. The EMG data could then be mapped temporally
to the neural data, which revealed a number of group differences
(discussed in ‘‘Overt Speech Differences’’ to ‘‘Right Hemisphere
Comparisons’’ sections below).

Overt Speech Differences
In overt production conditions, both PWS and TFS
produced weak left hemisphere mu-alpha and mu-beta
desynchronization prior to the cue to initiate production,
with robust desynchronization emerging following the cue
to produce speech and temporally aligned with the onset of
peak EMG activity (Figure 3). The presence of weak mu-alpha
and mu-beta desynchronization during orthographic stimulus
presentation was interpreted as evidence of the speech network
setting up (Gehrig et al., 2012), such that participants were ready
to initiate production when cued. During word production, PWS
produced weaker mu-alpha and mu-beta desynchronization
across the time course of speech production, which were
interpreted within the framework of State Feedback Control
(Houde and Nagarajan, 2011) as evidence of reduced internal
modeling activity in line with the proposals of Max et al.
(2004). Specifically, reduced mu-beta desynchronization was

interpreted as evidence of weak forward modeling, while
reduced mu-alpha desynchronization was interpreted as
evidence of reduced evaluation of sensory feedback. This
interpretation was supported by the lack of differences in
either the strength or timing of peri-labial EMG in overt
production conditions. As the strength and timing of movement
parameters are encoded in sensorimotor oscillations (Korik
et al., 2018; Li et al., 2018), primary motor and somatosensory
(i.e., external loop) influences on mu activity cannot account for
observed group differences, and we propose that they represent
differential internal modeling activity within the internal loop.
As these differences were present in spontaneously fluent speech,
we suggest that they represent an underlying sensorimotor
instability that predisposes the speech of PWS to breakdown.
However, in order to more fully interrogate internal loop
dynamics in PWS, it remains critical to examine sensorimotor
activity arising from covert speech tasks, in which external loop
activity is not elicited.

Covert Speech Differences
In covert syllable production, patterns of mu activity were
similar, yet weaker than those observed during overt production
(Figure 4). This is consistent with the notion that the influence
of sensorimotor and primary motor/somatosensory responses
on mu oscillations are additive in nature. As covert speech is
supported by internal modeling processes (Tian and Poeppel,
2010, 2012, 2013), without the primary motor/somatosensory
responses elicited during covert movement tasks, differences
are interpreted as being solely related to sensorimotor
function. Weaker mu-alpha and mu-beta desynchronization
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FIGURE 3 | Event-related spectral perturbation (ERSP)-decomposed left
hemisphere mu and peri-labial EMG data from overt word production. The
vertical dotted line represents the cue to initiate production. (A) ERSP data
from fluent controls. (B) ERSP data from participants who stutter. (C)
Between-group statistical comparisons with cluster corrections for multiple
comparisons. Red voxels are significant at p < 0.05 (corrected). (D)
Peri-labial EMG activity. The vertical magenta line illustrates the temporal
concordance between the emergence of robust alpha and beta
desynchronization, statistical differences, and the onset of peak EMG activity.
Data has been adapted from Jenson et al. (2018).

were observed in PWS compared to TFS, paralleling the
group differences observed during overt word production.
Reduced mu-beta desynchronization in PWS was interpreted
as evidence of reduced forward modeling consequent to
a trait-related sensorimotor deficit. Reduced mu-alpha
desynchronization in PWS was interpreted to suggest that
in the absence of reafference, sensory feedback estimation via
the internal loop is compromised. This inability to internally
estimate sensory feedback thus exacerbates compromises to
forward modeling.

An inability for PWS to estimate sensorimotor feedback
through the internal loop is corroborated by within-group
differences between covert and overt syllable production. In
TFS increased mu-alpha and mu-beta desynchronization was
noted from ∼400 to 1,200 ms following the cue to produce
speech, which aligned with the time course of peak EMG
activity (Figure 4). As this increased activity in the presence

of a movement requirement is restricted to the time course of
movement, it likely reflects the contributions of the primary
motor (beta) and somatosensory (alpha) responses on mu
activity. In contrast, PWS demonstrated significantly increased
mu-alpha/beta desynchronization prior to and throughout
speech production, suggesting that this increased mu activity
reflects more than the additive effect of primary motor and
somatosensory responses. It may be proposed that the presence
(or potentially even the anticipation) of reafference primes
the sensorimotor system in PWS, compensating for underlying
sensorimotor deficits and enabling internal modeling activity in
the compromised left hemisphere. This increased mu activity in
PWS in the presence of a movement requirement may mask the
underlying sensorimotor deficits observed during covert syllable
production, accounting for the lack of group differences during
overt syllable production.

Right Hemisphere Comparisons
In contrast to the robust differences observed in the left
hemisphere, no group differences observed in the right
hemisphere mu activity in any condition. This finding
was unexpected given existing notions of right hemisphere
compensation for a compromised left hemisphere sensorimotor
mechanism (Preibisch et al., 2003; Neumann et al., 2005; Kell
et al., 2009). While these findings may appear to undermine
notions of right hemisphere compensation in PWS, it is critical to
consider the relative contributions of right and left hemispheres
to sensorimotor processing for speech. In TFS, right hemisphere
patterns were similar, yet weaker than those observed in the
left hemisphere, consistent with reports that sensorimotor
transformations for speech are bilateral (Cogan et al., 2014) yet
left hemisphere dominant (Hickok and Poeppel, 2007). However,
the lack of such a hemispheric decrement in PWS suggests that
the contribution of the right hemisphere is proportionally larger
in PWS. Consistent with notions that PWS are overly reliant on
sensory feedback (Max et al., 2004) and reports that corrective
feedback signals are mediated by the right hemisphere (Tourville
and Guenther, 2011), these findings suggest a proportionally
larger contribution of reafference to speech motor control in
PWS. However, more work is necessary to clarify differential
hemispheric contributions to sensorimotor control for speech
in PWS.

