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Alzheimer’s disease (AD) is a degenerative neurological disease and has an
inconspicuous onset and progressive development. Clinically, it is characterized by
severe dementia manifestations, including memory impairment, aphasia, apraxia, loss
of recognition, impairment of visual-spatial skills, executive dysfunction, and changes
in personality and behavior. Its etiology is unknown to date. However, several cellular
biological signatures of AD have been identified such as synaptic dysfunction, β-amyloid
plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies which are
related to the actin cytoskeleton. Cofilin is one of the most affluent and common actin-
binding proteins and plays a role in cell motility, migration, shape, and metabolism.
They also play an important role in severing actin filament, nucleating, depolymerizing,
and bundling activities. In this review, we summarize the structure of cofilins and their
functional and regulating roles, focusing on the synaptic dysfunction, β-amyloid plaques,
hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies of AD.
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INTRODUCTION

The cytoskeleton is the network structure of protein fibers in eukaryotic cells, including
microfilaments, microtubules, and intermediate fibers (Mullins and Hansen, 2013). Among them,
microfilaments (actin fibers) are composed of actin, which play an important role in many
biological processes such as endocytosis (Akamatsu et al., 2020), extracellular secretion (Teitelbaum
and Zou, 2011), cell migration (Yamaguchi and Condeelis, 2007), and axoplasmic movement
(Kuznetsov et al., 2010). Therefoere, actin is one of the most abundant proteins in eukaryotic
cells and is a major component of the cytoskeleton (Blanchoin et al., 2014). The assembly and
disassembly of the actin cytoskeleton are essential for many cellular processes such as cell motility,
migration, exocytosis and endocytosis, dendritic spine morphogenesis, intracellular transport, cell
shape, and polarity (Pollard and Borisy, 2003; Porat-Shliom et al., 2013; Inagaki and Katsuno, 2017;
Konietzny et al., 2017; Senju and Lappalainen, 2019). Actin has two different forms, the monomeric
(G-actin) and the filamentous form (F-actin; Ampe and Van Troys, 2017). The G-actin polymerizes
to form the filaments (F-actin) in various shapes. F-actin filaments are polar double-stranded helices
with two ends, the barbed end and the pointed end. The polymerization of G-actin to F-actin is
a dynamic process, regulated by several different pathways including the various actin-binding
proteins (ABPs; Bamburg and Wiggan, 2003; Pollard and Borisy, 2003).

Actin-binding proteins interact with actin filaments and help with the formation, function, and
restructuring of the actin cytoskeleton (Weaver, 2008; Albiges-Rizo et al., 2009; Gau et al., 2015;
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Madsen et al., 2015). Cofilins are an important ABP and
consist of five members, including cofilin-1, cofilin-2, destrin,
depactinm, and actophorin, that have been characterized in
various organisms ranging from eukaryon to mammal (Ono et al.,
1994; Yamashiro et al., 2005; Augustine et al., 2008; Ueno et al.,
2010; Makioka et al., 2011). Cofilin-1, encoded by the CFL1
gene, is widely distributed in various tissues and also known
as the non-muscle isoform (Goodson et al., 2012). Cofilin-1 is
one of the major regulators of actin dynamics due to its F-actin
severing, depolymerizing, nucleating, and bundling activities
(Bamburg and Bernstein, 2016). Cofilin-1 is also implicated in
the proliferation, invasion, and metastasis of malignant cells (Lee
et al., 2005; Wang et al., 2006, 2007; Tahtamouni et al., 2013; Lu
et al., 2015; Tsai et al., 2015).

Since cofilin is ubiquitously expressed in the brain and
excitatory synapses (Racz and Weinberg, 2006; Bellenchi et al.,
2007; Görlich et al., 2011), increasing evidence suggests its critical
role in spine morphology (Hotulainen et al., 2009; Gu et al.,
2010; Rust et al., 2010; Bosch et al., 2014), synaptic plasticity
(Zhou et al., 2004; Gu et al., 2010; Rust et al., 2010; Bosch
et al., 2014), and neurotransmitter release as well as in learning
and behavioral abnormalities (Rust et al., 2010; Goodson et al.,
2012; Zimmermann et al., 2015). Due to the important role
of synaptic function in brain function (Malenka, 1994; Zucker
and Regehr, 2002; Südhof, 2013), any dysregulation or loss of
synaptic function may lead to neurodegenerative diseases such
as the Alzheimer’s disease (AD; Foster et al., 2017), Parkinson’s
disease (Soukup et al., 2018), Huntington disease (Smith-Dijak
et al., 2019), and autism (Perche et al., 2010). Neurodegenerative
diseases severely impact patients’ quality of life and are currently
a major public health concern. Therefore, understanding the role
of cofilin can not only help elucidate the disease mechanism but
also provide important insights for potential therapy.

