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Abstract
The study of microbial pangenomes relies on the computation of gene families,
i.e. the clustering of coding sequences into groups of essentially similar genes.
There is no standard approach to obtain such gene families. Ideally, the gene
family computations should be robust against errors in the annotation of genes
in various genomes. In an attempt to achieve this robustness, we propose to
cluster sequences by their domain sequence, i.e. the ordered sequence of
domains in their protein sequence. In a study of 347 genomes from Escherichia

 we find on average around 4500 proteins having hits in Pfam-A in everycoli
genome, clustering into around 2500 distinct domain sequence families in each
genome. Across all genomes we find a total of 5724 such families. A binomial
mixture model approach indicates this is around 95% of all domain sequences
we would expect to see in  in the future. A Heaps law analysis indicatesE. coli
the population of domain sequences is larger, but this analysis is also very
sensitive to smaller changes in the computation procedure. The resolution
between strains is good despite the coarse grouping obtained by domain
sequence families. Clustering sequences by their ordered domain content give
us domain sequence families, who are robust to errors in the gene prediction
step. The computational load of the procedure scales linearly with the number
of genomes, which is needed for the future explosion in the number of
re-sequenced strains. The use of domain sequence families for a functional
classification of strains clearly has some potential to be explored.
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Introduction
Microbial pangenomics has attracted interest over recent years, 
stimulated by the availability of sequence data from whole-genome 
re-sequencing projects1–7. The pangenome of a prokaryotic species 
is the collection of gene families for the entire species, as opposed 
to a single genome, which is the set of genes in a functional organ-
ism. The pangenome diversity can be huge, which is also reflected 
in the span of phenotypes. An example of this is found in the model 
organism Escherichia coli8,9. Currently there are more than a thou-
sand E. coli genomic projects listed10 and this number will grow in 
the near future, along with genomes for many other bacteria; it is 
reasonable to assume that pangenomics will attract more attention.

The fundamental step in any pangenome analysis is the computation 
of gene families. Several approaches to computing gene families 
have been used in previous pangenome analyses1,11,12, but this part 
of the analysis has received little attention. A pangenome analy-
sis typically involves the estimation of the size of the core and the 
pangenome, measured by the number of gene families, and several 
methods have been proposed for doing this1,11,13,14. The core is the 
set of gene families present in all genomes of the population. The 
remaining gene families are more or less abundant among the ge-
nomes. The sample pangenome size is the total number of gene 
families found in the currently available genomes, while the popula-
tion pangenome size is the number of gene families we expect to see 
if every single strain was sequenced. It is the latter which is of scien-
tific interest, but it must be estimated from the former. A fraction of 
the gene families will be found only in a small number of genomes, 
and those observed in only a single genome are called ORFans.

The first step of a gene family computation is to obtain a list of 
protein coding genes for each genome under study. Completed ge-
nomes will have a set of annotated genes, but the quality of these 
annotations may vary between projects. A pangenome analysis will 
often include draft genomes as well, where annotations are lacking. 
For these reasons it is convenient to start the analysis by a gene-
finding step, treating all genomes the same way, and minimizing 
variability due to different annotation procedures. Even if prokar-
yotic genes are in most cases simpler to detect than eukaryotic 
counterparts, there are still problematic cases15. In case of the draft 
genomes, where the genome sequence is spread out on a (large) 
number of contigs, the gene-finding problem is even more difficult. 

Ideally, we would like to compute gene families in a way that mini-
mizes the effect of various gene finding algorithms.

The second step is to group proteins into gene families. A gene 
family is basically the set of orthologs and in-paralogs collected 
from the various genomes. The most common approach so far 
is based on all-against-all alignments to compute some kind of  
similarity/distance between all proteins, and then finally cluster 
these. This approach poses some problems. First, the all-against-all 
approach is not computationally feasible in the long run since the 
number of genomes grows rapidly. Second, the clustering proce-
dures always involve some granularity threshold implicitly defining 
the size/number of gene families. Some kind of thresholding seems 
impossible to avoid, but it would be desirable to allow it some vari-
ability over gene families, since some gene families are expected to 
be more conserved than others. Finally, false predicted ‘genes’ will 
not align well to any other, and produce singelton clusters adding, 
sometimes dramatically, to the total number of gene families found.

When grouping protein coding genes, we find it natural to consider 
the presence of common protein domains. Domains are closely 
linked to gene function16. Previous work has demonstrated that the 
functional repertoire of a genome can be predicted by the knowl-
edge of domain content17,18. In addition, focusing on the combina-
tion of domains in each protein, instead of the frequency of each 
domain separately, we come even closer to the protein function19,20. 
A grouping of proteins by function rather than by evolutionary dis-
tance seems like a good alternative, since pangenomics is in many 
cases about the study of functional diversity.

The Pfam-A database21 is a comprehensive collection of domains, 
curated and of high quality. Each entry is characterized by a profile 
hidden Markov model, and until recently it has been quite time con-
suming to search against such a database. However, with the launch-
ing of the HMMER3 software22,23, it is now possible to search with all 
proteins within a genome against the entire Pfam-A database in rea-
sonable time (few minutes), even on a laptop. The idea of using do-
main information in comparative genomics is not new, and Yang et al. 
used genome-wide domain frequencies to reconstruct phylogenetic 
trees24. Their study considered diverse genomes from both prokary-
otes, eukaryotes and archaea, quite opposite of pangenomics, where 
we focus only on genomes from the same species. An argument for 
using domains was that structure is more conserved than sequence, 
and that domain information provides a view into ancient history24. 
In this perspective one may question the use of domain information 
for pangenomics studies, since they may provide too low resolution.