Interpretation
The significantly reduced mu-alpha and mu-beta
desynchronization across the time course of spontaneously
fluent overt speech and covert speech production suggests that
even the fluent speech of PWS is characterized by differential
sensorimotor activity. This underlying sensorimotor deficit
makes the speech of PWS characteristically unstable and
prone to breakdown. However, several questions remain to be
addressed. First, it is not apparent why, if these sensorimotor
deficits are present in even the fluent speech of PWS, speech
disruptions are only intermittently present. Second, it remains
unclear how these findings relate to the results of Mersov et al.
(2016), who reported elevated mu-beta desynchronization prior
to speech in PWS, interpreting it as a stronger facilitatory
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FIGURE 4 | ERSP-decomposed left hemisphere mu data from covert (SylC) and overt (SylP) syllable production. The vertical dotted line represents the cue to
initiate production. (A) ERSP data from fluent controls, with the right-most column representing within-group differences. (B) ERSP data from participants who
stutter, with the right-most column displaying within-group differences. (C) Between-group differences. All statistical comparisons employed cluster corrections for
multiple comparisons, and red voxels represent significant differences at p < 0.05 (corrected). Data has been adapted from Jenson et al. (2018).

signal needed to disinhibit a more strongly inhibited motor
system. Third, as internal modeling processes are active across a
number of perceptual, cognitive, and motor-based processes, it
remains unclear why the behavioral characteristics of stuttering
are restricted to speech production. Future work is necessary
to clarify these and other questions regarding sensorimotor
influences on stuttering.

AUDITORY DISCRIMINATION TASKS

Many studies have evaluated sensorimotor activity during
speech and tone discrimination tasks. Activity is typically
heightened in more difficult listening conditions, such as in the
presence of noise. Therefore, in order to observe sensorimotor
activity in a cognitive task that eliminates mu activity related
to movement (and possibly stuttering) Saltuklaroglu et al.
(2017) compared mu rhythm spectra and oscillatory activity
in a control condition (passively listening to white noise
at 70 dB SPL) and four auditory discrimination conditions.
The discrimination conditions required participants to make
same/different judgments of either syllable or tone pairs in either
quiet or noisy (+4 dB SNR) backgrounds. Group differences were
found both in mu spectra and event-related oscillatory power

(discussed in ‘‘Spectral Differences’’ and ‘‘Time-Frequency
Differences’’ sections below).

Spectral Differences
PWS displayed mu spectra with lower mu-beta amplitudes
bilaterally across the control condition and all experimental
conditions (Figure 5B). In other words, mu-beta spectral
peaks were reduced in PWS regardless of the task, stimuli, or
the presence of noise. Considering that mu-beta rhythms are
thought to encode forward models, these findings appear to
be consistent with stuttering being related to weak or unstable
forward modeling (Max et al., 2004). The findings raise the
possibility that reduced mu-beta amplitude might be a neural
biomarker for stuttering. However, as data were recorded from
an adult cohort, it must be considered that observed spectral
differences may be influenced by cortical reorganization due to
a lifetime of stuttering (Doyon and Benali, 2005; Dayan and
Cohen, 2011). To bolster notions of reduced mu-beta amplitude
constituting a biomarker for stuttering, it is necessary to test
children who stutter close to the age of onset to minimize
the potential for neuroplastic change secondary to a prolonged
period of stuttering. Additionally, it is necessary to evaluate
mu-beta power in resting-state tasks in which the spectra are
least influenced by oscillatory activity related to cognition or

Frontiers in Human Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 458

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Jenson et al. Mu Rhythms in Stuttering Research

FIGURE 5 | (A) Van Essen image average template of left mu source (localized to BA6-premotor cortex). (B) Comparison of mu spectra for one condition
(TN—discriminating tones in noise) showing significant differences in mu-beta (shaded) spectral amplitudes. All conditions showed this difference bilaterally. (C)
Time-frequency decompositions of mu-alpha and mu-beta relative to baseline, showing significant group differences in PN (passive noise), TN and SN (discriminating
syllables in noise). For TN and SN, stimuli were presented from time = 0–600 ms. Therefore, pre-stimulus attention is measured prior to 0 ms and post-stimulus
working memory is measured after 600 ms. Warmer colors (e.g., yellow) depicts event-related synchronization (ERS) and cooler colors (e.g., blue) depict
event-related-desynchronization (ERD). Data has been adapted from Saltuklaroglu et al. (2017).

movement. While future work is required to validate notions of
a spectral biomarker for stuttering, this paradigm holds promise
for identifying children at risk, raising the tantalizing possibility
of early intervention prior to the onset of stuttering.