STRUCTURE, FUNCTION, AND
REGULATION OF COFILIN

Around 150 amino acid residues in the polypeptide chains
of ADF/cofilins are known as the actin-depolymerizing factor
homology domains (ADF-H domain), which consist of six-
stranded mixed β-sheets, forming the specific three-dimensional
structures (Lappalainen et al., 1998; Paavilainen et al., 2008).
Cofilin-1 has a molecular weight of 19 kDa and contains
an ADF-H domain which has several additional amino acid
residues at the N-terminus of the polypeptide chain and
about 10 amino acid residues at the C-terminus (Hild et al.,
2014). ADF/cofilin from vertebrates also contains nuclear
localization sequences (Shishkin et al., 2016). Cofilins is known
to bind to actin, phosphatidylinositol 4, 5-bisphosphate (PIP2;
Yonezawa et al., 1991), cortactin (Ivanov et al., 2004), and
serine/threonine-protein kinase LIMK1 (Ivanovska et al., 2013).
Low concentration of cofilins can sever the actin filaments
and promote depolymerization whereas a high concentration of
cofilins promotes actin nucleation and polymerization. Cofilin,
directly or indirectly, nucleates the actin polymerization in a
concentration-dependent manner (Bravo-Cordero et al., 2013).

It can facilitate F-actin assembly via stabilizing preexisting
filaments and nucleating new at high concentrations (Wang et al.,
2007) whereas it can promote F-actin disassembly by accelerating
the dissociation of monomeric actin from the filaments’ minus
ends and severing the F-actin at lower concentrations (Albiges-
Rizo et al., 2009; Madsen et al., 2015). Filament severing can lead
to either a net assembly or disassembly of F-actin depending on
the activity of actin polymerizing proteins and the local G-actin
concentration (Gau et al., 2015). As a seven-subunit complex,
the actin-related proteins 2/3 (ARP2/3) complex is involved in
cofilin-regulating actin nucleation and filament branching of the
ARP2/3 complex, which can bind to actin to supply nucleation
and formation of the actin branches (dos Remedios et al.,
2003; Winder and Ayscough, 2005). The ARP2/3 complex and
cofilin synergistically generate the free barbed ends for the actin
polymerization (Tania et al., 2013) when cofilin decreases the
affinity of the ARP2/3 complex to the filaments and accelerates
the dissociation of the old actin branches (Chan et al., 2009). The
ARP2/3 complex and cofilin also play a role in the regulation
of axonal growth cones (Dumpich et al., 2015). Cofilin is
necessary for the dynamic changes in the cytoskeleton require
for the axon re-engagement and myelination of Schwann cells
(Sparrow et al., 2012). Other cellular functions of cofilin such
as the regulation of nuclear integrity, nuclear actin monomer
transfer, apoptosis, and lipid metabolism have been discussed in
a review by Kanellos and Frame (2016).

