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Abstract

Background: The tumor microenvironment has been described as a critical milieu determining tumor growth and
metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal
models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of
stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and
downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved.

Methodology/Principal Findings: We studied the interplay between the tumor cell-derived cytokine regulated-upon-
activation, normal T-cell expressed and secreted (RANTES; CCL5) and S100A4 which were shown to be critical factors in
tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the
plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of
fibronectin (FN) in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility
in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial
influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic
burden in mice.

Conclusions/Significance: Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the
tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-
dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release
associated with plasma membrane microparticle shedding from various cells types.
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Introduction

Over the past decade, the intriguing model of tumor

development emerged based on the concept that throughout the

entire process of cancer etiology, progression, and metastasis, the

tumor microenvironment could be an active participant. The

cross-talk between tumor and stroma cells could be mediated

through direct heterotypic cell-cell contacts or secreted molecules

comprising growth factors, cytokines and extracellular matrix

proteins. The production and release of these factors implicate

both tumor and various types of physiologically altered stroma

cells, such as fibroblasts and immune and vasculature composing

cells [1–3].

S100A4, a small Ca2+-binding protein of the S100 family, is an

essential pro-metastatic mediator in tumor and is categorized as a

useful prognostic marker in numerous tumor types [4,5]. Moreover,

S100A4-deficient mice exhibit delayed tumor uptake, impaired

stroma organization and suppression of metastasis [4,6–9]. S100A4

binds to several intracellular target proteins (e.g., p53, non-muscle

myosin-IIA, liprin b1 and others) and modulates gene expression,

cell motility and adhesion [10–14]. Self-aggregation of S100A4

produces extracellularly active forms of the protein [15].

Secretion of S100A4 from tumor and stroma cells was

demonstrated in vitro and elevated S100A4 protein levels were

detected in blood of S100A4 transgenic mice [9,6]. As an

extracellularly active protein, S100A4 stimulates angiogenesis

[16], upregulates matrix metalloproteinases (MMPs), downregu-

lates tissue inhibitors of MMPs (TIMPs) in endothelial and tumor

cells [6,7,17,18], promotes neurite outgrowth and survival of

primary hippocampal cells [15,19], and promotes migration of

astrocytic tumor cells [20]. The functional significance of

extracellular S100A4 was also shown in periodontal ligaments

[21] and cardiomyocyte differentiation and hypertrophy [22].

Moreover, our recent data demonstrated strong upregulation of

S100A4 in various cell types (e.g. fibroblasts and immune cells),

not only in tumor stroma [9], but also in synovial tissue of

rheumatoid arthritis patients [23] and involved skin dermis of

patients with psoriasis. Importantly, anti-S100A4 antibodies

inhibited the pathological symptoms of psoriasis in a mouse model

[24]. Altogether, these observations indicate an important
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extracellular role of S100A4 in vivo and suggest a putative active

role of S100A4 in the tumor milieu, most likely in its

proinflammatory pathway(s).

We explored the factors and pathways implicated in S100A4

activation in the tumor microenvironment. We previously

demonstrated the induction of S100A4 release from fibroblasts

mediated by conditioned media (CM) from VMR (metastatic), but

not CSML0 (non-metastatic) cells [7]. In the present study we

identified the tumor cell-derived cytokine regulated-upon-activa-

tion, normal T-cell expressed and secreted RANTES (CCL5) as a

strong inducer of S100A4 release from various cell types and

determined that RANTES-mediated cytoskeleton-associated shed-

ding of microparticles is a main route of S100A4 externalization.

We also demonstrated feedback effects of extracellular S100A4 on

tumor and stroma cells, including activation of cytokines and

RANTES in particular. Furthermore, we showed that the

S100A4/RANTES interplay significantly promotes metastatic

features of tumor cells.

Results

Identification of cytokines specific for metastatic vs
nonmetastatic tumor cells

We previously suggested the existence of soluble tumor cell-

derived factor(s) which induces the stimulation of S100A4

externalization from different tumor stroma cells [7]. To

characterize these factors, we performed a differential screening

with CM from metastatic mouse adenocarcinoma cell line VMR

revealing stimulatory effect on S100A4 release from fibroblasts

and inactive CM from nonmetastatic mouse adenocarcinoma

CSML0. CM were harvested from cells grown for 24 h and

probed using mouse cytokine antibody arrays.

The array analyses generally revealed significantly higher

complexity and levels of cytokines in VMR-CM compared with

CSML0-CM. We found RANTES/CCL5, MIP-1c/CCL9,

VEGF, p-Selectin, IGFBP3, IGFBP-5, sTNFR1, G-CSF, and

CXCL-16 as the most prominently expressed VMR-specific

cytokines (Fig. 1A), whereas MIP-2/CXCL-2 appeared to be the

only cytokine differentially expressed in CSML0 and was not

detected in VMR-CM (Fig. 1A). We selected RANTES for further

studies because it was the highest upregulated cytokine in

VMR-CM and its documented implication in tumor progression

[25,26].