Time-Frequency Differences
In contrast to the spectral data, only the conditions that
involved background noise produced group differences in
the time-frequency decomposition analysis (Figure 5C). These
differences were only found in the left hemisphere. The
most surprising finding was that PWS demonstrated bilateral
mu-beta desynchronization in the control condition that only
entailed passively listening to noise. As beta desynchronization
is considered a motor response, this finding suggests that the
introduction of task-irrelevant noise is sufficient to elicit motor
activity in PWS. A number of questions arise from this finding.
Does background noise impact speech fluency? The presence of
high-intensity masking noise sufficient to drown out acoustic
reafference from speech has been demonstrated to enhance
fluency for some PWS (Block et al., 1996; Fiorin et al., 2019).
However, the levels presented in this study were only 70 dB and
no speech production tasks were included in the experiment.
Thus, questions remain regarding the impact of lower levels of
background noise on speech fluency.

In the noisy discrimination conditions, patterns of mu-alpha
and mu-beta oscillations relative to baseline can be observed
across the time course of discrimination events. While
both groups displayed mu oscillatory activity consistent
with processing and retaining auditory stimuli in working
memory, differences were observed in the early attentional
segment of the event. TFS displayed patterns of mu-alpha
synchronization that have been observed in similar studies.
As it was only observed in the noisy conditions, it was
interpreted as task-related inhibition that functions to suppress
irrelevant information (i.e., background noise). This early
inhibitory activity was significantly reduced in PWS in the
left hemisphere (Figure 5A), a finding that appears to be
consistent with reports of reduced auditory gating (Kikuchi
et al., 2011) in basal ganglia based inhibitory mechanisms of
PWS (Civier et al., 2010). Importantly, however, the presence
of background noise did not impact the PWS ability to
discriminate any more than TFS. Thus, additional questions
arise regarding the impact of noise on cognitive function in
PWS. With reduced inhibitory function, are PWS able to
compensate for background noise in other ways? Will higher
levels of background noise produce significant reductions in
discrimination abilities? Do PWS have a lower tolerance for
background noise?
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PHONOLOGICAL WORKING MEMORY

Background and Need for Preliminary Data
In addition to speech production and auditory speech processing,
the mu rhythm may also be useful for examining how
sensorimotor cortex rhythms are related to maintaining
phonological representations in working memory and in
executing a sequence of speech sounds from working memory.
A commonly used task for investigating PWM is a nonword
repetition task in which a given subject is required to listen
to a sequence of speech sounds that conforms to phonological
rules in the language but has no lexical representation or
semantic content (Baddeley, 2012). The task requires listening
to and encoding the sounds, holding them in working
memory, and then reproducing the sounds in the order in
which they were presented. A growing body of evidence
implicates load-dependent differences in nonword repetition
in both children (CWS) and adults (AWS) who stutter
compared to matched controls (Bowers et al., 2018; Ofoe
et al., 2018). Recent studies investigating nonword repetition
tasks have demonstrated overall lower performance in both
preschool CWS (Spencer and Weber-Fox, 2014; Pelczarski and
Yaruss, 2016) and AWS (Byrd et al., 2012, 2015, 2017, 2018;
Coalson and Byrd, 2017).

In preschool CWS, the available evidence suggests that
differences in nonword repetition are subclinical and
load-dependent and in adults differences are apparent only
under high loads at the limit of typical capacity to hold speech
sounds in memory (e.g., 7 syllable nonwords) or under other
syllable stress-related load manipulations (Bowers et al., 2018).
Further, nonword repetition has been reported to differentiate
preschool CWS who persist from those who recover, suggesting
that the underlying cognitive capacities supporting PWMmay be
amarker for the phenotypic expression of recovery or persistence
among other cognitive-linguistic capacities (e.g., syntax; Spencer
and Weber-Fox, 2014; Usler and Weber-Fox, 2015). Despite
its potential significance as a simple measure that could be
useful both in a clinical setting and as a construct in theoretical
frameworks, one barrier to understanding why CWS and AWS
are different on the task has been separating various cognitive
and corresponding neurophysiological processes associated with
task performance and behavioral accuracy (Bowers et al., 2018).

Nonword repetition tasks require at least sustained attention
to speech sounds over a number of trials, the capacity to hold the
speech sounds for up to a few seconds, and then to accurately
execute the sequence in the order it was presented. Further, both
CWS and AWS present with subtle differences in a number
of cognitive capacities that could affect behavioral performance
on a nonword repetition task, including attention/executive
function (Postma and Kolk, 1993; Alm, 2004; Eggers et al.,
2012, 2013; Eggers and Jansson-Verkasalo, 2017), phonological
encoding (Postma and Kolk, 1993), speech planning (Howell
and Au-Yeung, 2002), speech-sound processing (Neef et al.,
2012; Saltuklaroglu et al., 2017), and differences in speech-motor
control for execution interacting with cognitive and emotional
factors (Namasivayam and van Lieshout, 2011; Smith andWeber,
2017). In addition, it is also unclear how factors such as working

memory load (e.g., number of syllables) contribute to observed
differences in previous studies (Pelczarski and Yaruss, 2016).

It is possible that any one of these processes or an amalgam
accounts for the difference in behavioral performance and it is
unclear from behavioral studies alone what processes account
for differences in speech-motor output (Spencer and Weber-
Fox, 2014). As an example, speech-motor output, measured
as incoordination in speech articulators (i.e., lip aperture
variability), differs significantly in a nonword repetition tasks
even when no behavioral differences are observed at lower loads
(e.g., 4 syllable repetition), suggesting that while motor control
differs in AWS and CWS it may be distinct from behavioral
accuracy (Smith et al., 2010, 2012). As such, it will be critical
in the future to enhance understanding of what cognitive and
sensorimotor processes are related to or mediate differences in
nonword repetition performance and in turn the mechanistic
processes underlying differences in PWM (Bowers et al., 2018).