In this paper we consider domain sequence families defined by the 
domain sequence of each protein as an alternative to gene fami-
lies for pangenome studies. The domain sequence is the ordered 
sequence of non-overlapping domains along the protein. Clusters 
computed in this way will be coarse compared to previously used 
gene families, but are closely linked to gene function. We describe 
the procedure of computing such gene families, and consider the 
effect of gene prediction and of the use of draft genomes in the 
analysis. We use this approach in a pangenome study of the model 
organism Escherichia coli, the prokaryotic species with the largest 
set of available genomes.

            Changes from Version 1

Based on the reviewers comments we have made some changes 
in the paper. The number of domain sequence families in the 
RefSeq annotated genomes has been corrected, and strengthen 
the point of uncertainty in gene predictions. We have added to the 
manuscript some more details around the K-12 strains (subsection 
Functional space). We have made efforts to improve the language 
according to the reviewers suggestions, correcting errors and 
re-written some of the text. We have also provided the raw data for 
the pan matrix and provided additional cluster information so that 
the research community can benefit from our findings.

See referee reports
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Materials and methods
The methods we have used for gene prediction and database scan-
ning are all standard and free software, see below. We acknowledge 
that the gene finders have tuning possibilities, and that slightly dif-
ferent results may be obtained by using this. We have used only 
default settings, or settings suggested in accompanying manuals, in 
order to make the approach as universal as possible. The data are 
from the model organism Escherichia coli only, and many of the 
more specific results cannot be extended to other species. However, 
the procedures are applicable to all prokaryotes where we have ge-
nomes from many strains available.

Data
Genome sequences for Escherichia coli were downloaded from 
NCBI25 on June 15 2012. At that time, there were 56 completed and 
291 draft genomes available as contigs.

Gene finders
In a pangenome study involving draft genomes some automated gene 
finding is needed. For each genome we predicted genes using the 
three popular gene finders Prodigal26, GeneMark27 and Glimmer28.

The Prodigal gene finder (v2.60) was run by the command line

prodigal -i gnom.fsa -o pred.txt -q

where gnom.fsa was a FASTA-formatted input file with the ge-
nome sequences, and pred.txt was the output file.

The GeneMark predictions were obtained by first training a Hidden 
Markov Model (HMM) using GeneMark.S (v4.6b):

gmsn.pl –combine –clean –gm gnom.fsa

which produced a model file GeneMark.hmm.combined.mod. 
Next, this was used to predict genes by GeneMark.hmm, prokary-
ote version 2.6:

gmhmmp -m GeneMark.hmm.combined.mod -o pred.
txt gnom.fsa

The Glimmer predictions were obtained by the tigr-glimmer wrap-
per software for linux. First, the long.orfs software was used to ex-
tract training sequences from the genome sequences:

tigr-glimmer long-orfs -n -l -t 1.15 -g 30 
seq.fsa coord.txt tigr-glimmer extract -t 
seq.fsa coord.txt >> train.fsa

where seq.fsa was the FASTA file with a single genome se-
quence. This was repeated by looping through all genome sequenc-
es, producing the file train.fsa with training sequence data. 
Next, an Interpolated Context Model (ICM) was trained:

tigr-glimmer build-icm -r glim.icm < train.fsa

where glim.icm was the model file output. This was finally used 
to make gene predictions

tigr-glimmer glimmer3 -o50 -g110 -t30 –linear 
–extend gnom.fsa glim.icm pred.txt

In all cases the gene predictions were stored as a table with one 
row for each predicted gene, and with columns GenomeSequence 
(name of genome sequence where it is found), Strand (1 or -1), 
Left (smallest coordinate), Right (largest coordinate) and Partial 
(logical indicating if the gene runs over the start/end of the genome 
sequence). This format makes comparison of gene predictions 
straightforward.

Effect of gene prediction
We wanted to examine the effect of various gene finders on the list of 
proteins obtained from each genome. For this study we only focused 
on the 54 completed genomes with annotated proteins in the RefSeq 
database29. Given the curation of the RefSeq database, and the fact that 
E. coli is the most well studied prokaryotic genome, we expect these 
RefSeq annotations to be as close to the truth as one can expect for any 
prokaryotic organism. Thus, by using the three gene finders described 
above we obtained four sets of proteins for each of the 54 genomes. 
We compared these sets using the Jaccard distance defined as
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where S
a
 and S

b
 are two sets of proteins and |.| indicates cardinality 

(number of elements in the set). A distance of 0.0 means the two sets 
S

a
 and S

b
 are identical, while the maximum distance of 1.0 means 

they are non-overlapping. In this comparison, two proteins were con-
sidered equal only if they were exactly identical (identical amino acid 
sequence). After extraction of domain sequences from each protein 
(see below) we again computed Jaccard distances. This time two pro-
teins were considered equal if they had identical domain sequence.

Final gene prediction
For the sake of completeness all genomes, both complete and draft, 
were subjected to the same analysis. Since we subsequently filtered 
all results through the Pfam-A database (see below), we were less 
concerned about false positive gene predictions at this step. To obtain 
a comprehensive gene-list, we ran all three gene-finders on each ge-
nome, and compiled the union of the results into one long list of ORFs 
for each genome. In the cases where the same stop-codon had alterna-
tive starts, we always chose the longer ORF, again due to the later 
Pfam-A filtering. All partial ORFs (lacking start and/or stop codon) 
were eliminated before the analysis. We made no attempt to resolve 
overlaps between different ORFs. Finally, all remaining ORFs were 
translated to protein.

