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Background: The incidence of brain metastasis continues to increase as therapeutic
strategies have improved for a number of solid tumors. The presence of brain metastasis
is associated with worse prognosis but it is unclear if distinctive biomarkers can separate
patients at risk for CNS related death.

Methods:We executed a single institution retrospective collection of brain metastasis from
patients who were diagnosed with lung, breast, and other primary tumors. The brain
metastatic samples were sent for RNA sequencing, proteomic and metabolomic analysis of
brain metastasis. The primary outcome was distant brain failure after definitive therapies that
included craniotomy resection and radiation to surgical bed. Novel prognostic subtypes
were discovered using transcriptomic data and sparse non-negative matrix factorization.

Results: We discovered two molecular subtypes showing statistically significant
differential prognosis irrespective of tumor subtype. The median survival time of the
good and the poor prognostic subtypes were 7.89 and 42.27 months, respectively.
Further integrated characterization and analysis of these two distinctive prognostic
subtypes using transcriptomic, proteomic, and metabolomic molecular profiles of
patients identified key pathways and metabolites. The analysis suggested that immune
microenvironment landscape as well as proliferation and migration signaling pathways
may be responsible to the observed survival difference.

Conclusion: A multi-omics approach to characterization of brain metastasis provides an
opportunity to identify clinically impactful biomarkers and associated prognostic subtypes
and generate provocative integrative understanding of disease.

Keywords: bioinformatics analysis, brainmetastases, craniotomy, distant brain failure, RNA-Seq - RNA sequencing,
proteomics, metabolomics, non-negative matrix factorization
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INTRODUCTION

There are approximately 180,000 new cases of brain metastases
in the US each year (1). However, patients with brain metastases
represent a heterogeneous population and the prognosis may
vary widely depending on primary tumor origin (2), molecular
subset (3), histology (4), status of extracranial disease, number of
lesions (5), brain metastasis volume (6), and the overall health
status of the patient (7). Due to the heterogeneity in the
presentation of these patients, several treatment options
including surgery, stereotactic radiosurgery (SRS), and whole
brain radiotherapy (WBRT) have been adopted.

The use of the various treatment options for brain metastases
has evolved over time based on the relative strengths and
toxicities related to each treatment regimen. Surgical resection
is often reserved for larger or symptomatic brain metastases (1).
SRS has proven most effective with fewer brain metastases, while
WBRT is most often applied in patients with diffuse metastases
(8). There is also the use of primary systemic targeted therapies
for cancer that harbor actionable mutations like EGFR (9) or
ALK (10). In spite of these general guidelines, a large proportion
of patients will fall into a category in which their brain metastases
enumerate into an intermediate category between few and many,
and for these patients, little prospective data exists (11).
Moreover, the variability in the outcomes of these patients
makes it difficult to use the absolute number of brain
metastases to guide management (12). There is a growing need
to identify markers for disease response to systemic therapies,
and there are many questions on how to use radiation and
systemic therapies to treat patients and obtain optimal quality of
life and survival endpoints.

There has been a number of studies that utilize single assay
characterization of metastatic lesions (13, 14). This includes
evaluation of brain metastasis at the gene level (15, 16). Few
studies have integrated multiple levels of query to not only
include the genome, but to evaluate the proteome and
metabolome from the brain metastasis itself. Brain metastasis,
largely from lung and breast cancers, poses a significant
detrimental event as it relates to prognosis and quality of life.
A limited number of studies have incorporated a proteomic or
metabolomic based approach on human brain metastasis. There
is a need to map out the signaling cascades of these tumors and if
there is concordance regardless of tumor type.

Recent studies have suggested that in spite of the
heterogeneity in the brain metastasis population, that there
may be brain metastasis-specific mutations even across
multiple histologies and primary cancer types (15, 16). Because
brain metastasis patients as a population can segregate into
various phenotypes of clinical behavior, the question has arisen
as to whether the clinical behavior of brain metastases can be
predicted. To address these questions, we profiled global
proteomes, genomes, and the metabolome of resected brain
metastases from a number of tumor types. We provided both
individual and integrated analyses that revealed brain metastasis
with similar RNA expression provided different post-
transcriptional and post-translational levels.
Frontiers in Oncology | www.frontiersin.org 2
METHODS