A number of neurophysiological frameworks propose
that prefrontal, premotor and sensorimotor systems mediate
short-term phonological storage in coordination with temporal
and temporal-parietal regions critical for sensorimotor
integration in speech production (Hickok and Poeppel, 2007;
McGettigan et al., 2011; Herman et al., 2013; Majerus, 2013).
In particular, a network of regions known as the dorsal stream
may play a critical role in mapping acoustic speech sound
representations to the motor commands required to produce
them as children learn new lexical representations and to
produce speech-sounds in the context of words (Hickok et al.,
2011). Neuroimaging studies have demonstrated that the dorsal
stream is active in tasks requiring the repetition of sequences of
speech sounds after a delay period, suggesting that sensorimotor
integration in the dorsal streammay play an important functional
role in PWM (Hickok et al., 2003; Markiewicz and Bohland,
2016; Perrachione et al., 2017). Recent studies using MEG and
EEG have provided evidence that timely coordination between
dorsal stream premotor and the parieto-temporal regions during
the maintenance of syllable sequences is related to repetition
performance and processing load (Herman et al., 2013). The
timely coordination between cortical rhythms in the premotor
cortex and parieto-temporal junction, in particular, may be
critical for the accurate reproduction (i.e., motoric execution) of
syllable sequences from working memory over the sensorimotor
cortex. In other words, high time-resolution approaches suggest
that coordination between premotor, posterior sensory and
motor cortices bilaterally at different phases of the task may be
required both for maintaining syllable sequences in working
memory and for accurately executing them when a response is
required (Majerus, 2013). For that reason, high time resolution
approaches have the potential to shed light on what processes
are different in PWS as they perform various phases of the task.

Current theoretical frameworks designed to account for
recent neuroimaging findings in CWS have also suggested that
stuttering may arise from subtle differences in the coordination
of large-scale cortical-subcortical networks central to which is
a deficit in coordinative sensorimotor timing (Chang et al.,
2019). Thus, a timing deficit related to the sensorimotor control
of speech has the potential to account for load-dependent
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FIGURE 6 | This figure shows an example of a timeline for one trial in the 4 syllable repetition condition with each phase of the task labeled and behavioral accuracy
on the 2 and 4 syllable tasks in the typically fluent speaker (TFS) and adults who stutter (AWS) groups. (A) Timeline of one 4 syllable trial. (B) Percentage correct trials
in the 2 syllable and 4 syllable condition with TFS shown in blue and the AWS group depicted in red. (C) Syllable load performance metric (SLP) in the TFS (blue) and
AWS groups (red).

differences in tasks loading PWM and in speech output in
more naturalistic conditions (Bowers et al., 2018). Recent
EEG studies of neural oscillations using word and nonword
repetition tasks suggest that power and measures of inter-
electrode coordination (i.e., phase coherence) are related to
stuttered or fluent speech production trials (Sengupta et al.,
2017). However, no studies have used a time-sensitive approach,
like those used in previous studies of auditory speech processing
and production (Saltuklaroglu et al., 2017; Jenson et al., 2018),
to examine at what phase of the task differences in sensorimotor
processes emerge under high and low PWM loads. Because it is
involved in sensorimotor integration in both speech processing
and production tasks, an examination of the mu rhythm in a
nonword repetition task in AWS and TFS may provide a place
to start investigating at what phase of the task sensorimotor
integration processes differ in AWS compared to TFS.

Design and Hypotheses of the Preliminary
Study
To determine the feasibility of measuring processing differences
in the sensorimotor mu rhythm, a simple syllable sequence
reproduction task was employed to examine group differences
between age and sex-matched TFS and AWS. The syllable
repetition task was selected to minimize lexical and syntactic
influences that can occur in nonword repetition paradigms
(Herman et al., 2013). In the task, 11 TFS and 11 AWS were
asked to simply listen to two or four bilabial, consonant-vowel
(CV) syllables and repeat the sequence following a short delay

cued with a visual image. To successfully complete the task for
each trial, participants must listen to the syllables (encoding),
maintain the syllable sequence in working memory over a short
delay period (maintenance), and then execute the sequence
(execution). A sample timeline for the task is displayed in
Figure 6. Based on previous behavioral studies, we hypothesized
that, while the task would manipulate load (i.e., 2 vs. 4 syllable
differences), it would not result in differences in behavioral
performance between the two groups (Bowers et al., 2018). The
rationale for using two relatively low load conditions was to
control for behavioral performance (i.e., similar performance
across groups) while evaluating differences in neural processing
between the two groups. Based on previous studies of speech
processing and production in the mu rhythm, we expected
lower suppression during a covert rehearsal period to hold
sound sequences in working memory and significantly lower
suppression during execution in AWS compared to TFS.

Methods
Participants
Prior to participation in the study, participants in both groups
provided written, informed consent approved by the institutional
review board at Idaho State University and at the University of
Arkansas. To determine the degree of handedness, the Oldfield
Handedness Inventory was administered to all participants in
the study. Eleven AWS (three females) scoring in the range of
‘‘usually’’ or ‘‘always’’ right-handed were recruited from Idaho
State University and surrounding regions and were age and
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TABLE 2 | Demographics of age and gender matched pairs of adults who stutter
(AWS) and typically fluent speaker (TFS) participating in phonological working
memory study.