Pfam search
FASTA-formatted files of protein sequences were queried against the 
Pfam-A database version 26.021 using the HMMER 3.0 software22,23. 
The search was done using the command line

hmmscan -o out.txt –cut_ga –noali –cpu 0 –
domtblout res.txt Pfam-A.hmm prot.fsa
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and out at unknown rates. If we arrange the G = 347 genomes in 
some fixed order, we can define n

g
 as the number of new families 

seen in genome g compared to the previous g – 1 genomes. The 
Heaps law says that

	 E (n
g
) = bg–a	 (2)

where b is some intercept and α is the parameter of interest. An α 
below 1 indicates the number of new families does not decrease 
fast enough for the pangenome to be limited, i.e. if the number 
of genomes G grows towards infinity the number of new families 
observed will never reach zero. Parameters can be estimated from 
data, by repeatedly permuting the order of the genomes and count-
ing n

g
 for g = 2,..., G, after each re-ordering.

Binomial mixture model analysis
As explained above, let x

j
 be the number of genomes in which we 

observe domain sequence family j. Let y
g
 be the number of families 

found in g genomes (number of x
j
’s with value g). Then y

g
 is also 

a random variable. The probability density of this variable, e.g. the 
one depicted in Figure 3, can be described by a K component bino-
mial mixture model

f y
k
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=
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where b(ρ
k
) is the binomial density with probability ρ

k
 and π

k
 is the 

mixing proportion (the π
k
’s sum to 1.0). The left pie of Figure 7 is a 

visualization of a K = 12 component model, where the size of each 
sector is the corresponding π

k
 and the color of each sector indicates ρ

k
, 

for k = 1,..., 12. Summing y
1
,y

2
, ...,y

347
 we get the number of domain 

sequence families seen so far, i.e. the sample pangenome size. From 
the binomial mixture model we can also predict y

0
, the number of 

families not yet seen, and in this way we can estimate the population 
pangenome size11,14. The probabilities ρ

k
 we refer to as the selection 

probabilities. A domain sequence family with selection probability 
0.1 will on average be present (selected) in 1 out of 10 genomes.

Genome diversity can also be expressed as the overlap between 
genomes, and for this we could use the mean Jaccard distance de-
fined above, where S

a
 and S

b
 are two sets of domain sequences (two 

genomes). Genome fluidity, introduced in30, is an almost identi-
cal measure. A small Jaccard distance/genome fluidity indicates a 
small degree of uniqueness in each genome, i.e. large overlap. The 
expected overlap between two genomes can also be computed di-
rectly from a fitted binomial mixture model in an elegant way. The 
expected number of domain sequence families in a genome is

		           E
1
 = N ∑

k
K

=1
 ρ

k
π

k
 

where N is the population pangenome size. The expected number 
of domain sequences found in two independent genomes simultane-
ously is 

		          E
2
 = N ∑

k
K

=1
 ρ

k
2π

k
 

since the probability of selecting a domain sequence family twice 
is ρ

k
 • ρ

k
, given that ρ

k
 is its selection probability. The expected 

where res.txt is the name of the output file, Pfam-A.hmm  is 
the HMMER3 database and prot.fsa is the FASTA-formatted 
input file of protein sequences to scan. We used the option –cut_ga 
in order to invoke the curated inclusion thresholds inherent in the 
Pfam-A models. The iEvalue (independent E-value) was used as the 
criterion in the cases where we wanted to overrun these thresholds, 
using a stricter level of significance.

Proteins giving no hits in Pfam-A were discarded from the down-
stream analysis. This step presumably filtered out the majority of 
the false positive gene predictions from the gene-finding step. We 
observed that predicted proteins with Pfam-A hits did in general 
not overlap each other on the genomes, but no restrictions were 
imposed to reduce or filter out those overlaps that occurred.

Domain sequences
For every protein sequence the significant hits were listed in their order 
of appearance along the protein. In the cases where two or more do-
mains were overlapping, the one with largest E-value was eliminated, 
and this was repeated in a recursive procedure until no more overlaps 
between hits were found. There is a small number of nested domains 
(domains inside domains) in the Pfam database, but we chose to elim-
inate all occurrences of overlaps. The domain sequence of a protein 
is the ordered list of Pfam accession numbers, and multiple hits of 
the same domain may occur as long as they are non-overlapping. It 
is a high-level alternative to the amino acid sequence representation 
of a protein. Finally, we grouped into domain sequence families all 
proteins having identical domain sequence.

Pan-matrix
The fundamental data structure for a pangenome analysis is the 
pan-matrix. This matrix has one row for each genome and one col-
umn for each domain sequence or gene family, and cell ( i , j ) holds 
the number of copies of domain sequence family j in genome j, 
alternatively just 0 or 1 to indicate absence/presence, the latter be-
ing used in this paper. Let x

j
 be the number of genomes in which 

family j is present. It is natural to view x
j
 as a random variable, the 

randomness mainly due to our random selection of genomes since 
there are obviously many genomes we could have, but have not yet, 
looked into. The variable x

j 
can take any integer value from 1 to G, 

where G = 347 is the number of genomes in this study.

Each row of the presence/absence pan-matrix is a coordinate vector 
indicating the location of the corresponding genome in a domain 
sequence space. This domain sequence space is closely related to a 
functional space in the sense that neighbors in this space are likely 
to display similar functions. This space is high-dimensional (many 
different functions), but in order to visualize the genomes relative lo-
cation in this space we used a principal component decomposition to 
extract the most dominant directions. The genomes location along 
these dominant directions give us some indications of their relative 
location in the functional space.