First, we studied whether recombinant RANTES can stimulate

S100A4 secretion from fibroblasts. We found that RANTES did

not reveal any stimulatory activity when added directly to cell

culture media (DMEM/10% FCS). However, when we supple-

mented recombinant RANTES with CSML0-CM, we observed

S100A4 secretion from fibroblasts in a dose dependent manner,

suggesting that a certain factor(s) in CSML0-CM cooperatively act

with RANTES (Fig. 1B). Additionally, we showed that S100A4

release induced by both VMR-CM and recombinant RANTES

could successfully be circumvented by anti-RANTES, but not by

control IgG which substantiates the involvement of RANTES in

this process (Fig. 1B and C). We next demonstrated by means of

quantitative PCR (qPCR) analyses that enhanced S100A4 release

from fibroblasts was not preconditioned by its transcriptional

activation (Fig. 1D). These results clearly showed a RANTES-

driven activation of S100A4 release from cultured fibroblasts.

Mechanisms of RANTES-mediated S100A4 externalization
Given the critical extracellular role of S100A4 during tumor

progression, we explored the mechanisms responsible for the

active release of S100A4 in the tumor microenvironment. We

found that the conventional ER/Golgi secretory pathway is not

implicated in S100A4 release because the inhibition of this

pathway by Brefeldin A did not interfere with VMR-CM-

stimulated S100A4 externalization from fibroblasts (Fig. 2A).

Figure 1. RANTES-mediated induction of S100A4 release from 4MEF. (A) Differential screening of VMR-CM and CSML0-CM by a cytokine
antibody array. Upregulated cytokines are marked with white rectangles. (B) Western blot analysis of S100A4 released into CM in response to
increasing concentrations of recombinant RANTES added to CSML0-CM (lane 2–8) and the inhibitory effect of rabbit anti-RANTES antibodies on
RANTES-mediated S100A4 release (lane 6–7). Rabbit IgG was used as a negative control (lane 8). (C) Western blot analysis of S100A4 in CM of 4MEF in
response to VMR-CM and anti-RANTES antibodies. (D) A representative experiment (qPCR) demonstrating lack of S100A4 transcriptional activation in
4MEF in response to various treatments.
doi:10.1371/journal.pone.0010374.g001

S100A4/RANTES in Metastases
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VMR-CM-stimulated fibroblasts were then analyzed by immu-

nofluorescence microscopy using antibodies against the lysosomal

marker LAMP-1 and S100A4 (Fig. 2B). However, we were not

able to demonstrate localization of LAMP-1 and S100A4 in

externalized lysosomes, which rather excludes a role of the

secretory lysosomal pathway in S100A4 release.

Next, we examined S100A4 externalization by microparticle

shedding from the plasma membrane [27]. We fractionated CM

from stimulated and control cells using sequential centrifugation

and collected microparticles in the pellet at 100,0006g (100K)

fraction [28,29]. We showed that the depletion of microparticles

by ultracentrifugation from the VMR-CM and RANTES/

CSLM0-CM was accompanied by a substantial decrease of

S100A4 in CM as analyzed by Western blotting (Fig. 2C). On

the other hand a significant increase of the S100A4 protein in the

pelleted microparticle fraction was measured by sandwich ELISA

(Fig. 2D). Similar results were obtained with mouse monocyte/

macrophage RAW 264.7, mammary adenocarcinoma CSML100

and human fibroblastic WI-38 cell lines (data not shown)

indicating that suggested mechanism of S100A4 externalization

is rather common.

To characterize the composition of the 100K pellet we stained

the resuspended material with the Lipophilic dye FMH 1–43FX

which is widely used to study the plasma membrane and

vesiculation by immunofluorescence microscopy. We observed

vesicle-like structures in the 100K pellet and their amount was

clearly higher after stimulation with VMR-CM vs CSML0-CM

(Fig. 2E). The increased amount of microvesicles correlated well

with higher protein content in the pellets. Based on this observation

we assessed in further experiments the S100A4 protein content in

pellets to estimate the efficiency of microvesicle formation.

Additionally, a smear of microvesicles from the same preparation

showed round-shaped S100A4-positive structures indicating the

localization of S100A4 in microvesicles (Fig. 2E, right panel).

The actin cytoskeleton has been associated with microparticle

formation earlier [27]. Therefore we explored its possible role in

Figure 2. Mechanism of S100A4 externalization. (A) Western blot analysis of S100A4 in 4MEF CM. Brefeldin A did not affect S100A4 secretion.
(B) Double immunofluorescence of 4MEF with anti-S100A4 and anti-LAMP1 (lysosomal marker) antibodies. (C) Western blot of S100A4 in CM from
stimulated 4MEF before and after microparticle depletion. (D) Sandwich ELISA of S100A4 in microparticles released from 4MEF in response to VMR-
CM, CSML0-CM, 10 and 20 ng/ml RANTES in CSML0-CM. (Inset) Appearance of S100A4-positive microparticle-like structures in fibroblasts stimulated
with VMR-CM. (E) Immunofluorescence analysis of macroparticle-containing fraction (100K pellet) from CM of cells treated with CSML0-CM and
CSML0-CM+RANTES labeled with lipophilic dye FMH1–43FX (live, green) and anti-S100A4 antibodies (fixed, red).
doi:10.1371/journal.pone.0010374.g002
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the S100A4 transport and release. For these experiments we used