Patient Population
The Wake Forest Brain Tumor Tissue bank was searched for
samples between 2005 and 2016. This tumor bank included fresh
frozen tissue, and included samples of patients who signed an
informed consent to have a portion of their tumor tissue banked.
Inclusion criteria for the study included brain metastasis samples
from solid tumors in which clinical follow-up data were
available. After craniotomy, patients with treated with post-
operative radiotherapy (either cavity-directed SRS, WBRT) or
placement of breast cancer patients treated with carmustine
(BCNU)-containing wafers as previously described (17, 18).
SRS was performed using the Leksell Gamma Knife B, C, or
Perfexion units. Treatment planning was performed via the
Leksell GammaPlan treatment planning system.

Data Acquisition
This study was approved by the Wake Forest Institutional
Review Board. Electronic medical records were used to
determine patient clinical characteristics as well as clinical
endpoints such as survival, local failure, distant brain failure,
and the likelihood of neurologic death. In general, patients were
imaged every three months for the first two years after
craniotomy and then every 4–6 months thereafter. Distant
brain failure was defined as the development of a new brain
metastasis that was not present at the time of adjuvant therapy.
Neurologic death was defined as per McTyre et al. (19).

Proteomic Analysis
Prior to analysis, frozen tumor blocks were assessed by a board-
certified pathologist (SQ) to assess for adequate and
representative tissue. Approximately 20 mg of tissue was lysed
in 1 ml of radioimmunoprecipitation assay (RIPA) buffer
containing protease inhibitor using a bead mill homogenizer
(Bead Ruptor, Omni International, Kennesaw, GA). RIPA lysate
was then incubated sequentially with 10 mM dithiothreitol at
55°C for 30 min, and with 30 mM iodoacetamide at room
temperature in the dark for another 30 min. A purified protein
pellet was acquired from acetone precipitation. The pellet was
subsequently treated with sequencing grade modified trypsin.
The resultant peptides were de-salted using a C18 spin column,
dried and then re-suspended in 5% (v/v) ACN containing 1% (v/v)
formic acid for liquid chromatography-tandemmass spectroscopy
(LC-MS/MS) analysis.

The LC-MS/MS analysis was performed utilizing a Q Exactive
HF Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo
Scientific, Rockford, IL) interfaced with a Dionex Ultimate-3000
nano-UPLC system (Thermo Scientific, Rockford, IL) and a
Nanospray Flex Ion Source (Thermo Scientific, Rockford, IL).
An Acclaim PepMap 100 (C18, 5 mm, 100 Å, 100 mm x 2 cm)
trap column and an Acclaim PepMap RSLC (C18, 2 mm, 100 Å,
75 mm x 15 cm) analytical column were used for the stationary
phase. Chromatographic separation was achieved with a linear
gradient consisting of mobile phases A (water with 0.1% formic
acid) and B (acetonitrile with 0.1% formic acid) where the
April 2021 | Volume 10 | Article 615472
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gradient was from 5% B at 0 min to 40% B at 80 min. MS/MS
analysis was performed in data dependent mode for the twenty
most intense ions from the full MS scan with dynamic exclusion
option for 10 s enabled. Mass spectra were searched with the
Sequest HT algorithm within the Proteome Discoverer v2.1
(Thermo Scientific), in combination with the human UniProt
protein FASTA database (annotated 20,193 entries, December 2015).

Genomic Analysis
Prior to analysis, frozen tumor block was assessed by a board-
certified pathologist (SQ) to assess for adequate tumor content.
Total RNA was purified from tumor specimens using the RNeasy
Plus Micro Kit (Qiagen) with genomic DNA removal. RNA
integrity (RIN) was determined by electrophoretic tracing using
an Agilent Bioanalyzer. RNAseq libraries were constructed from
samples (RIN >7.0) using the Illumina TruSeq Stranded Total
RNA kit with Ribo-Zero rRNA depletion. Indexed libraries were
sequenced on an Illumina NextSeq 500 DNA sequencer using
150x150-nt paired end reads, generating >40 million reads per
sample (12 samples per flow cell) with >80% of sequences
achieving >Q30 Phred quality scores. RNA-Seq analysis was
performed following the standard pipeline (20) established by
The Cancer Genome Atlas (TCGA) and the National Cancer
Institute Genomic Data Commons (GDC) (21, 22). Briefly,
quality of raw sequencing reads was assessed by FASTQC
analysis (Babraham Bioinformatics). Sequence reads were
aligned using the Spliced Transcripts Alignment to a Reference
(STAR) sequence aligner (23) with a two-pass approach and gene
counts determined using HTSeq software (24). The RNA-Seq
data was reported as raw counts, FPKM (Fragments Per Kilobase
of transcript per Million mapped reads), and FPKM-UQ (Upper
75% Quantile).