Heaps law and population closedness
Using a Heaps law type of regression model, Tettelin et al. made 
an estimate of pangenome closedness13. A closed pangenome 
means the gene families are sampled from a stable and finite set, as  
opposed to an open pangenome where gene families ‘migrate’ in 
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or the built-in inclusion thresholds in the Pfam-A models are too 
liberal, resulting in a substantial number of false positive hits. To 
investigate the latter, we tried out stricter significance thresholds 
in the HMMER3 software. Even for an E-value of E = 10-10 we 
found around 106 extra domain sequence families per genome in 
the union of the three gene finders compared to the RefSeq annota-
tion. We believe this illustrates that annotated genomes still contain 
several ‘holes’, which is also the conclusion of others15. The fact 
that gene finding in prokaryotes is simpler than in eukaryotes may 
have created an illusion that it is straightforward and nearly 100% 
reliable, when careful studies have shown that typical bacterial ge-
nomes have around 10% genes that are false positive, and another 
10% of the proteins discovered by proteomics are missing31–33. An-
giuoli et al. suggested an annotation procedure based on the whole-
genome alignment of all genomes in a pangenome study, and found 
a disturbing amount of inconsistencies in public annotations34. For 
E. coli less than 50% of the gene-structures were consistently an-
notated across 30 genomes, and the majority of the inconsistencies 
were due to differences in start codons positions.

E. coli domain sequences
The input to the analysis was a set of 347 genomes of E. coli, 56 of 
these were completed and 291 were available as contigs, all public 
data downloaded from NCBI25. The left panel of Figure 1 shows 
the size distribution for the completed and the draft genomes. The 
first step was to predict genes in all genomes by three different gene 
finders, as explained in the Methods section. As seen in the center 
panel of Figure 1, this resulted in a list of roughly 7000–8000 pre-
dicted genes in each genome, which is far more than the 4500–5500 
genes usually found annotated for E. coli genomes. This reflects the 
disagreement between the gene finders, and we expect a large pro-
portion of false positives in this set. The second step was to scan all 
predicted proteins against the Pfam-A database. Protein sequences 
producing no hits in Pfam-A were discarded from the downstream 
analysis. Roughly 4000–5000 proteins from every genome pro-
duced significant hits in Pfam-A, see Figure 1, right panel. We also 
note that the difference between completed and draft genomes is 
more or less nonexistent after this step. This justifies the use of draft 
genomes in pangenome studies like this.

Considering all sequences from the 347 genomes, a total of 3679 
unique Pfam-A domains/families produced significant hits, which is 
approximately 30% of the entire database. This produced a total of 
5724 unique domain sequence families for the 347 E. coli genomes, 
with around 2500 in any single genome (2549 for the completed 
genomes, slightly less for the draft genomes). This is a small num-
ber compared to the number of gene families previously found for  
E. coli9. The domain sequence families are expected to be fewer and 
larger clusters compared to the previously computed gene families. 
First, not all genes have domains listed in Pfam-A, and these are 
discarded here. This significantly shortens the list of clusters, pre-
sumably also eliminating a large majority of the false positive gene 
predictions. Second, some domain sequence families are large, con-
taining proteins sharing perhaps only a single domain. In these cases 
a domain sequence family may contain more than one gene family.

The most common domain sequence family in E. coli is the single-
domain protein containing the major facilitator superfamily (MFS) 

overlap between two genomes can be expressed as E
2
/E

1
. Note that 

the pangenome size N cancels out, and the result only depends on 
the selection probabilities in combination with the mixing propor-
tions. The expected overlap between 3 and more genomes can be 
computed along the same lines.

Results and discussion
Gene prediction
Before we commenced the full scale analysis, we wanted to inves-
tigate the effect of gene finding algorithms. To this end, we consid-
ered only the 54 complete E. coli genomes with annotations in the 
RefSeq database29 at the time of this study. In Table 1 we show how 
the sets of genes differ between the official RefSeq annotation and 
the three most commonly used gene finders for prokaryotes. From 
the upper triangle of the table we see that the Jaccard distance to the 
RefSeq annotations is large in all cases. Even for Prodigal, which 
comes closest to the RefSeq annotations, the distance is 0.26. For 
a list of 5000 proteins, this corresponds to around 750 proteins on 
each list not being found in the other. Also the differences between 
the gene finders are large, and there is a severe uncertainty in any 
list of genes obtained by any single gene finder. In the lower triangle 
of Table 1 we see how the differences are reduced dramatically once 
we only consider domain sequences. This means all proteins with-
out Pfam-A hits are discarded, and the remaining proteins are only 
compared by the domain sequence. The difference in start codon 
predictions, causing the majority of differences in the first compari-
son, no longer have any impact. If two proteins have the same do-
mains, it does not matter how they compare outside these domains.

In the RefSeq annotated genomes we found on average around 2436 
unique domain sequence families (from 2257 to 2628). Using the 
union of the three gene finders, we found on average 2549, i.e. 113 
domain sequence families more. A more detailed counting showed 
that from the RefSeq genomes around 12 families (0.5%) from each 
genome is not found by any of the three gene finders. On the other 
hand, the three gene finders find on average 125 other domain se-
quences families in each genome compared to the RefSeq annota-
tions. This means that either the RefSeq annotated genomes have 
missed quite a number of domain-containing protein sequences, 

Table 1. Gene finding. For each of the 54 RefSeq-annotated  
E. coli genomes we compared the set of annotated genes and the 
set of predicted genes from Prodigal, Glimmer and GeneMark. The 
Jaccard distance between all pairs of sets was computed, see 
Method section. First, two genes were identical only if they have 
identical amino acid sequence. The upper triangle (above the 
diagonal) shows the mean Jaccard distance over the 54 genomes in 
this case. Next, we computed the Pfam-A domain sequence of each 
predicted protein, discarding all proteins without Pfam-A hits, and 
again computed the Jaccard distance between the sets. The lower 
triangle (below the diagonal) shows the mean Jaccard distance over 
the 54 genomes in this case.