The phosphorylation of a single cofilin residue Ser-3
prevents its binding to the F- and G-actin (Agnew et al.,
1995; Moriyama et al., 1996), and only a dephosphorylated
cofilin can elicit a biological response including actin-
binding and nucleary. Therefore, their activity is regulated
by phosphorylation/dephosphorylation. Interestingly, cofilin
can also be phosphorylated at T25 regulated by TGF-β
signaling (Zhu et al., 2009). And Y68 is identified as the
major phosphorylation site of the tyrosine phosphorylation
of cofilin by v-Src (Yoo et al., 2010). Also, proteomic studies
identified new phosphorylation sites of cofilin e.g., Y82, T63,
and S108. Generally, phosphorylation/dephosphorylation of
cofilins is subject to signaling pathways involved in kinases
and phosphatases, in response to the extracellular signals
and changes in the microenvironment (Wang et al., 2007;
Tomasella et al., 2014; Chang et al., 2015). The phosphorylation
of cofilins is activated by LIM-kinases (LIMK1 and LIMK2)
and testicular protein kinases (TESK1 and TESK2), whereas
the dephosphorylation of cofilins is activated by the slingshot
protein phosphatases (SSH1, SSH2, and SSH3), chronophin, and
protein phosphatases 1 and 2A (PP1 and PP2A; Aragona et al.,
2013). LIMK1 catalyzes the phosphorylation of a single cofilin
residue Ser-3 (Morgan et al., 1993; Agnew et al., 1995; Moriyama
et al., 1996), which inhibits the cofilin and actin-binding (Yang
et al., 1998; Toshima et al., 2001). LIMK1 is regulated by the
Rho kinase (ROCK) or the p21-activated protein kinase (Pak)
signaling (Edwards et al., 1999). The phosphorylated cofilin binds
to the scaffolding protein 14-3-3 and restricts the accessibility
of the phospho-cofilin to the more general phosphatases (Gohla
and Bokoch, 2002), however, not the slingshot phosphatases
(Niwa et al., 2002; Huang et al., 2006; Eiseler et al., 2009).
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The slingshot phosphatase has three mammalian isoforms
which dephosphorylate cofilin (Niwa et al., 2002). SSH-1L
dephosphorylates cofilin requires SSH-1L to bind to F-actin,
which can be prevented by the protein kinase D phosphorylation
of SSH-1L at Ser-978 (Eiseler et al., 2009; Peterburs et al.,
2009). Moreover, the phosphorylation of SSH-1L is isolated by
isoforms of 14-3-3, which inhibits the translocation to the sites
for its activation (Nagata-Ohashi et al., 2004). Interestingly,
the dephosphorylation of SSH-1L by calcineurin (Wang et al.,
2005) also requires F-actin binding, which promotes the cofilin
activation to cellular sites where the F-actin levels are relatively
high (Nagata-Ohashi et al., 2004; Soosairajah et al., 2005; Kurita
et al., 2008). Specifically, SSH-1L dephosphorylates the LIMK
in an activation loop in order to inhibit its phosphorylation of
cofilin (Soosairajah et al., 2005).

In addition, the activity of cofilins is also regulated by pH
in vitro (Yonezawa et al., 1985) and in vivo (Bernstein et al.,
2000). However, pH sensitivity is not universally applicable for
all of the ADF/cofilins in different species. For example, cofilin-
1 and cofilin-2 activity are pH-independent only in the mice
(Vartiainen et al., 2002). Interestingly, the activity of cofilins
can be regulated by the direct binding of phosphatidylinositols,
especially the PIP2, which prevents binding to actin (Yonezawa
et al., 1991). Therefore, the balance between the membrane-
bound and the free active ADF/cofilins can be modulated by
the alterations in the PIP2 density of the cellular membrane
(Zhao et al., 2010). Other proteins also can directly or
indirectly modulate the cofilin activity through the interaction
of ADF/cofilins for example coronin promotes actin filament
severing by the recruitment of cofilin to the filament side (Mikati
et al., 2015). Cofilin is inactivated by cortactin binding which
is important for actin-based dynamic protrusions, invadopodia,
and podosomes (Beaty and Condeelis, 2014; Zalli et al., 2016).
The cyclase-associated protein 1 (CAP1) and actin-interacting
protein 1 (AIP1) facilitate the disassembling of the cofilin-
bound actin filaments (Zhou et al., 2014; Nomura et al.,
2016). The cellular redox state also modulates the activity
of ADF/cofilins. The cofilin activity is influenced by redox-
related modifications of Cys residues through the disulfide
bonds (Klemke et al., 2008), S-glutathionylation (Fratelli et al.,
2002), and S-nitrosylation (Zhang et al., 2015). Oxidized cofilin
is dephosphorylated at Ser-3 which in turn impairs the actin
depolymerizing function (Klemke et al., 2008). Therefore, cofilins
acts on a multifaceted role in cells implicated in different
pathological processes.

ROLE OF COFILIN IN AD

Alzheimer’s disease characterized by cognitive impairment,
including memories, and is the most frequent cause of dementia
affecting about 24 million people worldwide (Foster et al.,
2017; Soukup et al., 2018; Smith-Dijak et al., 2019). Before
the emergence of cognitive impairment, symptoms such as
thinning of the cortex, accumulation of β-amyloid, and decreased
hippocampal volume are common. Hence, the accumulation of
β-amyloid and hyperphosphorylated tau are two pathological

hallmarks in AD brains (Goedert, 2010; Holtzman et al.,
2012). Furthermore, another proteinopathies are also invovled
in brains of AD containing α-synuclein-containing Lewy bodies
(Kosaka et al., 1984), cofilin-actin rods (Bamburg and Bloom,
2010), Hirano bodies (Galloway et al., 1987; Maciver and
Harrington, 1995), and TDP-43 inclusions (Josephs et al., 2015).
More importantly, the cellular biological signatures of AD,
including the synaptic dysfunction (Jack and Holtzman, 2013),
β-amyloid plaques (Holtzman et al., 2012), hyperphosphorylated
tau (Goedert, 2006), cofilin-actin rods (Bamburg and Bloom,
2009), and Hirano bodies (Galloway et al., 1987; Maciver and
Harrington, 1995) have been identified. Here we discuss the role
of cofilin in such biological processes.