Metabolomic Analysis
Prior to analysis, frozen tumor block was assessed by a board-
certified pathologist (SQ) to assess for adequate tumor content.
The metabolomic data were generated using the AbsoluteIDQ
p180 Kit (Biocrates Life Sciences, Innsbruck, Austria).

Patient Subtyping
The patient subtypes were determined by bi-clustering genes and
samples using the RNA-Seq data and signed non-negative matrix
factorization (sNMF)—an algorithm we previously developed
(25, 26) to more reliably discern subpopulations defined by
differential gene expression. The FPKM-UQ data, which was
more robust than the FPKM one, were used for subtyping
analysis. Low count inflation was controlled by discarding
genes that were not detectable in more than half the samples.
The FPKM-UQ expression data of each gene were then log-
transformed, centered by its mean across all samples, and scaled
by its root mean square. The normalized expression data were
then bi-clustered using sNMF. The optimal subtype number
were determined by screening the cluster number from 2 to 6 and
evaluating the performance using seven different metrics
[cophenetic coefficient (27), dispersion coefficient (28),
explained variance (evar), residuals, residual sum of squares
Frontiers in Oncology | www.frontiersin.org 3
(RSS), silhouette, and sparseness (29)] with the randomized
data as the negative control. The biclustering reached best
performance when the subtype number was 4 (Supplementary
Figure 1). The two largest subtypes were further analyzed.

Survival Analysis
Kaplan-Meier estimator and log-rank test were used for the non-
parametric survival analysis (R survival package version
2.44-1.1).

Multi-Omics Differential Analysis
The proteomics and metabolomics data were used in enrichment
analysis to identify differentially expressed proteins as well as
metabolites showing differential abundance in the two largest
subtypes. Briefly, low expressed proteins and low abundant
metabolites which were not detectable in more than half
samples were discarded. The data of each protein or metabolite
were then log-transformed, centered by its mean across all
samples, and scaled by its root mean square., Differential
analysis between the two subtypes were performed using the R
(version: 3.3.1) package “limma” (version: 3.30.13) (30), and
significantly different proteins and metabolites were determined
with false discovery rate (31) FDR <=0.05.

Subtype Annotation
The expression data of mRNAs associated with the two largest
subtypes as well as proteins differentially expressed in these two
subtypes were used for enrichment analysis using Ingenuity
Pathway Analysis (IPA) (32). Enriched canonical pathway was
scored by its -log10(p-value). The overall score of a pathway was
defined as the sum of the scores generated from the
transcriptomic and the proteomics data, respectively.
RESULTS

Patient Characteristics
A total of 78 patients were included in this analysis. Figure 1 depicts
a diagram of the patients in this study who had brain metastasis
samples analyzed for either genomics, metabolomics or proteomics.
Demographic and clinical characteristics are summarized inTable 1.
The 6-, 12-, and 24-month overall survival and corresponding 95%
confidence intervals were in the entire cohort were 74% (65–86%),
60% (49–72%), and 45% (35–58%), respectively. Median overall
survival was 17.2 months (11.1–26.9 months).

Development of New Brain Metastases
The distal brain failure (DBF) free survival was 10.0 month (95%
confidence interval: 7.3–27.4 month). The 6-, 12-, and 24-month
freedom from distant brain failure for the entire cohort and
corresponding 95% confidence intervals were 68% (57–81%),
45% (33–60%), and 37% (26–52%), respectively.

Impact of Primary Tumor Sites on Survival
Patients with brain metastasis from breast cancers showed better
survival than those from lung cancer or melanoma, with a
April 2021 | Volume 10 | Article 615472

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Su et al. Multi-Omics Analysis of Brain Metastasis
median survival of 32.5 months versus 13.0 and 15.9 months,
respectively (Figure 2A). However, the statistical significance (p-
value <= 0.08) is limited due to the modest sample sizes of the
lung- and skin- originated cases (n = 15 and 12, respectively). No
significant difference of DBF survival was observed among
patients with different primary tumor sites (Figure 2B).