RefSeq Prodigal GeneMark Glimmer

RefSeq 0.26 0.40 0.77
Prodigal 0.03 0.35 0.78
GeneMark 0.04 0.02 0.78
Glimmer 0.35 0.34 0.34
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In Figure 3 we show the distribution (presence/absence) of domain 
sequences over the E. coli population. The leftmost bar is the number 
of ORFans, domain sequence families found in one single genome 
only. We found 909 ORFans when considering all 347 genomes. 
The rightmost bar are the 479 core domain sequence families found 
in at least one copy in all 347 genomes. The distribution is very 
similar in shape to what we usually see for pangenomes of other 
data sets and where gene families are computed. Hence, also the do-
main sequence families are distributed across genomes in this way.

The most remarkable result is the large number of ORFans. More 
than 15% of the domain sequence families found in E. coli are seen 
in only 1 out of 347 genomes. The Pfam-A models are curated and 
have a built-in threshold for assigning significant hits. However, 
given our approach, where we scan a list of presumably many false 
positive protein predictions, we may be extra restrictive when con-
sidering the hits. In Figure 4 we show how a systematic change in  

transporter with accession PF07690.11. This is found in around  
50 copies in every single genome. Other very frequently occurring 
single-domain proteins are the binding-protein-dependent transport 
system inner membrane component (PF00528.17), and the ATP-
binding domain of ABC-transporters (PF00005.22). Among the 
multi-domain proteins the sequence PF00126.22, PF03466.15 is the 
most common. This is a domain sequence characteristic of HTH-
type transcriptional regulators, and it occurs in more than 30 copies 
in each of the 347 E. coli genomes investigated here. Figure 2 shows 
that more than 3000 of the domain sequence families are defined 
by a single domain, while gradually fewer families are defined by 
multi-domain-sequences. Single-domain proteins also clearly out-
number the multi-domain proteins in the genomes, contrary to what 
is sometimes claimed35. The longest domain sequence contains 25 
non-overlapping Pfam-A hits in the same protein, mainly multiple 
copies of PF05662.9 and PF05658.9, both short repeats associated 
with haemaglutinins. This protein is found in 4 of the 347 genomes.

Figure 1. Complete and draft genomes. The box and whisker plots illustrate the differences between completed and draft genomes in this 
study. The left panel shows that the 56 complete genomes are somewhat smaller in size measured in megabases. This is most likely due 
to unresolved overlaps between the contigs in the draft genomes. The middle panel contains the number of unique genes predicted by the 
three gene finders after the elimination of all partial predictions (lacking start or stop codon). Notice the large number of predicted genes 
in virtually all cases, annotated E. coli genomes usually have 4500–5500 genes. Among the draft genomes some genomes have very few 
predicted genes, seen as circles. The rightmost panel shows the number of predicted genes with at least one Pfam-A hit. Except from four 
draft genomes with extremely few genes, the differences between complete and draft genomes are now ignorable.
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Figure 2. Domain sequence lengths. The bar chart shows how many domain sequences have 1 domain, 2 domains,...etc up to 25 domains. 
These are all non-overlapping hits in the protein. Single-domain proteins makes up more than half of the total number.

Figure 3. Gene family distribution. The distributions of how many domain sequence families are found in 1, 2,...,347 genomes. There are 909 
ORFan families (leftmost bar), 479 core families (rightmost bar) and in total there are 5724 unique domain sequence families (sum of all bars).
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E-value cutoff changed the number of core families and ORFan fam-
ilies. As we lower the E-value cutoff, little happens to the number of 
core families, but the number of ORFans drops markedly. This dem-
onstrates that the ORFan are, as usual, the most uncertain families. 
In the downstream analysis we made a parallel analysis using the 
E-value cutoff 10-10 as a strict alternative to the built-in thresholds.

Tabular overview of genomes

1 Data File

http://dx.doi.org/10.6084/m9.figshare.95925

Archive of FASTA-formatted files containing predicted proteins 
for each genome

347 Data Files

http://dx.doi.org/10.6084/m9.figshare.95929

The 347 text files show the results from scanning each of the 
fasta-files against the Pfam-A database

347 Data Files

http://dx.doi.org/10.6084/m9.figshare.95928

Functional space
Domains are usually well conserved, and may show too few dif-
ferences between strains within a species, i.e. all genomes contain 
more or less the same domain sequences. To examine this, we 
computed the Manhattan distance between every pair of genomes, 
which is simply the number of domain sequences where the two ge-
nomes differ in presence/absence status (ignoring copy numbers). 
Figure 5 shows a histogram of all pairwise distances. The median 
distance between two genomes is around 500, meaning there are 
500 distinct domain sequences contained in one of the genomes 
but not the other. Only two genomes came out identical, and this 
is actually the same strain, BL21(DE3), sequenced at two different 
locations (Korea and Austria), but stored under unique accession 
numbers in the database. There are actually several other examples 
of multiple sequencing of the same strain in this dataset (2 versions 
of strain DH1, 2 of strain KO11FL, 3 of strain W), but in all other 
cases at least 3 or more differences are found between genomes. As 
an example, among the four K-12 strains in this dataset the differ-
ences in domain sequences are from 5 (between substrains MG1655 
and W3110) to 94 (between substrains MG1655Star and DH10B). 
Hence, even very closely related strains of the same serotype have 
plenty of differences in domain sequence absence/presence. Using 
the strict E-value cutoff reduced the median distance to around 450, 
but did not change the shape of the histogram. The small ‘bump’ 
on the right hand side is due to a few genomes being quite different 
from the rest. These are all draft genomes with a large number of 
contigs, producing a smallish number of domain sequences.