Role of Cofilin in Synaptic Dysfunction
Decreased glucose utilization has been observed in humans
through PET imaging before the emergence of overt symptoms,
suggesting that synaptic dysfunction precedes the AD
pathogenesis (Jack and Holtzman, 2013; Jack et al., 2013).
Synaptic function is multifaceted and relies on factors such as
spine morphology, synaptic plasticity, neurotransmitter release,
learning, and so on (Richmond, 2005).

A previous study demonstrated that AD is related to changes
in spine morphology (Blanpied and Ehlers, 2004). Loss of
dendritic spines has been observed in primary neurons from
AD mice (Herms and Dorostkar, 2016), mouse models of AD
(Spires-Jones et al., 2007; Wu et al., 2010; Herms and Dorostkar,
2016), and postmortem brain tissues from AD patients (Tsai
et al., 2004; Spires et al., 2005; Spires-Jones et al., 2007).
Loss of dendritic spines leads to the impairment of synaptic
transmission as the dendritic spines are the primary sites
for receiving information and cellular substrates for synaptic
plasticity (Cummings et al., 2015). F-actin is the main cytoskeletal
protein found in the dendritic spines (Matus et al., 1982; Cohen
et al., 1985) and its depolymerization is dynamically modulated
by cofilin-1 (Okamoto et al., 2007; Hotulainen et al., 2009;
Bamburg and Bernstein, 2010, 2016; Bernstein and Bamburg,
2010; Gu et al., 2010), which is vital for regulating the spine
formation and elimination, and the synaptic-activity-dependent
structural changes (Star et al., 2002; Okamoto et al., 2007;
Korobova and Svitkina, 2010). And the polymerization of actin
is inducedby Arp2/3, mDia2, WAVE complex, etc. (Welch
et al., 1997; Beli et al., 2008). The actin filament disassembly
induced by ADF/cofilin maintains the proper spine length and
morphology (Hotulainen et al., 2009). In the initial phase of
remodeled spine substructures, active cofilin is delivered to the
spine and cofilin subsequently forms a stable complex with
F-actin in order to remain at the spine and consolidate the
spinal expansion during the stabilization phase (Bosch et al.,
2014). Meanwhile, cofilin-1 is inactivated through the increase in
phosphorylation at Ser3 accompanied by alteration of dendritic
spine morphology in the dentate gyrus (Nader et al., 2019).
Active cofilin, induced by the role of dephosphorylation, binds
to actin, and facilitates the conversion of the F-actin to G-actin
(Bamburg and Bernstein, 2016). The Rac1/cofilin pathway is
inactivated through suppression of the cofilin phosphorylation
which causes the loss of dendritic spine in the hippocampus
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(Yang et al., 2018). The density of dendritic spines and dendritic
complexity increase, similar to the change of phosphorylation
and redistribution of cofilin-1 in an AD rat model (Han et al.,
2017). Cofilin-1 knockdown leads to a decrease number of thin
spines and decrease length of dendritic protrusions (Hotulainen
et al., 2009). Furthermore, both the spinal head width and length
are augmented in primary hippocampal cultures, as observed in
the cofilin-1 mutant mice (Rust et al., 2010). An increased spinal
density and enlargement in the hippocampal slices from cofilin-1
mutant mice have also been observed (Rust et al., 2010). Mature
spines and spinal densities are enhanced when the constitutively
inactive cofilin-1 is overexpressed in the hippocampal cultures
(Shankar et al., 2007; Gu et al., 2010).