CSML100 tumor cells which have been shown to form large

amounts of S100A4-carrying microvesicles upon stimulition. We

used inhibitors that manipulate actin stress fibers, namely Y-27632

(10 mM; an inhibitor of Rho-associated protein kinase [ROCK])

and Cytocholasin D (200 nM; a potent inhibitor of actin

polymerization). Surprisingly, we observed an inhibitory effect

on the release of S100A4 by Y-27632 and a stimulatory effect on

the release of S100A4 by Cytochalasin D in CSML100 cells using

sandwich ELISA of the CM (Fig. 3A). More, labeling live cells with

the Lipophilic dye FMH1–43FX revealed correlation between the

levels of released S100A4 and the intensity of plasma membrane-

derived microparticle staining (Fig. 3 B). We also observed a

correlation between the level of released S100A4 and the amount

of S100A4-positive vesicle-like structures determined by immuno-

fluorescence of the fixed cells (Fig. 3 C). We observed that in

CSML100 cells Cytochalasin D induced the depolymerization of

actin stress fibers, while Y-27632 altered the stress fibers from cell

traversing fibers into plasma membrane associated F-actin cortical

fibers (Fig. 3C). The alterations in the architecture of actin fibers

might explain the difference in the formation and release of

microparticles.

In these experiments we carefully tested that the formation of

microparticles is not associated the induction of apoptosis by

examining along the LDH activity (data not shown) also activation

of Caspase 23 and nuclear shrinkage (Supplementary Fig. S1).

Functional impact of S100A4 carrying microparticles on
tumor and stroma cells

To investigate the potential function of S100A4-containing MPs

in the stroma/tumor cells crosstalk we studied the effect of

fibroblast originated S100A4-containing MPs on tumor cells. First

we monitored the distribution of the MPs after adding them to

VMR and S100A42/2 5MEF target cells. The experiments

revealed that the added microparticles were not only distributed

within the surrounding cellular spaces but also detected on the

cell membrane and in the cytoplasm. Microparticles from

S100A42/2 5MEF cells served as negative control for the

S100A4 immunofluorescence staining (Fig. 4A). We found that

almost 100% of 5MEF cells and less than 10% of VMR cells were

Figure 3. Cytoskeleton-associated transport of S100A4 in microparticles. (A) Sandwich ELISA of S100A4 in microparticles released from
CSML100 cells treated with CSML0-CM, 20 ng/ml RANTES in CSML0-CM, 20 ng/ml RANTES in CSML0-CM+Y27632, 20 ng/ml RANTES in CSML0-
CM+Cytochalasin D, VMR-CM, and VMR-CM+Cytochalasin D. (B) Immunofluorescence live imaging of plasma membrane structure of adherent
CSML100 cells labeled with the lipophilic dye FMH-1–43FX by different treatments as indicated. (C) Cells after the same treatments were visualized
with double-immunofluorescence with anti-S100A4 antibodies (green) and rhodamine phalloidin (red). Scale bar = 50 mM.
doi:10.1371/journal.pone.0010374.g003

S100A4/RANTES in Metastases
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Figure 4. Functional significance of extracellular S100A4. (A) Distribution of microparticles isolated from S100A4-positive 4MEF cells added to
5MEF and VMR cells. Immunofluorescence staining was performed with anti-S100A4 antibodies (green), rhodamine phalloidin (red), and nuclear
staining with TO-Pro (TP3) (pink). (B) Immunofluorescence detection of FN (green) in 5MEF cells in response to S100A4+/+ and S100A42/2
microparticles from 4MEF and 5MEF cells, and 1mg/ml of the recombinant oligomeric S100A4 protein, respectively. (C) Detection of FN by Western
blot analysis of cell lysates from 5MEF treated with S100A42/2 and S100A4+/+ microparticles and recombinant S100A4. As a control cell lysate from
non-treated cells were used. FN band corresponding to molecular weight of approximately 250 kDa is indicated. (D) Effects of S100A4 microparticles
on wound healing in 5MEF cells. Conditioned media from 4MEF and 5MEF cells before (a) and after (b) 100,0006g centrifugation and isolated
microparticles (c) were added to scratched monolayers of 5MEF cells. Time-course kinetics of residual wounds are depicted in the graphs. (d) Wound
healing assay with 4MEF cells. The residual size of scratches 12 h after ‘‘healing’’ is presented. Three different batches (#1, 2 and 3) of affinity purified
polyclonal anti-S100A4 antibodies were used.
doi:10.1371/journal.pone.0010374.g004

S100A4/RANTES in Metastases

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e10374



competent in microparticle uptake. This difference indicates an

active mechanism in MP uptake involving cell surface molecules.

Earlier we obtained preliminary data indicating a S100A4-

driven activation of FN. Therefore we analyzed whether S100A4

enriched in microparticles could stimulate FN production in

fibroblasts. For that we tested microparticles derived from both

S100A4+/+ and S100A42/2 fibroblasts. The 5MEF showed

significantly stronger response in FN activation from S100A4-

positive vs S100A4-negative microparticles, as determined by both,

immunofluorescence staining (Fig. 4B) and Western blotting

(Fig. 4C). Noteworthy, the recombinant S100A4 protein induced

FN production in a similar way. These data clearly demonstrate a

stimulatory effect for both, S100A4, enriched in microparticles

and the recombinant S100A4 protein on FN production in

fibroblasts.