Figure 4. Effect of significance cutoff. The horizontal axis is the – log10 of the HMMER3 E-value cutoff and goes from E = 10-0 on the left to  
E = 10-15 on the right. The blue curve shows how the number of core families drops by stricter cutoff (going from left to right), and the red curve 
similar for the number of ORFan families.
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Figure 5. Functional distances. A histogram over all pairwise Manhattan distances between the genomes. The distance between two 
genomes is defined as the number of domain sequence families they differ in presence/absence status, i.e. a distance of 500 means there 
are 500 different families contained in one but not the other genome.

We may think of each domain sequence as representing a small 
repertoire of functions the genome can inhabit. For each genome 
the vector of presence/absence of the set of domain sequences will 
correspond to a location in a functional space, and the Manhattan 
distance between two genomes in this space is a functional distance. 
A pangenome tree can be made from these Manhattan distances36. 
However, any tree visualization will suffer when we have as many 
as 347 leaf nodes. Supplementary figure 1 illustrates a pangenome 
tree for the 347 E. coli genomes.

This sample of E. coli genomes contains several potential sub- 
samples, i.e. strains having more in common than just being of the 
same species. It is natural to see where these are located in this 
functional space, and here we have looked at the four largest sub-
samples in the data set. In37 it was found that ETEC type of strains 
shared some genomic features distinguishing them from other  
E. coli, and it is reasonable to expect that certain strain subsets will 
cluster within the total collection of E. coli genomes. We used a 
principal component analysis on the present/absent pan-matrix as 
described in the Methods section. This functional space is high- di-
mensional, i.e. many principal components directions are needed to 
explain the majority of the variation between genomes. In Figure 6 
we have plotted each genome as a dot in the subspace spanned by 
first two principal components directions only. As seen from the 
axes labels these two directions account for less than 20% of the to-
tal variation between genomes, but still, the clustering of the enter-
ohaemmoragic serotypes (O157:H7, light blue dots and 0104:H4, 

dark blue dots) is clearly visible. The collection of diarrheagenic 
strains (red dots) are clumped at several locations, indicating a mix-
ture of functional content. The Human Microbiome Project strains 
(green dots) are all located to the right hand side of Figure 6. Using 
the strict E-value cutoff hardly changed the picture in Figure 6 at 
all. This is due to the extreme stability of a multivariate analysis like 
PCA. Since we know from Figure 4 that this strictness reduces the 
number of ORFans, it means the picture in Figure 6 is marginally 
influenced by ORFan gene families.

A pan-tree for 347 E. coli genomes

1 Data File

http://dx.doi.org/10.6084/m9.figshare.95927

Cluster Information

1 Data File

http://dx.doi.org/10.6084/m9.figshare.103706

Pan Matrix Data

1 Data File

http://dx.doi.org/10.6084/m9.figshare.103707
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that after 1 million sequenced E. coli genomes(!) we still have not 
seen more than 9442 domain sequences. As such, the result is not 
that different from the mixture model estimate.

We repeated the computations using the strict E-value cutoff in 
the HMMER3 software. The sample pangenome then reduces to 
4745 (from 5724) observed domain sequence families, since only 
very significant (E < 10-10) Pfam-A hits are now considered. The 
binomial mixture model gives a pangenome size estimate of 4973, 
which still means a coverage around 95%. The Heaps law analysis, 
however, results in a closed population, with α = 1.01 and an esti-
mate of its size at 4876 domain sequences. This illustrates how the 
choice of cutoffs in the sequence clustering may change a result 
completely. The Heaps law analysis is extremely sensitive to the 
number of ORFans in the data set.

The sample core size is 479 domain sequences, and the binomial 
mixture model predicts the population core to be 462. However, the 
notion of the core is difficult, since we require a core domain se-
quence to be present in every single genome. Due to the uncertainties 

Pangenome analysis
In this sample of 347 E. coli genomes we find 5724 unique domain 
sequences. Using the binomial mixture model suggested in14, the to-
tal pangenome size is estimated to 6040. Employing the suggested 
bagging procedure, we find that in 90% of the re-sampled cases the 
estimate is between 5998 and 6136, reflecting the uncertainty in the 
data. This should be regarded as a lower bound estimate, but indi-
cates we have already seen the majority of domain sequence families 
in E. coli. The observed set of domain sequences covers around 95% 
of the predicted pangenome.

We also conducted a Heaps law analysis as suggested by13. From 
this it seems the population of E. coli domain sequences is open. We 
fitted the Heaps law model to these data, using 100 random permu-
tations of genome ordering, and came up with the estimate 0.94 for 
the parameter α in the model. A value of α < 1.0 is consistent with 
an open population. This means the population size is unbounded 
when extrapolating the Heaps law trend into many more sequenced 
genomes. However, unbounded is a mathematical term, and an un-
bounded function can still grow very slowly. The model predicts 

Figure 6. Genomes in functional space. Each dot corresponds to a genome plotted in the two first principal component directions of the  
E. coli functional space defined by the presence/absence of domain sequence families. There are four large subsets of genomes in the data 
set, and these dots are marked with colors, see figure legend. The first principal component accounts for 11% of the total data variation, and 
the second component 8%. Only relative positions of the genomes (dots) are important, the absolute scores on each axis lacks interpretation.