Spines possess plasticity undergoing long- and short-term
modifications of the input activity (Nimchinsky et al., 2002).
Long-term potentiation (LTP) and long-term depression (LTD)
are usually linked with learning and memory functions (Malenka
and Bear, 2004). Both pre- and post-synaptic modulations take
place. The strength of the presynaptic transmission is modified
by alteration in neurotransmitter release, whereas the change
in type, number, and property of receptors are implicated
in the modification of postsynaptic strength (Malenka, 1994;
Collingridge et al., 2004; Richmond, 2005). Cofilin-1 plays an
important role in dendritic spine morphology and structural
plasticity as their distributional areas covers the dynamic F-actin
network, which is responsible for the spine morphological
changes during synaptic plasticity (Racz and Weinberg, 2006;
Honkura et al., 2008). Phosphorylation and dephosphorylation
of ADF/cofilin are also associated with the formation of LTP,
increased spine head volume (Fukazawa et al., 2003; Chen et al.,
2007; Fedulov et al., 2007; Bosch et al., 2014), and the LTD and
spine shrinkage (Zhou et al., 2004). Increased phosphorylated
ADF/cofilin is related to the spine enlargement when LTP or
learning (Chen et al., 2007; Fedulov et al., 2007). The immature
spine features, induced by the cofilin-1 overexpression, resembles
the N-methyl-D-aspartic acid receptor (NMDAR)-mediated LTD
evoked by the low-frequency stimulations (Shi et al., 2009;
Pontrello et al., 2012). The phosphorylation levels of ADF/cofilin
increase when LTP is induced by the NMDAR stimulations that
enhance the synaptic F-actin content, and stabilize and enlarge
the dendritic spines (Fukazawa et al., 2003; Chen et al., 2007).

Docking and priming are the two vital presynaptic steps that
ensure that the Ca2+-triggered synaptic vesicle (SV) exocytosis
occurs successfully (Sudhof, 2004; Imig et al., 2014). Docking
and priming are enhanced in the double mutants lacking ADF
and cofilin-1, which increased the synaptic vesicle exocytosis
(Wolf et al., 2015; Zimmermann et al., 2015). Interestingly,
cofilin-1 also plays a vital role in a-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid receptors’ (AMPARs) trafficking and
accumulation (Gu et al., 2010; Rust et al., 2010; Wang et al.,
2013). Cofilin-1 regulates the synaptic strength through AMPARs
mobility through an actin-dependent mechanism but not its
function in structural plasticity (Rust et al., 2010). However,
cofilin-1 acts on the AMPARs accumulation during synaptic
plasticity where LTP is found reduced in the cofilin-1 mutant
mice (Rust et al., 2010), similar to the study that demonstrated
that ADF/cofilin activity can influence the synaptic accumulation

of glutamate receptor 1 (GluR1) and 2 (GluR2) in the rat
infralimbic cortex (Wang et al., 2013). Moreover, the inactivation
of cofilin-1 controls the AMPARs subunit GluR1’s synaptic
accumulation during the chemical LTP (Gu et al., 2010). Overall,
the cofilin-1 activity during LTP is related to the synaptic
AMPARs accumulation.

As spine morphology, synaptic plasticity, and
neurotransmitter release are heavily implicated in learning and
memory, cofilin-1 also plays an important role in the learning
and/or memory processes. Associative learning is found impaired
in principal neurons of the adult telencephalon in cofilin-1
mutant mice (Rust et al., 2010). The levels of phosphorylated
ADF/cofilin are also elevated in the rat hippocampal CA1 region
during unsupervised learning in an enriched environment,
suggesting that ADF/cofilin is vital for spatial learning (Fedulov
et al., 2007). Furthermore, long-term spatial memory is reduced
in cofilin-1 mutants whereas short-term spatial working memory
is not fully impaired (Rust et al., 2010; Zimmermann et al.,
2015). This finding is confirmed through the two distinct
mechanisms for spatial memory (Bannerman and Sprengel,
2010). Furthermore, increased ADF/cofilin activity expedites
the conditioned taste aversive memory through the regulation
of synaptic AMPARs concentrations (Wang et al., 2013). More
importantly, ADF/cofilin-mediated AMPARs trafficking also
controls both the memory acquisition and extinction (Rust et al.,
2010; Wang et al., 2013).

Role of Cofilin in Aβ
Aβ is produced from the amyloid precursor protein (APP) and is
one of the most primary hallmarks of AD. APP can be cleaved
through two competing pathways, the non-amyloidogenic and
the amyloidogenic pathways (Verdile et al., 2004). In the
amyloidogenic pathways, APP is cleaved by the β-site APP
cleaving enzyme 1 (BACE1) and γ-secretase, which produces
the Aβ peptide (Aβ1−40 or Aβ1−42). In the non-amyloidogenic
pathways, APP is cleaved by α-secretase to produce the non-
amyloidogenic fragments (soluble APPα; sAPPα). The amyloid
cascade hypothesis is the basic theory behind the pathological
accumulation of AD (Hardy and Higgins, 1992). Aβ peptides
assemble to form the extracellular amyloid plaques which cause
neuronal death and a decline of cognitive functions. The
amyloid plaques are observed in both the postmortem AD brain
tissues and live AD human brains (Thompson et al., 2007;
Ikonomovic et al., 2008).