Subject ID Age Sex Subject ID Age Sex

AWS1 55 M TFS1 54 M
AWS2 46 M TFS2 47 M
AWS3 18 M TFS3 19 M
AWS4 24 F TFS4 26 F
AWS5 35 M TFS5 34 M
AWS6 24 F TFS6 22 F
AWS7 35 M TFS7 39 M
AWS8 24 M TFS8 23 M
AWS9 19 M TFS9 20 M
AWS10 33 M TFS10 35 M
AWS11 26 F TFS11 22 F

sex-matched with 11 TFS. The demographic characteristics of
matched pairs are shown in Table 2. The AWS was diagnosed
by a licensed speech-language pathologist with more than 5 years
of experience evaluating stuttering. As a part of the initial
evaluation, the Stuttering Severity Instrument 4th edition was
administered to determine the current severity of stuttering.
Participants ranged from moderate to severe. In addition, the
Overall Assessment of the Speaker’s Experience of Stuttering
(OASES) was given to nine of the participants to determine
both the current severity of stuttering and the speakers’
attitudes toward stuttering (Yaruss and Quesal, 2006). The AWS
reported no cognitive, neurological injury, or other attentional
disorders apart from developmental stuttering. Eleven age
and sex-matched typically fluent controls were also recruited
from Idaho State University and surrounding region and were
matched pairwise with AWS. TFS participants were also scored
in the ‘‘usually’’ or ‘‘always’’ right-handed range and reported
no history of neurological, cognitive, or attentional disorders.
All participants provided written, informed consent prior to
participation in the study approved by the Idaho State University
and University of Arkansas institutional review boards.

Stimuli
Syllable stimuli were generated by an adult male speaker and
were recorded using PRAAT software on a Dell 2.7 Ghz desktop
computer. Recordings consisted of the syllables /ba/, /ma/, /pa/,
and /wa/. Syllable sequences were normalized to have the same
root-mean-square amplitude using PRAAT and were 430 ms
on average with a 60 ms interstimulus interval between syllable
presentations. Syllable sequences were constructed such that
within 2 syllable trials no syllable was repeated and within
4 syllable trials no pair was repeated. Trials were presented in
two blocks of 40 trials each with a 5-min rest period offered
between blocks. The 2 and 4 syllable trials were presented in
random order using E-Prime software. Acoustic stimuli were
presented at a comfortable loudness level (∼70 dB) via Eytmotic
ER-1 occluding ear insert headphones. Visual stimuli (cross and
go cue) were presented on a 15-inch monitor placed 132 cm from
the participant.

Procedure
The experiment was conducted in an electrically and
magnetically shielded sound-attenuated room. Participants

were seated in a comfortable chair with their heads and necks
well supported. Stimuli were presented using a 2.7 GHz Dell
computer via E-Prime, version 3.0. Timing of responses and
events were verified independently using a timing device
manufactured by Electrical Geodesics. Participants were
instructed to listen to the syllables and wait to repeat the syllables
when a visual cue (a drawing of speaking head) appeared on the
monitor. Prior to the experimental conditions, the participants
were required to complete five practice trials that were not
included in the analysis. The entire experimental session was
recorded audio-visually via a camera situated just in front of
the participant for later manual judgments of both stuttering in
trials and the accuracy of repetition. A trained speech-pathology
graduate assistant and a certified speech-language pathologist
with more than 5 years of experience in stuttering coded the
trials as stuttered or fluent. Trials were judged as stuttered if
a trained rater observed a part-word repetition, prolongation,
or articulatory block (Riley, 1972; Riley and Bakker, 2009). All
trials that were stuttered (fewer than 1%) were rejected from the
analysis. To determine interrater reliability, a Cohen’s κ value of
0.90 was obtained between the two raters. Trials were manually
judged as correct if the participants responded within 3,000 ms
following the response cue and produced the complete sequence
in the same order as the target sequence. Measures of behavioral
accuracy included both a measure of % correct trials out of the
trials submitted and a measure of load adapted from a previous
study known as syllable load performance (SLP; Herman et al.,
2013). SLP is a measure of processing load that accounts for
relative performance on the two tasks in each individual to
derive a measure of load processing across the tasks.

EEG Data Acquisition and Processing
A 128 channel Electrical Geodesics recording system was
used to obtain EEG data during the tasks and in a 5 min,
eyes-open resting-state baseline. The EMG signal was recorded
from a single bipolar channel placed above and below
the lips using an integrated Physio 16 system (Jenson
et al., 2015; Bowers et al., 2018). Blood pressure was also
monitored using infrared sensors placed on the index finger.
Procedures for fitting and preparing the nets were followed in
accordance with previous studies and recommendations from
Electrical Geodesics, including head measurements, electrolyte
preparation, and net placement on each subject’s scalp (Ferree
et al., 2001; Song et al., 2015). Impedances were never greater
than 50 k� as examined prior to and following a study
session (Ferree et al., 2001; Dalla Volta et al., 2018). Data
were processed using the same steps in studies of speech
processing and production described in sections ‘‘Speech
Production’’ and ‘‘Auditory Discrimination Tasks’’ including
data pre-processing, the application of ICA, and time-locking
to stimulus events (i.e., epoching) prior to analysis of event-
related spectral perturbations (ERSPs; Bowers et al., 2013;
Jenson et al., 2015).