Patient Subtyping
The genomic bi-clustering analysis using sparse non-negative
matrix factorization (sNMF) approach were able to characterize
patients into four distinct transcriptomic molecular clusters (C.1
through C.4, Figure 3, top). Genes associated with each cluster
were listed in Supplementary Table 1.

We selected the C.4 cluster as the Good Prognosis Subtype, and
C.3 cluster as the Poor Prognosis Subtype for further multi-omics
differential analysis. The C.3 was selected for two reasons: better
overlapping with proteomics and metabolomics data, and richer
transcriptomic features. The survival curves of the Good Prognosis
and Poor Prognosis subtypes with regards to the likelihood of death
(Figure 3, middle) and distant brain failure after surgical resection
(Figure 3, bottom) of a brain metastasis showed that the C.4
subtype was associated with better prognosis, while the rest three
subtypes showed poor survival. Both subtypes were mapped to the
proteomics cohort with patients who had both transcriptomics
and proteomics data. The similar survival difference between the
Good and the Poor Prognosis Subtypes in the proteomics cohort
(Figure 4) for both overall survival (Figure 4A) and distant brain
failure-free survival (Figure 4B).

Multi-Omics Analysis
To comprehensively reveal the molecular profiles of the Good
Prognosis and the Poor Prognosis subtypes, we further
associated the proteomics and the metabolomics data and
Frontiers in Oncology | www.frontiersin.org 4
performed differential analysis. The enriched canonical
signaling pathways were identified using the associated
mRNAs and differentially expressed proteins, respectively,
ranked and scored according to p-values, summarized together,
and listed in Table 2. These pathways were further categorized
FIGURE 1 | Overview of the availability of the multi-omics data. The multi-
omics cohort (n = 78) was established through incorporating three closely
correlated studies in genomics (n = 46), proteomics (n = 64), and metabolomics
(n = 41). In this cohort, 72% patients (n = 56) had at least two types of omics
data, and 22% patients (n = 17) had all three type of omics data.
TABLE 1 | Patient Characteristics.

Patient Characteristics Total
(N = 78)

Demographics
Age – yr (onset*), Mean (SD) 59.3 (11.1)
Age Range 28–85
Male sex – no. (%) 34 (44%)
Female sex – no. (%) 43 (56%)
Race
African – no. (%) 4 (5%)
Caucasian – no. (%) 73 (94%)
Others – no. (%) 1 (1%)

Histology of Primary Tumor
Lung Cancer – no. (%) 37 (47%)
Breast Cancer – no. (%) 16 (21%)
Melanoma – no. (%) 14 (18%)
Others – no. (%) 11 (14%)

Overall Survival: no. 74
Events – no. (%) 58 (78%)
Followup (yr), Mean (SD) 27.7 (31.0)
Time of Event (yr), Mean (SD) 17.5 (18.9)

Distant Brain Failure-free Survival: no. 75
Events – no. (%) 42 (56%)
Followup (yr), Mean (SD) 13.7 (20.0)
Time of Event (yr), Mean (SD) 10.7 (10.3)

Disease Burden
Widespread – no. (%) 37 (47%)
Oligometastatic – no. (%) 35 (45%)
None – no. (%) 5 (6%)
Unknown – no. (%) 1 (1%)

Disease Status
Stable – no. (%) 8 (10%)
Progressive – no. (%) 39 (50%)
Unknown – no. (%) 31 (40%)

Karnofsky Performance Scale
50 – no. (%) 1 (1%)
60 – no. (%) 9 (12%)
70 – no. (%) 13 (17%)
80 – no. (%) 28 (36%)
90 – no. (%) 26 (33%)
Unknown – no. (%) 1 (1%)