Aβ plays a crucial role in cofilin deregulation through the
LIMK1 pathways. Heredia et al. demonstrated that Aβ1−40 and
Aβ25−35 fibrils induce the activation of LIMK, which leads to
cofilin inactivation (Heredia et al., 2006). However, another study
demonstrated, through the injection of Aβ1−40 fibrils into rat
brains, that cofilin increased activation rather than inactivation
(Bie et al., 2018). Furthermore, Ariadna et al. showed that
LIMK1 was activated by Aβ1−42, which is paradoxically related
to the increased cofilin activation. Therefore, there may exist
other pathways that are involved in cofilin deregulation via Aβ

such as the SSH1 pathway (Kim et al., 2009; Mendoza-Naranjo
et al., 2012). The cofilin activation is facilitated by the RanBP9
through the SSH1 pathway with increasing levels of SSH1 in
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the primary neurons and the brain (Woo et al., 2015a). RanBP9
is a scaffolding protein that promotes the production of Aβ

(Lakshmana et al., 2009). It is highly expressed in APP transgenic
mice (Woo et al., 2012, 2015a) and the brains of human AD
patients (Lakshmana et al., 2010). Furthermore, the level of
cofilin activation is enhanced in AD brains while accompanied
with no alterations of the phosphoLIMK1 levels (Kim et al.,
2013). Moreover, cofilin-actin pathology is alleviated by the
genetic deletion of RanBP9 in the APP/PS1 transgenic mice
(Woo et al., 2015a). Kim et al. found that Aβ oligomer receptor
LilrB2 mediates cofilin activation through the Aβ1−42 oligomers
(Kim et al., 2013), however, Woo et al. (2015b) showed that β1-
integrin conformers mediate the activation of cofilin induced by
the Aβ1−42 oligomers through the SSH1 pathway. In addition,
Aβ selectively impairs the metabotropic glutamate receptor 7
(mGluR7) regulation of NMDARs by decreasing the cofilin-
mediated actin depolymerization through a p75NTR-dependent
mechanism and increasing the Pak activity (Gu et al., 2014).
The phospho-cofilin decreases during the Aβ early pathology
progression while increasing during the mid-late pathology
(Barone et al., 2014).

Role of Cofilin in Tau
Tau is a microtubule-associated protein that plays an
important role in microtubule polymerization and axonal
transport (Buée et al., 2000). The hyperphosphorylated or
abnormally phosphorylated tau aggregates intracellularly and
is another major hallmark of AD (Benzing et al., 1993).
The hyperphosphorylated tau forming the intracellular
neurofibrillary tangles is first observed in the hippocampus
and entorhinal cortex, and then in the neocortical regions
(Braak and Braak, 1995).

Cofilin may precipitate together with tau in cofilin-actin
rods as the 12E8 antibody that reacts with a class of cofilin-
positive rods, which recognizes the pSer262/pSer356 of tau
(Whiteman et al., 2009). Both the cofilin-actin aggregations and
phospho-tau containing neuropil threads are highly expressed
in AD brains, although they do not colocalize in the same
brains of AD patients (Rahman et al., 2014). In APP/PS1
transgenic mice, cofilin-microtubule complexes increase and
are accompanied by decreasing tau-microtubule complexes,
which can be inhibited by cofilin genetic deletion (Woo et al.,
2019). Cofilin also plays an important role in replacing tau
from tubulin/microtubules, preventing tau-induced microtubule
assembly both in vitro and in vivo (Woo et al., 2019). The
tau hyperphosphorylation is relieved by the genetic reduction
of cofilin in TauP301S (PS19) mice. Therefore, cofilin activated
by dephosphorylation replaced the tau from microtubules that
results in the tau hyperphosphorylation and inhibition of the
tau-mediated microtubule dynamics.

Cofilin-Actin Rods
Enrichment of cofilin-actin is also a pathological feature of AD
(Maloney and Bamburg, 2007). Cofilin-actin can form the rod-
shaped bundles of filaments, known as the cofilin-actin rods,
that include ADF/cofilin:actin in a 1:1 molar ratio in cultured
primary neurons or cell lines (Minamide et al., 2010). Moreover,

the phospho-cofilin antibody cannot be immunostained within
the rods, which indicates that the active cofilin is only present
in the cofilin-actin rods (Maloney et al., 2005). Neuronal stress,
such as ATP-depletion, peroxide, and glutamate rapidly induce
the production of cofilin-actin rods (Minamide et al., 2000; Davis
et al., 2009). The cofilin-actin rods formed by the neuronal stress
are tandemly arranged where both concentrations of cofilin and
actin are high (Minamide et al., 2000). The tandem arrays of
cofilin are observed in the frontal cortex and hippocampus of
human AD (Minamide et al., 2000) as well as in the transgenic
AD mice models (Maloney et al., 2005). Moreover, cofilin-actin
rods can also form in the organotypic hippocampal slices (Davis
et al., 2009) and dissociated cultures containing dendrites and
axons of the mice and rat cortical and hippocampal neurons
(Minamide et al., 2000). Cofilin-actin rods have also been
observed in the human AD brain using an electron microscope
(Sisodia and Price, 1995).