First, EEG data were bandpass filtered from 1 to 70 Hz using a
zero-phase, finite impulse response (FIR). The FIR is windowed
sinc filter using a Hamming window, with a transition bandwidth
of 1 Hz, and cutoff frequencies between 0.5–70.5 Hz. The filter
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uses a heuristic for determining transition bandwidth that is
25% of the passband edge and distance from the passband edge
to the critical frequency. EEG data were then downsampled
to 256 Hz from the original sampling rate of 1,000 Hz and
referenced using the average common reference including all
scalp-channels (i.e., excluding extraocular and EMG channels).
The continuous data prior to epoching were denoised using
visual inspection for gross one-time artifact known to affect
ICA decomposition (Delorme et al., 2012) and subsequently,
artifact subspace reconstruction (ASR) was used to remove
channels with excessive spatial drift and spectral characteristics
associated with line noise or other non-repetitive myographic
artifacts (Jenson et al., 2014; Bowers et al., 2018). CleanLine
was also used to reduce the remaining line noise visible in the
spectrum between 40 and 70 Hz (Leske and Dalal, 2019). The
mean number of rejected trials was 11 across conditions. The
data were epoched around the time-locking event (i.e., acoustic
syllable presentation) from −1,000 ms prior to the event to
9,000 ms following the event. Subsequently, ICA using the binica
algorithm was applied with a principle component reduction to
the number of channels not exceeding ASR thresholds (Chang
et al., 2019). No more than eight channels were rejected (mean 5)
out of the original 128. Following ICA, dipole fitting was applied
using the Dipfit toolbox as in other studies reviewed in sections
‘‘Mu-alpha and Mu-beta in Movement and Cognitive Tasks’’
and ‘‘Covert Speech Differences’’ (Bowers et al., 2013, 2014,
2019; Jenson et al., 2014, 2015; Cuellar et al., 2016; Saltuklaroglu
et al., 2018a). The multiple artifact rejection algorithms (MARA)
was used to identify and remove components identified as an
artifact with a probability greater than 0.40 (Winkler et al.,
2014). Finally, component spectra, ERSPs, and intertrial phase
coherences were computed for each independent component
(IC) that could be a fit with a single dipole with less than
20% residual variance. Only those ICs that could be a fit with
a single dipole were retained. Principle component clustering
was used to cluster components across participants and groups
using ERSPs, spectra, intertrial coherence measures (Delorme
et al., 2011). The threshold for rejecting outlier components
was 3 SD from any cluster mean. Within and between-subject
differences in the 2 and 4 syllable conditions were examined
using a permutation test with a cluster correction for multiple
comparisons across the time-frequency matrix (117 × 200). As
in our previous studies, a nonparametric permutation test was
used because time-frequency values are not normally distributed.
As each processing stage has the potential to introduce artifact,
a subset of the data was reprocessed with a milder processing
pipeline, yielding similar results. The presence of similar, albeit
noisier, results when a different set of pre-processing steps were
employed highlights both the robust nature of the observed
effects and benefit of the full processing pipeline.

Results
Mean % correct repetition trials in the 2 and 4 syllable tasks
and SLP for the AWS and TFS groups are shown in Figure 7.
Behavioral results showed that both groups were less accurate
in the 4 syllable compared to the 2 syllable task. A repeated-
measures analysis of variance (ANOVA) with the factors group

and condition showed an effect of condition but no significant
effect for the group. As in previous studies using syllable
perception and production tasks, a network of IC clusters was
identified, including the frontal lobe, temporal lobe, parietal
lobe, and occipital lobe IC clusters. As in earlier studies, the
mean % RV across clusters was <6% and the mean for the
left mu was 5.95% and for the right 5.35%, suggesting a single
dipole model adequately accounted for IC sources within the
head model. Dipole locations ranged from the precentral to
postcentral gyrus and were most dense over the precentral gyrus
in both the left and right hemispheres. Eight participants from
the AWS group and eight matched subjects from the TFS group
contributed mu components to the left and right mu clusters.
Visual inspection of individual and mean ERSPs across trials
showed mu-alpha/beta desynchronization relative to the silent
intertrial interval in both the maintenance time period and
during the execution time period across both the AWS and
TFS groups while synchronization (i.e., increases in power) were
observed during the listening time period.

Mean ERSPs in the encoding, maintenance, and execution
phases of the task for both groups in the high load condition
(i.e., 4 syllable condition) are shown in Figure 7. Permutation
statistics adopting a cluster correction for multiple comparisons
across the entire time-frequency matrix (117 × 200) were
used to evaluate group and condition differences. The within-
subjects comparison showed no significant differences between
the 2 and 4 syllable conditions. A comparison of the group
on the 2 syllable and 4 syllable conditions showed significantly
lower desynchronization in the mu-alpha band in the AWS
group that was restricted to the execution period in both the
low load 2 syllable condition and the 4 syllable condition.
There was no significant interaction for the factors (Group) and
(Condition). Although not significant, there was a trend toward
lower desynchronization in the mu-beta band in the AWS group
compared to the TFS group. A subsequent Pearson bivariate
correlation showed a trend toward a mild relationship with
no significant correlation between mu-alpha desynchronization
and individual behavioral performance. Overall, the results
implicate reduced mu-alpha suppression in the left and right
sensorimotor mu rhythm during speech execution with a
trend toward lower left hemisphere desynchronization in the
mu-beta band.