Brain Metastasis at Time of Diagnosis (yr)
Mean (SD) 2.7 (3.1)
Range 1–23

Type of Adjuvant Local Therapy
None – no. (%) 9 (12%)
Gama Knife – no. (%) 44 (56%)
Gliasite – no. (%) 4 (5%)
WBRT – no. (%) 10 (13%)
Gliadel Wafer – no. (%) 4 (5%)
WBRT + Planned SRS – no. (%) 1 (1%)
Fractionation IMRT – no. (%) 1 (1%)
Unknown – no. (%) 6 (6%)
April 2021 | Volume 10 | Arti
Demographics, histology of primary tumor, survival, disease burden and disease status,
patients’ performance, detection time of brain metastasis, and treatment information were
comprehensively summarized in this table. WBRT, Whole Brain Radiation Therapy; SRS,
stereotactic radiosurgery; IMRT, intensity modulated radiation therapy.
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into three groups: growth, immune, and migration. The mixed
pathway ranking of these three categories suggested the
complexity of the tumor progress.

Differentially abundant metabolites or metabolite-based
indicators were shown in Table 3, demonstrating the strength
of association between metabolites and the likelihood of distant
brain failure and death. Significant metabolic biomarkers include
glycerophospholipids such as lysophosphatidylcholines (lysoPC
a C18:2, lysoPC a C20:4, lysoPC a C20:3 and lysoPC a C20:4),
phosphatidylcholines (PC ae C36:0 and PC ae C44:6), amino
acids (arginine, ornithine, serine, and valine), acylcarnitines (C3,
C4, and C5), a sphingomyelin (SM-OH), and a biogenic amine
(carnosine). Among them, half were single metabolites and the
other half were metabolite-based indicators.
DISCUSSION

Should the multi-omics signature for distant brain failure
identified in the present study be validated, it would represent
a major advance in the search for brain metastasis biomarkers.
First of all, patients who, based on these findings, would be
biologically at high risk of distant brain failure would certainly
require post-treatment surveillance imaging. Surveillance studies
have suggested that patient outcomes are improved when distant
brain failures are caught prior to becoming symptomatic (33).
Patients at lower risk of distant brain failure could be treated
more aggressively with SRS instead of WBRT. In addition, the
findings from the present analysis can potentially be used to
study patient primary tumors (prior to becoming metastatic) to
determine if such a signature can be applied to tumors that may
be at risk of ultimately developing brain metastases.
Frontiers in Oncology | www.frontiersin.org 5
Several previous attempts have been made to discover
biomarkers for brain metastasis behavior (34–37). Dohm et al.
evaluated RNA-seq data from patients who underwent fine
needle aspiration for newly diagnosed non-small cell lung
cancer (36). These patients were subsequently followed over
the natural history of their disease and the genomics of
patients who developed brain metastases were compared to
those who did not develop brain metastases. Two genes were
identified that with an association to development of brain
metastases, but a false discovery analysis was unable to confirm
this association.

The CE.7 trial is a presently accruing randomized trial
assessing the efficacy of WBRT vs GKRS in the population
with 5–15 brain metastases (11). This trial represents an
example of a modern perspective brain metastasis study in
which collected serum will be submitted for genomic analysis,
and then correlated to patterns of failure. Moving forward,
prospective trials with strong correlative science will likely be
the next step in the evolution in the elucidation of genomic
biomarkers for brain metastasis behavior. Particularly because of
the heterogeneity of the brain metastasis population, large trials
that bank tissue or serum for genomic analysis will be crucial in
such biomarker discovery.

While the genomic and proteomic signature suggest pathways
involved in metastasis development, the mechanisms to explain
the metabolomic associations with distant brain failure are less
clear. Early data suggests that metabolomic re-programming
leading to a phenotype that is more conducive for metastases
is possible (38).

Lysophosphatidylcholines (lysoPCs) impact a wide range of
biological and physiological functions, modulating
inflammation, regulate angiogenesis, and interfere the integrity
of mitochondrial membrane. Many lysophosphatidylcholines
A B

FIGURE 2 | Patient survival analysis. (A) Overall survival. (B) Distant brain failure (DBF) free survival.
April 2021 | Volume 10 | Article 615472
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that showed differential abundance across the discovered
prognostic subtypes are potential metabolomic molecular
markers in cancers (39–42) as well as other chronic diseases
such as diabetes and cardiovascular disease. For example, the
Frontiers in Oncology | www.frontiersin.org 6
abundance of lysoPC a C18:2, lysoPC a C20:3, lysoPC a C20:4,
and PC ae C42:5 in plasma of cancer patients were found
significantly different from healthy controls (39). The lysoPC a
C18:2 abundance in serum is also a significant biomarker for
TABLE 2 | Transcriptomic and Proteomic Integrative Analysis.