Since the majority of neuronal stress agents induce a
decline in ATP, it is the major neuronal stress that caused
the formation of cofilin-actin rods. Rods are induced through
the external application of ATP in some neurons (Homma
et al., 2008). The disruption of mitochondrial electron transport
leads to ATP-depletion and chronophin release from inhibition
through its intracellular complex with Hsp90 (Huang et al.,
2008). Chronophin is one of the halogen acid dehalogenase
phosphatases that dephosphorylate the cofilin. Apart from
chronophin, slingshot is another important de-phosphorylase.
After its release from the inhibitory binding partner 14-3-
3, the slingshot is dephosphorylated through an increasing
calcium binding to the calmodulin; the complex stimulates
calcineurin (Wang et al., 2005; Kim et al., 2009). The 14-3-
3 is a family of regulatory proteins, highly expressed in the
brain, and is required for hippocampal LTP and associative
learning and memory functions (Qiao et al., 2014). Inhibition
of 14-3-3 proteins leads to schizophrenia-related behavioral
phenotypes and synaptic defects in mice (Foote et al., 2015).
Furthermore, slingshot phosphatase may act as a subordinate
role as the genetic knockdown of chronophin can retard the
cofilin dephosphorylation and rod formation (Huang et al.,
2008). In addition, the inhibitory binding partner 14-3-3 also
plays a vital role in peroxide to induce the formation of rods via
sulfhydryl oxidation of the 14-3-3 and its release of the active
slingshot (Kim et al., 2009). The active cofilin is increased through
dephosphorylation accompanied by the production of reactive
oxygen species (ROS), which are essential for cofilin oxidation
and rod formation (Minamide et al., 2000; Bernstein et al., 2012).
Meanwhile, increased ROS favors cofilin saturation region of
F-actin, which is readily reduced and producing small stable
fragments (Chen et al., 2015). The small stable fragments may
promote the formation of rods, which may directly bind these
fragments and intermolecular disulfide cross-linking of cofilin
or may be cofilin or cofilin-actin formed through the oxidative
dimerization of actin and dimer involved in the filament assembly
and binding (Minamide et al., 2010; Bernstein et al., 2012).

Around 20% of the total population is formed as rods in the
cultured rat hippocampal neurons treated with Aβ1−42 (Maloney
et al., 2005). However, rod formation is slower in human cortical
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FIGURE 1 | Schematic model of cofilin in AD. The cofilin is phosphorylated by LIMK and dephosphorylated via SSH. The dephosphorylated (active) cofilin is closely
related to the cellular biological signatures of AD, which include synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano
bodies. The cofilin plays an important role in synaptic function through its action in spine morphology, synaptic plasticity, neurotransmitter release, and learning.
Cofilin-actin can form the rod-shaped bundles of filaments (cofilin-actin rods) and cytoplasmic para-crystalline lattices (Hirano bodies).

neurons treated with synthetic Aβ1−42 oligomers (sAβ1−42;
Deshpande et al., 2006). The rods only form within the soma and
neurites of the neurons that have Aβ treatment-induced activated
cofilin (Maloney et al., 2005). There exist some persistent rods
that form within the 24 h of a transient 30 min ATP-depletion
and washout, whereas other rods induced by Aβ, are reversible
and disappear completely by 24 h after the washout (Davis et al.,
2009). The insufficient recovery of mitochondrial function in
impaired neurites may lead to the difference in the rod persistence
(Minamide et al., 2000). In addition, microinjection of cofilin
results in rod formation in neurons Aplysia kurodai, assessed
using electrophysiological methods (Jang et al., 2005).