Page 10 of 17

F1000Research 2013, 1:19 Last updated: 22 JAN 2014



Figure 7. Binomial mixture model. The left pie chart visualizes the E. coli pangenome and the right pie chart a single E. coli genome 
described by a binomial mixture model. There are 12 sectors, and the colors indicate the selection probabilities as displayed on the right 
hand colorbar. The size of the each sector shows its relative contribution to the pangenome (left) or a single genome (right). The pangenome 
is dominated by domain sequences having either a very large (darker blue sectors) or very small selection probability (pink sectors). In a 
single genome the highly conserved domain sequences (darker blue) clearly dominate.

in gene prediction and computation of sequence clusters, such a 
crisp limitation of the core is unfortunate. From the binomial mix-
ture model we get a much better and more robust picture by con-
sidering the estimated selection probabilities behind every mixture 
component. In Figure 7 we have visualized the E. coli pangenome 
as a pie chart, where the colors indicate the selection probabili-
ties. Using the Bayesian Information Criterion (BIC) we found that 
12 components was optimal for the current data set. This means  
E. coli domain sequences can be grouped into 12 distinct sectors 
with respect to how often they appear in the genomes. The core 
genes is one of these types, having selection probability 1.0 since 
they occur in every genome (darkest blue sector). Notice also the 
large sector of domain sequences with a selection probability of 
0.988. Even the third darker blue sector has a selection probability 
of 0.966. The large number of domain sequence families in these 
sectors are also highly conserved, and could be seen as core fami-
lies for all practical purposes.

The coloring in Figure 7 reflects the commonly used division of the 
pangenome into three types of genes; the core (dark blue), the shell 
(light blue/green) and the cloud (orange/pink)38,39. By allowing the 
mixture model to have many more components, we found 12 was op-
timal here, we can cope with the fact that genomes are not uniformly 
distributed within the population. The distribution in Figure 3 is af-
fected by this, e.g. since we have 31 genomes of serotype O157:H7 
in the sample we expect there will be a small ‘bump’ in the dis-
tribution at 31 genomes, reflecting the domain sequence families 
common to these closely related genomes. The binomial mixture 
approach can be illustrated by a lunch buffet table, with each single 
genome as a plate to be filled with content from the pangenome 

(the buffet table). Some families on the buffet are always selected, 
and turn up on every plate. These are the core families. The other  
families are more or less popular, and have different probabilities of 
being selected. Some families are very unlikely to be selected, but if 
there is a large number of them, some of them will end up in almost 
every genome. However, these ORFans are so unlikely to appear 
they are never seen twice.

The right hand pie in Figure 7 shows the expected distribution 
of domain sequence families within an average E. coli genome. 
Clearly, the darker blue domain sequences make up the majority. 
The size of the pangenome is largely due to the big number of OR-
Fan domain sequences (pink sectors in left pie), but in any average 
genome these makes up a small minority (pink sectors in right pie). 
The expected overlap between two genomes is 0.90, i.e. on aver-
age 90% of the domain sequence families in one genome are also 
found in another. We also computed the genome fluidity to 0.11 
and the mean Jaccard distance between two genomes to 0.18, both 
indicating a small uniqueness (lack-of-overlap) in each genome.

Conclusion
Any study of pangenomes involves the clustering of sequences into 
gene families, and the results obtained will invariably depend on the 
way gene families are computed. In this paper we have proposed an 
alternative based on protein domains to obtain stable sequence clus-
ters. The cost of this stability is the loss of some genes in the study, 
since only proteins with known domains are considered. We have 
used only the Pfam-A database, and by extending it to also include 
other databases (e.g. Pfam-B, CDD, InterPro), some more hits would 
probably be found, reducing this loss. Also, domain sequence families 
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are large and ‘coarse’ compared to the protein families usually con-
sidered in pangenomics. However, the gain of this approach is a 
robustness with respect to gene prediction, eliminating many false 
positive proteins from the analysis as well as the potential effect of 
the inconsistent annotation of start codons. More attention should be 
given to improve gene prediction for prokaryotes, and the recent ap-
proach taken by Angiuoli et al.34 is a good idea for pangenome data. 
The standard approach has been to predict genes in one genome at 
the time. When multiple strains are sequenced, we can instead find 
genes conserved across many genomes, and from this improve the 
consistency of start codon predictions, which is the major difficulty.

Another advantage of our proposed approach is the fact that Pfam-
A domains have a built-in significance threshold optimized for each 
individual HMM, and by using this we obtain domain sequence fami-
lies with variable heterogeneity reflecting the various degree of con-
servation of different types of proteins. The procedure for computing 
such domain sequence based gene families is straightforward and 
highly reproducible, using only publicly available software. Finally, 
each genome is only scanned once, which means the computational 
load scales linearly in the number of genomes.

Despite that domain sequence families are large, with potential low 
resolution between strains, we find plenty of differences in E. coli 
strains. We also find meaningful groupings of strains, indicating that 
the differences are not just random ‘noise’ but have plenty of bio-
logical foundation. The use of domain sequences for classification of 
strains clearly has some potential, and this should be pursued further.

With as many as 347 genomes, and more than 1000 soon avail-
able, we would expect the E. coli pangenome to be fairly well cov-
ered. By counting domain sequence families, this seems to be the 

case. Our lower bound estimate of pangenome size indicates we 
have seen perhaps as much as 95% of all domain sequences ever 
to be found in this species. Domain databases, like Pfam-A, will 
still grow but the number of single domain proteins is leveling out, 
and the future growth will mainly be due to new domain sequence 
combinations40. There is an endless number of possible domain 
combinations even with todays databases, and for E. coli we must 
expect some new combinations in future sequenced genomes. How-
ever, with an overlap of 90% between any two E. coli genomes the 
time of big surprises is gone. The Heaps law analysis indicates the 
population is open, but we believe this analysis is too sensitive to a 
smallish number of ORFan families in the data set. Also, the entire 
concept seems to build on the assumption of a uniform sampling of 
strains, which is clearly not the case for E. coli.
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The authors provide an excellent-outstanding computational analyses of the  pangenome withe. coli
respect to protein coding across more than 50 complete genomes and 350 complete and whole genome
shotgun (incomplete) genomes.
Importantly, they evaluate the proteins and protein families by recomputing/predicting families, rather than
relying on GenBank/RefSeq annotations, which can vary depending upon source. Their work is
well-documented and should serve as a gold standard for pangenome analyses of protein families for
many bacteria.