Based on the documented influence of FN on cell migration

[30], we examined the influence of S100A4 microparticles on cell

motility in wound healing experiments. ‘‘Wounded’’ monolayer of

5MEF cells were treated with microparticle fractions as well as

CM before and after microparticle depletion. We found a higher

stimulatory effect with CM from S100A4+/+ 4MEF cells

compared to CM from S100A4-deficient 5MEF on the wound

healing speed (Fig. 4D-a). Moreover, depletion of CM from

microparticles attenuated this difference (Fig. 4D-b), suggesting a

role for S100A4-carrying microparticles in cell motility stimula-

tion. Indeed, microparticles reconstituted from pellets after

centrifugation revealed a small but reproducible effect on cell

motility, in which S100A4+/+ microparticles stimulated 5MEF

motility better than S100A4-/2 (Fig. 4D-c). Removal of

microparticles from CM did not influence the cell proliferation

rate (data not shown), suggesting that the relative speed of wound

healing is preconditioned by cell motility.

We next sought for the impact of extracellular S100A4 induced

by RANTES on cell motility in a wound healing assay using

S100A4-positive 4MEFs. We found that CSLM0-CM alone

increased cell motility by 28%, whereas CSML0-CM supplement-

ed with RANTES increased cell motility by 55%. Importantly,

anti-S100A4 antibodies (#1, #2 and #3) but not rabbit IgG

blocked this effect (Fig. 4D-d). This observation indicates that

RANTES-induced acceleration of cell motility is at least partially

mediated by the S100A4 release.

Furthermore, we analyzed the content and level of cytokines in

CM from VMR cells responded to treatment with active

oligomeric S100A4. Data obtained by the cytokine antibody array

revealed an upregulation of several cytokines (e.g. G-CSF,

RANTES and more) in S100A4-treated compared with non-

treated VMR cells (Fig. 5A). The upregulation of RANTES was

verified by using quantitative real-time PCR (qRT-PCR) and

Western blot analysis. We observed both, a S100A4-mediated bell-

shaped transcriptional activation of RANTES in VMR cells after

treatment by S100A4, with a peak at 6 h (Fig. 5B) and an

increased level of RANTES in the CM at 24 h (Fig. 5C).

Rantes/S100A4 crosstalk promotes lung metastases
To investigate the significance of the RANTES/S100A4

pathway in tumor development and metastases, we generated

RANTES-expressing VMR and CSML0 cell lines and the

corresponding mock-infected counterparts. To characterize their

tumorigenic properties we employed two different experimental

setups where VMR-mock and VMR-RANTES cells were injected

intravenously into syngeneic mice followed by monitoring animal

survival and metastasogenesis. To assess the survival rate, mice

were sacrificed at the time-points of the maximal morbidity

defined by Danish Law on Animal Experimentation. We found

that enhanced RANTES expression in VMR-RANTES vs the

control group (Supplementary Fig. S2) significantly reduced the

animal survival rate (p = 0.0021) with an average survival of 34.5

days and 46 days, respectively (Table 1). Notably, in these

experiments, mice injected with VMR-RANTES exhibited a

wider spectrum of organs displaying metastasis. Thus, 80% of

mice (5 of 6) developed metastasis in organs other than the lung

and liver, such as bone, lymph node, intestine, ovary and kidney.

By the next experimental setup, we compared the metastatic

burden (metastasogenesis) in the lung and liver of mice inoculated

i/v by VMR cells overexpressing RANTES vs empty vector at

fixed time-points. Experiments with VMR cell lines were carried

out with two mouse strains, S100A4-null and wild type A/Sn. In

wild type mice inoculated with VMR-RANTES cells, we

Figure 5. S100A4-mediated activation of cytokines in VMR cells. (A) Cytokine antibody array analysis of CM from VMR cells, unstimulated
and stimulated with 0.5 mg/ml recombinant oligomeric S100A4. Upregulated cytokines are marked with white rectangles. (B) Kinetics of RANTES
transactivation in response to 0.5 mg/ml recombinant oligomeric S100A4 (qPCR). (C) Western blot analysis of S100A4-mediated upregulation of
RANTES in VMR-CM.
doi:10.1371/journal.pone.0010374.g005
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monitored lesions in lungs (6/6), liver (6/6), and other organs (4/

6), whereas wild type mice inoculated with VMR-mock cells

displayed little or no metastasis at this time-point. In S100A4-null

mice VMR-RANTES displayed a more moderate metastatic

capacity with fewer metastatic lesions, especially in lungs (1/6).

The difference in metastatic phenotype between VMR-RANTES

and VMR-vector in S100A4-null mice was thus less pronounced

than in wild type animals.