Canonical Pathway RNA-Seq Proteomics Score Category

EIF2 Signaling 0.509 5.84 6.349 Growth
Regulation of eIF4 and p70S6K Signaling 0.209 5.53 5.739 Growth
tRNA Charging 1.57 3.87 5.44 Growth
CD28 Signaling in T Helper Cells 1.17 3.47 4.64 Immune
Integrin Signaling 0.527 3.64 4.167 Migration
fMLP Signaling in Neutrophils 0.471 3.56 4.031 Immune
Actin Nucleation by ARP-WASP Complex 0.62 3.4 4.02 Migration
Role of PKR in Interferon Induction and Antiviral Response 1.51 2.31 3.82 Immune
IL-17A Signaling in Fibroblasts 3.57 0.198 3.768 Immune
IL-6 Signaling 2.24 1.37 3.61 Immune
Regulation of IL-2 Expr in Activated and Anergic T Lymphocytes 2.66 0.732 3.392 Immune
Actin Cytoskeleton Signaling 0.756 2.58 3.336 Immune
RhoGDI Signaling 0.26 3.01 3.27 Migration
Acute Phase Response Signaling 1.18 2.03 3.21 Immune
Ephrin Receptor Signaling 0.209 3 3.209 Migration
Superpathway of Cholesterol Biosynthesis 2.94 0.198 3.138 Growth
Dendritic Cell Maturation 0.209 2.86 3.069 Immune
JAK/Stat Signaling 1.3 1.72 3.02 Growth
PI3K Signaling in B Lymphocytes 2.81 0.198 3.008 Immune
Rac Signaling 0.514 2.49 3.004 Migration
PKCq Signaling in T Lymphocytes 1.64 1.35 2.99 Immune
mTOR Signaling 0.209 2.76 2.969 Growth
PPAR Signaling 2.28 0.665 2.945 Growth
CD27 Signaling in Lymphocytes 2.73 0.198 2.928 Immune
4-1BB Signaling in T Lymphocytes 2.72 0.198 2.918 Immune
Protein Ubiquitination Pathway 0.549 2.33 2.879 Growth
EGF Signaling 0.979 1.88 2.859 Growth
VEGF Signaling 0.209 2.65 2.859 Growth
Signaling by Rho Family GTPases 0.403 2.44 2.843 Growth
PDGF Signaling 1.19 1.65 2.84 Growth
Selenocysteine Biosynthesis II (Archaea and Eukaryotes) 1.02 1.82 2.84 Growth
Oncostatin M Signaling 0.36 2.47 2.83 Immune
Cdc42 Signaling 0.603 2.16 2.763 Migration
Fatty Acid b-oxidation I 0.209 2.52 2.729 Growth
Estrogen-Dependent Breast Cancer Signaling 0.861 1.78 2.641 Growth
Role of NFAT in Regulation of the Immune Response 0.71 1.93 2.64 Immune
IL-17 Signaling 1.86 0.708 2.568 Immune
Th1 Pathway 0.209 2.32 2.529 Immune
April 2021 | Volu
me 10 | Article 61547
Signaling pathways associated with growth, immune, and migration are highlighted in orange, green, and blue colors, respectively.
TABLE 3 | Metabolomic Feature Analyssis.

Metabolite Class logFC

lysoPC a C18:2 glycerophospholipids 1.33
C3 acylcarnitines -0.70
Orn / Arg Cust. Met. Indicator 0.82
Orn aminoacids 0.77
PC ae C36:0 glycerophospholipids -1.03
Arg/(Arg+Orn) Cust. Met. Indicator -0.62
Total SM-OH / Total SM-non OH Cust. Met. Indicator -0.94
lysoPC a C20:4 / lysoPC a C20:3 Cust. Met. Indicator 1.02
PC ae C44:6 glycerophospholipids -0.76
lysoPC a C20:4 glycerophospholipids 0.83
Val / C5 Cust. Met. Indicator 0.54
Orn / Ser Cust. Met. Indicator 0.55
C3 / C4 Cust. Met. Indicator -1.71
Carnosine biogenic amines -0.89
2
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myocardial infarction (43). The increased lysoPC a C18:2
abundance in the poor prognostic subtype may reflect specific
molecular traits in the immune microenvironment responsible
for the disease progression. Among potential molecular
mechanisms, interleukin 6 (IL-6) signaling, dendritic cell
maturation, acute phase response signaling, and CDC42
signaling enriched in the poor prognostic subtype (Table 2)
are known to be associated with lysoPC a C18:2.