There are however, some minor improvements that can be made to this paper:

 On top right column of page 7, the authors  state that “Only two genomes are identical…1. explicitly
BL21(DE3). Since several non-identical K-12 strains are included in their Data File(MG1655, W3110,
DH10A, and a couple others), authors should simply state how many K-12 strains were included in their
analyses.

 It would be especially helpful to the community, if the authors can post data files of their analyses, e.g.,2.
the raw data used to generate their pie charts in Figure 7. I am sure users would more widely cite their
efforts if such results can be made easily accessible.
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 04 October 2012Referee Report:
The authors provide a very interesting insight into how one can reliably identify genes and classify them
into gene families in fully sequenced bacterial genomes and apply this approach to 347 fully sequenced 

genomes.Escherichia coli 

They avoid annotation problems by first running a very crude gene prediction program, that returns a large
number of genes with a large proportion of false positive open reading frames (ORFs). For these ORFs
they then predict Pfam-A domains. All ORFs for which no domain could be predicted were discarded.
They then show that the remaining set open reading frames closely resembles the number of ORFs
expected from manually curated genome annotations. They then go on and analyse the domain
sequence composition of all remaining ORFs and provide a comprehensive pan genome analysis. In
conclusion, the paper presents a very interesting approach to solve gene classification problems in
pan-genome studies, a field that rapidly gains significance as whole genome sequencing becomes
cheaper and cheaper.

The paper is well written and very comprehensive. The data is presented clearly and is directly
downloadable from within the paper. The author even explain complex problems with interesting similes,
which I thought was a nice idea and helped me to understand the presented ideas.

There are only a few minor problems that should be addressed:

 One thing needs clarifying. The authors mention in paragraph two on page five that within the RefSeq1.
annotated genomes they can identify 2725 of the 2750 unique domain sequence families for genes that
were automatically identified. Also they say that they identify 100 extra unique domain sequence families
in automatically identified genes.
Does that mean that on average 2825 unique domain sequence families were identified? If this is so then I
do not understand why in the second to last paragraph the authors write that in every single genome there
are about 2500 unique sequence domain sequences. Especially since Figure 1 shows that on average
there are more proteins with Pfam hits for draft genomes, and draft genomes are on average longer. Does
that have to do with the fragmentation of the data that leads to splitting of domains? If so, how would that
affect functional predictions?

 How do the authors deal with gene predictions where one gene is predicted on the top strand and2.
another on the bottom strand or generally genes predicted in different reading frames by different gene
prediction programs? Did the authors test whether the data that was missed by/additional to the refseq
annotation were overlapping genes but in different reading frames and hence could not have been picked
up by Pfam no matter what the threshold is?
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 I think it would be interesting to estimate the effect that errors in gene prediction have on prediction of3.
metabolic function etc. would have in theory. For example, what were the annotations of the unique
domain sequence families that were missed by refseq or the gene finders. Were those mostly proteins of
unknown function or did it include proteins which could potentially be predictive for the environment a
particular bacterium could survive in?

. The paper does need some proof reading, there are quite a few grammatical mistakes.4

 Throughout the paper the authors confuse the word “that” or “which” with “who”. For example in the5.
abstract it says: “Clustering sequences by their ordered domain content give us domain sequence
families, who are robust to errors in the gene prediction step.” In this case “who” refers to “domain
sequence families” and hence should be substituted with “that” or “which”.

 The authors frequently use the words “eukaryote” and “prokaryote” as adjectives (e.g. third paragraph6.
of the introduction: “Even if prokaryote genes are in most cases simpler to detect than eukaryote
counterparts, there are still problematic cases.”) The proper adjective should be “eukaryotic” or
“prokaryotic” (and in the example it should probably also say “their eukaryotic counterparts”).

 On page four, in the Methods part of the paper, the authors present a formula for the binomial mixture7.
model. In this formula the running variable is k but changes to kappa in a few places (in the formula as
well as in the text). This is a bit confusing and needs fixing.

 In a few places references are given in the following format: “as described in ” in those cases either8. 36

the “as described in” part should be left out or it should say as described by Snipen and Ussery36″ or “as

described in one of our earlier papers36“.

 There are quite a few cases where plural and singular are confused, for example in the last paragraph9.
of page 7 it says “in the first two principal component” it should say “first two principal components”.
This particular sentence is also a bit confusing and may need rephrasing. There are other cases where
the authors confused “was” and “were”, for example in the last paragraph on page 9 it says “Using the
Bayesian Information Criterion (BIC) we found that 12 components was optimal for the current data set.” It
should either say “dividing the data set into 12 components was optimal” or “12 components were
optimal”.

 The figure caption of Figure 7 requires some revision.10.

 In the first paragraph of page 11 the reference for Angiouli  is missing. The authors also mention11. et al.
in this sentence the recent approach of Angioula et al without explaining what this approach is and how it
compares to the presented approach. After reading the manuscript again I noticed that this paper was
mentioned also in the beginning of the Results and Discussion section, but I still think it would be helpful
for the reader if the authors briefly outlined what Angiouli  did to improve consistency and in particularet al
how this could be integrated into the presented approach.

. In general the Conclusions section is harder to read and less clear than the rest of the paper, maybe it12
would help to spend a little bit of time revising this section.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
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