Statistical analysis of the metastatic burden (metastases per

organ area unit) revealed significant influence of RANTES on the

metastatic phenotype of tumor cells. Thus the metastatic burden in

both lung and liver was substantially increased and statistically

significant in wild type (S100A4+/+) mice inoculated with VMR-

RANTES vs VMR-mock cells with a p-value of 0.0027 for lung

metastases, and 0.0098 for liver metastases (Fig. 6 A and B). In the

case of S100A4-deficient mice we observed a modest increase in

lung (p = 0.3261) and more pronounced increase in liver

metastases (p = 0.1098), though statistically insignificant. However

a significant difference between metastatic burden in lungs in wild

type and S100A42/2 mice (p = 0.0044) was the most striking

observation in these experiments, suggesting an impact of

RANTES/S100A4 circuit in stimulation of lung metastasis

(Fig. 6A) in contrast to the liver metastases, where the difference

in metastatic burden in the two mouse strains was negligible and

insignificant (Fig. 6B).

Assessment of the metastatic burden in mice inoculated with cell

lines originated from non-metastatic CSML0 adenocarcinoma cell

line, (CSML0-RANTES vs CSML0-mock) confirmed the influ-

ence of RANTES in stimulation of metastases, although being

statistically insignificant, p = 0.2 for lung and p = 0.32 for liver

metastases (Fig. 6C).

To associate the effects of RANTES on the metastatic burden in

vivo with the activation of S100A4 release, we analyzed S100A4

concentrations in mouse serum by sandwich ELISA. We observed

detectable and statistically significant (p = 0.038) quantities of

S100A4 (15610 ng/ml) in the serum of mice inoculated with

VMR-RANTES but not VMR-vector (Fig. 6D).

Altogether, the data verified the significance of RANTES/

S100A4 alliance in the stimulation of the malignant properties of

tumor cells and pointed its possible role in development of

organospecific metastases.

Discussion

Tumor progression and the process of metastasis formation

involves tumor-stroma interactions, including a wide range of

cellular (e.g. fibroblasts and immune and vascular cells) and

molecular components (e.g. growth factors, cytokines, proteases

and extracellular matrix proteins) which interact to build a solid

foundation for tumor malignancy. Strong upregulation and release

of the metastasis-inducing S100A4 protein was demonstrated in

tumor stroma [9]. The prediction of factors in metastatic vs. non-

metastatic tumor cells able to stimulate the release of S100A4 from

fibroblasts and other tumor composing cells was made previously

[7].

Data obtained on a remarkable difference in the repertoire and

level of cytokines produced and secreted by metastatic cells (VMR)

vs. non-metastatic cells (CSML0) was rather expected. Thus,

cytokines reported as contributors to tumor progression, such as

RANTES, MIP-1c/CCL9, VEGF [31], p-Selectin [32], G-CSF

[33], and CXCL-16 [34], are upregulated in VMR-CM, whereas

only the metastasis inhibitor MIP-2 [35] is increased in CSML0-

CM. The involvement of the most upregulated in VMR-CM

cytokine RANTES has been reported in the progression of

different tumor types, particularly in breast cancer [26,36,37].

RANTES was originally identified as a leukocyte chemoattractant

factor [38], which is expressed by tumor cells and acts as a strong

chemoattractant contributing to tumor progression [39]. Howev-

er, the precise involvement of RANTES in malignancy remains

unknown. We suggest a mechanism in which RANTES, by

mediating S100A4 release from stroma cells into the tumor milieu,

by a mechanism not affecting the S100A4 gene expression

enhances the metastatic capability of tumor cells. Furthermore,

we suggest that RANTES-mediated S100A4 secretion induces the

upregulation of cytokines (including RANTES), the production of

FN, the stimulation of cell motility, and tumor metastases in vivo.

More recently, RANTES has been shown to enhance the

migration of chondrosarcoma cells through increased MMP-3

production [40]. S100A4 might be implicated in this process as

well, since previously it has been shown that S100A4 could trigger

MMP activation in tumor cells and synovial fibroblasts and in

endotheial cells [6, 7, and 41].

The precise mechanism of RANTES-mediated activation of

S100A4 release remains to be solved. However, here we disclosed

certain aspects of the cellular events triggered by RANTES,

particularly associated with S100A4 secretion. The S100A4

protein lacks a secretion signaling peptide. As we have shown,

consistent with others [42], S100A4 is not secreted by the classical

ER/Golgi route. We explored which alternative mechanism may

be responsible for S100A4 release. Secretion of S100A4 from

fibroblasts does not involve lysosomes, which are not exclusively

restricted to protein degradation but also have been shown to be

involved in secretory process of different cell types [43].

We found that in response to RANTES both tumor and stroma

cells stimulate the release of plasma membrane covered micro-

particles, also known as microvesicles. One of the cargo proteins of

the microparticles as we found, is S100A4. The release of

microparticles from various cell types is a well-known phenome-

non [27, 28, 44, and 45]. These membrane vesicles are relatively

large and heterogeneous, ranging in size from 70 nm and more

than 1000 nm. Vesicle shedding resembling cell blebbing during

apoptosis is an active process that occurs in response to different

stimuli also in living cells showing no signs of cell death [44]. In

our studies we carefully examined that the formation of

Table 1. Survival rate and metastases among animal groups of A/Sn wild type mice injected with VMR-vector and -RANTES cell
lines.