Implications
The purpose of this preliminary investigation was to examine
at what phase of a syllable repetition task differences in
mu rhythm desynchronization emerged between AWS and
TFS. We hypothesized group differences in mu-alpha/beta
desynchronization between AWS and TFS in the maintenance
and execution periods of a syllable repetition task. Preliminary
findings showed a significant difference in the left and right
sensorimotor mu rhythms primarily during execution, with
a trend toward differences in the mu-beta band during the
maintenance phase of the task in the left component cluster.
As in previous studies of covert syllable production, mu-alpha
and mu-beta desynchronization relative to the baseline occurred
during the maintenance period, suggesting that bilateral mu
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FIGURE 7 | ERSPs in the encoding (ENC), maintenance, (MAIN) and execution (EX) phases of the 4 syllable repetition task in TFSs (rows) and in AWS (columns).
Mu rhythm scalp-topographies and a cluster associated with peri-labial EMG during execution are shown to the left with scalp-potential distributions for the
component cluster with white-yellow showing greater density and red showing lower density. ERSPs are depicted in time-frequency scalograms with frequency on
the y-axis and time on the x-axis. Significant group differences are shown in the third column (cluster corrected t-test) with p-values <0.05 (range 0.05–0.01) shown
in red and non-significant values shown in green.

rhythms were engaged in covert rehearsal of the stimuli
prior to overt execution. A preliminary correlation analysis
did not provide strong support for a relationship between
differences in mu-alpha desynchronization and behavioral
accuracy. Findings suggest that observed bilateral group
differences in mu activity are related primarily to motoric
execution as opposed to maintenance in working memory or
syllable encoding processes. As such, results suggest that a
time-sensitive signal separation approach previously applied
to speech perception and production tasks may also aid in
identifying separable physiological processes related to syllable
repetition tasks in AWS.

While a growing body of evidence implicates lower accuracy
in preschool CWS and AWS compared to TFS on nonword
repetition tasks (Bowers et al., 2018; Ofoe et al., 2018), the
current challenge is to identify the cognitive processes related
to differences in accuracy. Because nonword repetition tasks
load a number of cognitive and sensorimotor processes over
the course of the task, it is unclear which of these processes
may be different in CWS and AWS. Such information is
critical to determining which processes account for differences in
behavioral accuracy and thus may be important for identifying
which of the task demands in nonword repetition are related
to subsequent recovery or persistence in pre-school children.
These preliminary results suggest one process that differs
between the groups is in the sensorimotor (i.e., motor and
somatosensory) processing related primarily to the execution of
syllable sequences. Those findings are broadly consistent with
studies showing differences in inter-articulator coordination
even in the absence of behavioral differences at lower nonword
repetition loads, suggesting that cortical differences in processing
are likely to be related to subtle differences in peripheral
execution (Smith et al., 2010, 2012). Further, the analysis implies
that lower mu-alpha and mu-beta desynchronization primarily
during execution is separable from other identifiable component
clusters localized in the frontal, temporal, parietal, and occipital
lobes active in other phases of the task. As such, while this is a

preliminary analysis focusing on the mu rhythm only, studies in
the future on larger sample sizes may reveal other physiological
processes more closely related to the coordination of encoding,
maintenance, and execution processes that also account for
behavioral accuracy. Two limiting factors in the current study
are the relatively small sample size and relatively high accuracy
on the behavioral task, suggesting caution in interpreting
correlations with behavioral accuracy. For those reasons, future
studies of the mu rhythm with larger sample sizes should
investigate tasks in which behavioral accuracy is decreased
and has been reported to show differences in behavioral
accuracy between groups (e.g., 7 syllable nonword repetition
Bowers et al., 2018).

One prediction derived from neurobiological accounts of
language is that a region at the parieto-temporal junction
coordinates encoding, maintenance, and execution of nonword
syllable sequences and is heavily involved in the acquisition
of language (e.g., new speech sounds and words) in the
preschool years (Hickok and Poeppel, 2007; Hickok et al., 2011;
Majerus, 2013; Choo et al., 2016). Previous studies using the
ICA approach have reported evidence of a posterior temporal
lobe alpha rhythm with spatial, sensory, and sensorimotor
functions consistent with the proposed function of the parieto-
temporal junction in perception and production (Jenson et al.,
2015; Bowers et al., 2019). Further, maintenance of syllable
sequences may also be modulated by attentional control in
prefrontal regions (D’Esposito, 2007; Majerus, 2013; Bowers
et al., 2018). Interestingly, it has been proposed that stuttering
may be characterized by deficits in sensorimotor timing that are
modulated by ongoing cognitive-emotional states in prefrontal-
basal ganglia networks (Chang et al., 2019). Thus, future
studies using larger sample size and connectivity analyses
between component clusters (e.g., phase coherence) have the
potential to identify other time-sensitive processes proposed to
be critical both for language acquisition and the sensorimotor
control of speech (Bowers et al., 2019). In the future, signal
separation approaches like the one employed in the current
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analysis (Delorme et al., 2012) or other approaches (e.g.,
Cheveigne et al., 2019) may be applied to prospective studies
of recovery and persistence in preschool-age CWS and to
differences in interactions between general cognitive capacities
and sensorimotor control in AWS (Bowers et al., 2018).