Sphingomyelins (SM) play an essential role in brain,
supporting myelination of neurons and regulating brain
inflammatory responses (44). Sphingomyelin hydroxylation
patterns serve as promising biomarkers for a wide range of
inflammation symptoms as well as the underlying signaling
events such as the activity of sphingosine kinases and the
associated inflammatory signaling pathways including tumor
necrosis factor-alpha (TNF-a) and interleukin1-b (IL1-b) (45).
It has also been previously reported that the hydroxylation
patterns on sphingomyelin backbones could be leveraged to
treat cancers (46). We observed significantly decreased
hydroxylation of sphingomyelins (Total SM-OH/Total SM-non
OH) in the discovered poor prognostic brain metastasis subtype,
probably associated with the enriched inflammation pathways in
this subtype.

Some tumors exhibit a hallmark metabolic pattern known
as the Warburg effect, featured by the aerobic glycolysis, the
increased usage of lactate, and the up-regulated activity of
corresponding enzymes including lactate dehydrogenases
(LDHs) and monocarboxylate transporters (MCTs) (47,
48). In our cohort, at the mRNA level, some Warburg effect
genes are negatively associated with the risk of distant brain
failure, with the log fold changes of MCT genes SLC16A7 and
SLC6A20 as -2.89 (FDR <= 0.0047) and -3.92 (FDR <= 0.014),
respectively. However, at protein level, proteins related with
Warburg effect show no significant association with distant
brain failure. Furthermore, the aerobic glycolysis in the
discovered Poor Prognosis group is insignificant, according
to the Biocrates’ AbsoluteIDQ glycolysis metabolic indicator
(log fold change: 0.10, FDR: 0.90). In summary, our
results suggest that the Warburg effect is not responsible
for the increased distant brain failure risk in the Poor
Prognosis group.

All patients recruited in this study underwent surgical
resection of brain metastasis, through which tumor tissues
were retrieved. Surgical resection of brain metastasis allows for
acute reduction of tumor burden and mass effect, as well as
improvement in cerebral edema. This often equates to
improved survival, local recurrence, in up to three metastases
(49, 50). Surgical resection also allows for the retrieval of
tumor tissue for diagnosis and molecular characterization.
Improvements in surgical technique and radiation demonstrate
improvement in survival and function.

It is still far from identifying the driver mutations that can be
used to stratify patients with brain metastases and improve their
prognosis. Some genetic abnormalities such as RAS/PIK3CA
FIGURE 3 | Transcriptomic Molecular Subtyping. Top: gene expression
patterns across discovered patient subgroups. Columns: patients; rows: genes;
color: relative gene expression; patient phenotypes were color-coded according
to primary sites, genders, and events of distant brain failure (DBF). Patients in the
transcriptomics cohort (n = 46) were clustered according to the gene expression.
Four clusters (C.1 through C.4) were identified, with the rest patients (O) not
belonging to any of these clusters. Middle: overall survival of the discovered
subtypes. Bottom: DBF-free survival of the discovered subtypes.
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(51) and EGFR (52, 53) mutations are common in the brain
metastatic cases. However, the prognostic value of such
biomarkers is understudied comparing with that in the
primitive cancers. This work, one of the first in its kind,
provides a comprehensive landscape of the molecular traits for
the prognosis of brain metastasis patients, paves way to further
understanding of such common but less studied mutations, and
leads to mechanistic studies on the molecular underpins and
possible targeted therapies.

There are several limitations to the present series. First of all,
the study is limited in power based on the small population size.
A larger population will be necessary in order to validate the
findings. The study was also limited by patient selection bias
given a single institution and the potential practice pattern
biases that exist. We did not have access to patient primary
tumors, and thus were unable to determine if the genomic
signature for distant brain failure was inherent in the primary
tumor, or evolved over the course of time to be present in the
metastatic sample.
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