Cell lines NN of mice with metastases Survival (average) Metastases in lungs Metastases in liver Metastases in other organs

VMR-vector 4/6 46* (±4.9) 3/6 4/6 0/6

VMR-Rantes 5/6 34 (±5.1) 6/6 5/6 5/6

p = 0.0021.
*Two mice were killed due to sufficient length of the experiment (more than 46 days) without obvious symptoms.
doi:10.1371/journal.pone.0010374.t001

S100A4/RANTES in Metastases
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microparticles, which occurs in cells in response to RANTES is not

associated with apoptosis (Supplementary data, Fig. S1). Recently,

the contribution of microparticles to vital biological processes has

been documented, including the mediation of horizontal, cell-to-

cell transfer of RNA and proteins such as receptors for growth

factors and cytokines [27, 28, 44, and 45]. Extracellular

microparticles released from cells circulate in tumor microenvi-

ronment but can also be transferred by bodily fluids and affect cells

at distal sites as well [26,45]. Interestingly, the pattern of

interaction and internalization of microparticles depends signifi-

cantly on the recipient cell type. Thus, in our cell models the

attachment of S100A4-positive microparticles to the membrane

and the uptake to the cytoplasm, was much more pronounced in

fibroblasts (5MEF) compared to VMR tumor cells, which indicate

that the horizontal microparticle transfer is an active process and

requires acceptor molecules (e.g. receptors) on the cell surface. We

also confirmed observations made by others [28,45] on the

functional significance of microparticles released into the extra-

cellular space from various types of cells such as fibroblasts and

macrophages. Additionally we disclosed the biological activity of

micropraticle-carried S100A4 in stimulation of FN production

and activation of fibroblasts migration. These effects are

obviously less pronounced in response to S100A4-negative

microparticles.

Figure 6. S100A4-associated RANTES-driven metastatatic capacity of tumor cells. (A) Metastatic burden indicated as a number of lesions
per area unit in lungs of wild type (S100A4+/+) and S100A42/2 A/Sn mice inoculated i/v with VMR-mock and -RANTES cells. n = 6 per group. (B)
Metastatic burden in liver in wild type (S100A4+/+) and S100A42/2 A/Sn mice inoculated i/v with VMR-mock and -RANTES cells. n = 6 per group. (C)
Lung and liver metastatic burden in wild type A/Sn mice inoculated i/v with CSML0-mock and -RANTES cells. n = 5 per group, p = 0.1060 (lung
metastases) and p = 0.7241(liver metastases). (D) S100A4 concentration in the serum of A/Sn mice inoculated with VMR-mock and -RANTES cells
determined by sandwich ELISA.
doi:10.1371/journal.pone.0010374.g006
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Importantly, we are the first demonstrating a pathway where

RANTES and S100A4 cooperatively influence cell migration.

Thus, S100A4 blockade by specific antibodies appeared to

considerably decelerate RANTES-induced migration of S100A4-

positive fibroblasts, directly confirming that RANTES-driven cell

migration is mediated at least partially by S100A4. These data are

consistent with the previously reported effects of S100A4 on cell

motility and migration [13,46].

Animal studies performed indicate that overexpression of

RANTES in tumor cells confers more pronounced metastatic

phenotype on tumor cells independently on S100A4. However a

clear synergism between RANTES and S100A4 in metastasogen-

esis supports the significance of the RANTES/S100A4 interplay in

vivo. Thus, overexpression of RANTES in two different cell lines

(VMR and CSML0) notably increased the metastatic capacity of

tumor cells and resulted in the ability of tumor cells to colonize

much broader spectrum of organs such as ovaries, kidney, and

lymph nodes, in addition to lung and liver. It could be associated

with RANTES-mediated activation of the immune system, such as

the enlargement of the lymph nodes and thymus and infiltration of

organs with CD45 cells in both wild type and S100A4 knockout

mice (unpublished observations). Notably this phenotype is much

more pronounced in wild type (S100A4+/+) compared to

S100A4-depleted animals. The most striking effect of RANTES/

S100A4 interplay is observed in the metastatic burden in lungs.

The impact of S100A4 on metastasis in organs other than the lung

is not so apparent. Thus RANTES-overexpressing cells raise

significantly more (82-fold) metastases in lung compared with

control tumor cells in S100A4+/+ mice, whereas this difference is

notably lower (5.6-fold) in the S100A4 (2/2) mice. Moreover,

S100A4 emerging in the serum of mice injected with RANTES-

VMR cells but not VMR-vector control cells substantiates our

hypothesis regarding the role of the RANTES/S100A4 pathway

in metastasis. Additionally, the role of S100A4 in immune cell

attraction must be acknowledged because of our recent results

showing a strong S100A4-directed attraction of T-lymphocytes in

in vitro and in vivo models [47].