Hirano Bodies
Cofilin-actin enriches as cytoplasmic para-crystalline lattices
that form the Hirano bodies. Hirano bodies are an ordered
array of parallel regularly spaced 6–10 nm filaments in the
orthogonal layers encircled by a region of less structured
dense actin (Schochet and McCormick, 1972; Tomonaga,
1974). Hirano bodies mainly contain ADF, cofilin, and
actin (Maciver and Harrington, 1995). Hirano bodies are
significantly increased in AD patients compared to aged-
matched individuals (Schmidt et al., 1989). Hirano bodies are
frequently distributed in the Sommer’s sector of Ammon’s horn
(Hirano, 1994), although they are found in several areas of the
brain. Sommer’s sector of Ammon’s horn is enriched with Pick
bodies and AD neurofibrillary tangles, which are related to the
development of new memories. There, the formation of Hirano
bodies in this region impairs cognition in neurodegenerative
disorders including AD (Hirano, 1994). Phalloidin that
recognizes F-actin, but not the cofilin, stains the Hirano bodies

(Galloway et al., 1987). Hirano bodies comprise of epitopes of
tau, ADF/cofilin, and actin-associated proteins (Galloway et al.,
1987; Peterson et al., 1988; Maciver and Harrington, 1995),
however, the mechanism of the formation of Hirano bodies
is still unclear. Fortunately, an identical morphology between
Hirano bodies and the structure is expressed in the mammalian
cells of a C-terminal (CT) fragment of actin cross-linking
protein in the Dictyostelium discoideum (Maselli et al., 2002).
Therefore, a potential model system exists for further study
(Davis et al., 2008).

CONCLUSION

Cofilin plays a vital role in ctin filament dynamics and
reorganization through severing actin filaments, which is
regulated by several mechanisms including ARP2/3 complex,
phosphorylation on Ser3, pH, phosphatidylinositols and so on.
As a common neurodegenerative disorder, AD has complicated
various cellular biological processes. The typical molecular
signatures of AD include the synaptic dysfunction (Jack and
Holtzman, 2013), β-amyloid plaques (Holtzman et al., 2012),
hyperphosphorylated tau (Goedert, 2006), cofilin-actin rods
(Bamburg and Bloom, 2009), and Hirano bodies (Galloway et al.,
1987; Maciver and Harrington, 1995; Figure 1). Cofilin can
regulate the depolymerization of F-actin dynamically, which is
important for regulating the spine formation and elimination,
and the synaptic-activity-dependent structural changes, thus
acting the synaptic dysfunction. Aβ plays a crucial role in cofilin
deregulation through the LIMK1 pathways. Cofilin activated
by dephosphorylation replaced the tau from microtubules that
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results in the tau hyperphosphorylation and inhibition of the
tau-mediated microtubule dynamics. Cofilin-actin rods and
hirano bodies, being associated with the actin cytoskeleton are
also associated with AD. More importantly, all these molecular
signatures of AD are not unique but are related to one other.
In primary neurons, cofilin and tau are necessary for the
Aβ-induced synaptic and mitochondrial dysfunction. Moreover,
either reduction of cofilin or tau rescues the synaptic plasticity
and memory defects in APP transgenic mice (Rapoport et al.,
2002; Roberson et al., 2007; Jin et al., 2011; Shipton et al.,
2011; Woo et al., 2015b). Cofilin and calcineurin modulate the
Aβ-induced dendritic spine loss, which demonstrates that SSH1
is implicated in Aβ-induced cofilin activation (Shankar et al.,
2007). The dephosphorylation of SSH1, mediated by calcineurin,
activates cofilin which allows SSH1 to avoid inhibition via the
14-3-3 proteins (Wang et al., 2005; Eiseler et al., 2009; Kim
et al., 2009). The knockdown of SSH alleviates the neurotoxic
effects of Aβ1−42 oligomers and mitochondrial translocation
of activated cofilin (Woo et al., 2015b). Furthermore, the
formation of the cofilin-actin rod, requiring cofilin activation,
is induced by bioactive Aβ dimers/trimers treatment in neurites
of only ∼20–30% of the cultured hippocampal primary
neurons, whereas the formation of the cofilin-actin rod is
enhanced in the mossy fiber track and the dentate gyrus, but
not the CA regions (Davis et al., 2011). Furthermore, direct
cofilin oxidation is necessary for cofilin-actin rod assembly

(Bernstein et al., 2012), and mitochondrial translocation of
cofilin (Klamt et al., 2009). F-actin-containing rod-like structures
include the hyperphosphorylated tau in FTDP-17 transgenic
mice and Drosophila (Fulga et al., 2007). Thus, cofilin as an early
marker in the AD, is an ideal target for therapeutic intervention
that might be useful in treatment of AD even in many different
neurological diseases. Therefore, a systematic understanding of
the role of cofilins in these molecular characteristics not only is
helpful for the understanding of AD and but also lays a molecular
foundation for the treatment of AD.
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