SUMMARY

The ICA/time-frequency approach implemented to date that
identifies and temporally decomposes EEG mu rhythms has
yielded interesting findings that we believe contribute to the
understanding of the neurophysiology of stuttering. Their
sources and the sensitivity of its constituent frequency bands
for capturing and differentiating between a broad array of
sensorimotor and basal ganglia functions bestow mu rhythms
with strong suitability for research in stuttering. Though
much is already known about neural speech-related aspects of
stuttering, the additional temporal and spectral resolution offer
novel windows into the specific underpinnings of disfluency.
Furthermore, they also provide a valuable means of linking the
cognitive differences associated with stuttering to the underlying
deficits that impact speech. While we continue to pursue and
espouse this line of research, it is important to point out some
current limitations and future directions.

LIMITATIONS

Not all participants contributed usable mu components to the
group analyses. The reduced subject contribution is common
in EEG research (Nyström, 2008; Bowers et al., 2013), and
is linked to the use of standard head models. Specifically,
the stringent inclusion criteria employed in the current work
require mu components to be localized to accepted generator
sites, and the inability of standard head models to account for
individual anatomic variability (von Ellenrieder et al., 2009) leads
to some components with mu-like features (e.g., arch-like wave
shape) localizing outside accepted generator sites. This reduced
proportion of contributing subjects is further exacerbated by the
age- and sex-matching of PWS and TFS to ensure the validity of
statistical comparisons. If one member of a pair does not produce
a usable mu component, data from both members are discarded.
The use of individual head models in future studies is expected to
address this limitation, increasing the proportion of contributing
subjects and providing a fuller picture of the heterogeneity
present across participants. A final potential limitation of the
ICA methodology more broadly is differences across studies
in preprocessing pipelines (e.g., filtering and IC selection). We
suggest, following others, that increased use of automatized
preprocessing methods will further facilitate replicability across
studies and the increased use of EEG database repositories
(Bigdely-Shamlo et al., 2015).

Another potential barrier tomaking use of themu rhythm and
EEG data more broadly is the inherent challenge of collecting
high-quality EEG data from preschool-age children. Lengthy
experimental protocols like those used in the EEG investigations
described in this review may not be directly translated to
experiment protocols for preschool-age participants and stimuli

often require adaptation (Usler and Weber-Fox, 2015). Analysis
of the mu rhythm in young children may require cross-sectional
or longitudinal designs as the mu rhythm is known to change
over the course of development and an adult-like mu rhythm
may not be present in very young children (Thorpe et al., 2016).
Special attention would need to be given to the contribution of
movement artifact from young children even with the use of ICA
to identify and separate artifacts from neural source data.

A further limitation of the presented data is the absence
of a significant correlation to stuttering severity. Thus, while
mu spectra and oscillatory activity clearly differentiate TFS
and PWS, the precise manner in which the observed neural
differences give rise to the speech disruptions characteristic of the
disorder remains unclear. The few studies that have examined
neural oscillations in relation to stuttered and fluent speech
have suggested that differences in power and phase coherence
precede stuttered speech (Sengupta et al., 2017) that may be
variable across individuals (Myers et al., 2018). The presence of
mu spectral and oscillatory differences in the absence of stuttered
speech suggests that they represent a core neural impairment
underlying the disorder, though stuttering is also shaped by life
experience (Connery et al., 2019) and influenced by a number
of other cortical and subcortical mechanisms (Alm, 2004). To
date, a comprehensive neural framework describing how each
of the distinct neural circuits implicated in stuttering operates
together to give rise to the totality of the disorder remains
elusive. Thus, while mu spectra and oscillatory activity holds
promise for probing sensorimotor and basal ganglia influences
on stuttering in real-time, findingsmust be interpreted within the
larger context of all neural data regarding stuttering and merged
into a comprehensive neural framework.

FUTURE DIRECTIONS

To date, our measures have focused on comparisons of mu
rhythm oscillations in AWS to TFS. Better separation of cause
and effect associated with group differences will be achieved
via recordings from CWS. In order to accomplish this, it
is necessary to further refine data collection and analysis
techniques. Data collection can be enhanced by using more
child-friendly protocols. Use of beamforming (Cohen, 2015) or
joint decorrelation analysis to target specific regions of interest
or to identify a signal subspace of interest, in addition to ICA
for denoising raw signals is likely to help identify mu rhythm
activity more effectively in children. A comparison of component
processing methods using the same experimental data may
also help to cross-validate and compare findings from the ICA
approach with other methods.

While mu rhythm measures continue to offer promise
for investigation in stuttering, it also is necessary to extend
measures of oscillatory activity to other regions of the brain
such as regions of sensorimotor integration in posterior
temporal lobes and inferior parietal lobes. Oscillations from the
temporal lobe alpha rhythms have shown to be effective for
capturing speech induced auditory suppression (Jenson et al.,
2015) and there we have shown preliminary evidence of this
activity differing in individuals who stutter (Saltuklaroglu et al.,
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2018b). With measures from multiple brain regions involved in
stuttering, it will also be possible to capture real-time measures
of functional connectivity (Delorme et al., 2011) showing
how the transmission of neural information differs between
stuttering and non-stuttering brains in a variety of speech and
cognitive tasks.
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