We hypothesize that the specificity of RANTES/S100A4 circuit

in stimulation of lung metastases might be associated with the

formation of specific pre-metastatic niches in the lungs [48]. An

important role of signals transmitted from primary tumor cells (e.g.

cytokines) in the stimulation of pro-inflammatory members of the

S100 family (S100A8/S100A9) and FN followed by attraction of

immune cells and their progenitors from bone marrow to the site

of metastasis and the formation of ‘‘pre-metastatic’’ niches were

recently reported [49,50]. We may predict an essential role for the

RANTES/S100A4 pathway in this process, in which RANTES, in

cooperation with other factors (e.g. cytokines) stimulates S100A4

release resulting in attraction and activation of fibroblasts and

immune cells such as T-cells [47], whose activity in tumors and at

sites of ‘‘pre-metastatic’’ niches could facilitate tumor cell homing

and proliferation in distal organs (e.g. lungs).

Although an ultimate role of RANTES as a tumor-derived

factor in the promotion of a S100A4-associated pro-malignant

phenotype is postulated here, determining the precise role of

RANTES requires investigating the role of additional, as yet

unidentified, co-factors (e.g. CSML0-CM). Other researchers also

mentioned the need to identify co-factors for RANTES involved in

its pro-metastatic effects [35]. Further investigations need to

elucidate more details of signaling mechanisms and additional co-

factors involved in the pro-metastatic RANTES/S100A4 circuit as

well.

In summary, we have demonstrated that RANTES and S100A4

reciprocally stimulating each other participate in a pathway

conferring more pronounced metastatic phenotype on tumor cells.

The results presented here highlight certain aspects of the

mechanism behind this pathway and open perspectives for its

therapeutic targeting.

Materials and Methods

Ethics Statement
Animals were propagated in pathogen-free environment

according to FELASA guidelines.

Cell lines and recombinant proteins
Mouse macrophages and the monocyte RAW264.7 cell line

were kindly provided by Dr. Svetlana Panina (Novo Nordisk,

Denmark).VMR, CSML100, and CSML0 mouse adenocarcino-

ma cell lines were derived from two independent spontaneous

tumors in A/Sn mice [51] and 4MEF/S100A4+/+ and 5MEF

S100A42/2 mouse embryonic fibroblasts and were isolated and

cultured as described previously [8].

For retrovirus-mediated gene transfer, mouse RANTES cDNA

was synthesized using the forward RANTES-specific primer 59-

CGC GGG TAC CAT GAA GAT CTC T-39 and reverse primer

59-CCC TCT ATC CTA GCT CAT CTC C-39 and cloned into a

pBabepuro vector. Selection of the infected cells was performed

according to a previous report [52].

An active oligomeric fraction of S100A4 was obtained from

recombinant 6xHis-tagged protein by gel filtration as described

previously [15]. Recombinant RANTES was purchased from AH

Diagnostics (catalog no. PMC1055, Denmark).

Protein analysis
Cells were grown to 90% confluency in T25, T75, or T125

flasks in Dulbecco’s Modified Eagle Medium (DMEM) supple-

mented with 10% fetal calf serum (FCS). The medium was

exchanged with fresh medium supplemented with the proteins of

interest. The cultures were sustained for the required periods of

time. For the analysis of secreted proteins, CM were harvested and

filtered through a 0.45 mm membrane (Schleicher & Schuell,

Germany). The adherent cells were trypsinized and counted in

0.25% Trypan blue. Only the experiments with not less than 99%

of alive cells were processed further. Additionally, cell viability was

checked for each cell culture using the LDH Cytotoxicity

Detection Kit (Clontech) according to manufacturer’s instructions.

RayBio Mouse Cytokine Antibody Array 3 and 4 were

purchased from (RayBiotech, Inc) and the cytokine analyses in

cell culture CM were performed according to the manufacturer’s

instructions. Western blot analysis and sandwich enzyme-linked

immunosorbent assay (ELISA) were performed according to a

previous report [16].

Quantitative real-time polymerase chain reaction (qPCR)
Total cellular RNA was isolated according to a previous report

[53]. First-strand cDNA synthesis was performed using Super-

Script II RT (Invitrogen) with random primers according to the

manufacturer’s instructions. Real-time polymerase chain reaction

(PCR) was performed using a LightCycler 2.0 instrument

following the manufacturer’s instructions (Roche Applied Science,

USA) The following primers were used: mouse RANTES forward

primer (59-CATATGGCTCGGACACCA-39), mouse Rantes

reverse primer (59-ACACACTTGGCGGTTCCT-39), mouse

S100A4 forward primer (59-TTGTGTCCACCTTCCACA-39),

mouse S100A4 reverse primer (59-GCTGTCCAAGTTGCT-

CAT-39), glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

forward primer for normalization (59- CCAGCAAGGACACT-
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GAGCAA-39), and GAPDH reverse primer (59- GGGATG-

GAAATTGTGAGGGA-39).

Isolation of microparticles
Isolation of microparticles shedded from adherent cell cultures

was performed as described previously [28,29]. Twenty-four hours

after incubation, CM were collected from cells at 75–90%

confluence and subjected to centrifugation first at 5006g for

5 min, then at 15006g for 20 min to remove floating cells and

cellular debris. Microparticle fractions were obtained after

centrifugation at 100,0006g for 2 h. Microparticle pellets were

washed in large quantities of phosphate-buffered saline (PBS) and

re-centrifuged at 100,0006g for 2 h. The pelleted microparticles

were resuspended in DMEM or PBS depending on the following

procedures. Microparticle protein content was determined using

the Bradford assay (Bio-Rad).

In vitro wound healing assay
The monolayer of MEF cells grown in DMEM (Gibco

Invitrogen) was supplemented with 2% FCS in six-well plates up

to 100% confluence. Two horizontal and two vertical scratches

(wounds) were made in each well with a plastic loop. Cells were

washed with fresh media, and images were taken as point 0. The

media of interest were added, and wound healing was monitored

by taking serial photos of the marked areas. The extent of wound

healing was determined by measuring the width of a residual

wound inside the marked area using Multi Gauge software

(Fujifilm). For each treatment, three parallel wells were used with

four marked areas each. The relative migration was calculated as

the average width at different time-points.

Animal experiments
Eight- to 13-week-old S100A42/2 knockout and wild type

mice on an A/Sn genetic background were used in the two

experiments. All animals were maintained according to the

guidelines of the Federation of European Laboratory Animal

Science Association for the care and use of laboratory animals.

Animals received an intravenous lateral tail vein injection of

0.56106 tumor cells suspended in 0.1 ml PBS. Mice were

examined and weighed every day. At the time of euthanasia, the

visceral organs were removed by dissection, fixed in 4%

formaldehyde, and paraffin-embedded. Metastasis was assessed

in histological sections and correlated with the whole section space

by taking overlapping light images of histological sections and

assessing the metastasis/tissue area ratio using Multi Gauge

software (Fujifilm). Metastatic burden was determined as a ratio of

the total area covered by tumor cells to the total tissue area in the

section.

Immunofluorescence
Immunofluorescence was performed according to a previous

report [9]. The antibodies used were rabbit anti-S100A4 (1:4000),

rabbit anti-fibronectin (1:4000) (Biomedical Technologies, USA),

and rat anti-LAMP1 (1:5000) (Becton Dickinson, USA). Second-

ary Alexa Fluor antibodies were purchased from Molecular

Probes, USA) and used in a dilution of 1:1500. To visualize

polymerized actin, TRITC-conjugated Phalloidin was used.

Nuclei were stained with TO-PRO 3 iodide (1:5000) (Molecular

Probes, USA). Cover slips were mounted with Fluoromount-G

(Southern Biotechnology, USA) and analyzed and quantified using

a laser-scanning confocal LSM 510 microscope and software (Carl

Zeiss, Inc).

Plasma membrane labeling of live adherent cells and isolated

fraction of microparticles was done using Lipophilic Styryl dye

FMH 1-43FX (Molecular Probes, USA) according a protocol

recommended by the manufacturer.

Statistical Analysis
All data were analyzed using Graph Pad Prism 5.0 statistical

software (GraphPad Software Inc.). The differences between two

groups were analyzed using Non-parametric Mann- Whitney test.

Two sided p-values of ,0.05 were regarded significant.

Supporting Information

Figure S1 Analysis of CSML100 cells viability after 4 h of

stimulations. As a positive control for apoptosis cells were treated

with 1mM Staurosporine (STA). A. Cytostaining of fixed

CSML100 cells with DAPI (49,6-diamidino-2-phenylindole). B.

Western blot analysis of Caspase-3 activation.

Found at: doi:10.1371/journal.pone.0010374.s001 (0.42 MB

TIF)

Figure S2 Western blot analysis of RANTES in cell lysates (CL)

and condition media (CM) from VMR cells infected with pBabe-

puro vector (VMR-mock) and pBabe-puro-RANTES (VMR-

RANTES). Rabbit polyclonal anti-RANTES antibodies (Chemi-

con, USA, Cat.AB2109P) were used.

Found at: doi:10.1371/journal.pone.0010374.s002 (0.05 MB

TIF)
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chemokine RANTES is secreted by human melanoma cells and is associated
with enhanced tumour formation in nude mice. Br J Cancer 79: 1025–31.

40. Tang CH, Yamamoto A, Lin YT, Fong YC, Tan TW (2010) Involvement of
matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas

metastasis. Biochem Pharmacol 79: 209–17.

41. Senolt L, Grigorian M, Lukanidin E, Simmen B, Michel BA, et al. (2006)
S100A4 is expressed at site of invasion in rheumatoid arthritis synovium and

modulates production of matrix metalloproteinases. Ann Rheum Dis 65:
1645–8.

42. Yammani RR, Long D, Loeser RF (2009) Interleukin-7 stimulates secretion of
S100A4 by activating the JAK/STAT signaling pathway in human articular

chondrocytes. Arthritis Rheum 60: 792–800.

43. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev

Mol Cell Biol 8: 622–32.

44. Beaudoin AR, Grondin G (1991) Shedding of vesicular material from the cell

surface of eukaryotic cells: different cellular phenomena. Biochim Biophys Acta
1071: 203–19.

45. Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, et al. (2000) Transfer of

the chemokine receptor CCR5 between cells by membrane-derived micropar-
ticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat

Med 6: 769–75.

46. Tarabykina S, Griffiths TR, Tulchinsky E, Mellon JK, Bronstein IB, et al. (2007)

Metastasis-associated protein S100A4: spotlight on its role in cell migration.
Curr Cancer Drug Targets 7: 217–28.
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