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With the growing global challenge of drug abuse, there is an urgent need for rapid, accurate, and 
cost-effective drug detection methods. This study introduces an innovative approach to drug abuse 
screening by quickly detecting ephedrine (EPH) in tears using drop coating deposition-surface 
enhanced Raman spectroscopy (DCD-SERS) combined with machine learning (ML). Using ultra 
performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the average 
concentration of EPH in tear fluid of Sprague-Dawley (SD) rats, measured over 3 h post-injection, was 
1235 ng/mL. DCD-SERS effectively identified EPH in tear samples, with distinct Raman peaks observed 
at 1001 cm−1 and 1242 cm−1. To enable rapid analysis of complex SERS data, three ML algorithms—
linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), and random 
forest (RF)—were employed. These algorithms achieved over 90% accuracy in distinguishing between 
EPH-injected and non-injected SD rats, with area under the ROC curve (AUC) values ranging from 
0.9821 to 0.9911. This approach offers significant potential for law enforcement by being easily 
accessible, non-invasive and ethically appropriate for examinees, while being rapid, accurate, and 
affordable for examiners.
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The global crisis of drug abuse has exacerbated the challenges faced by health services and law enforcement, 
becoming a major concern in recent years1. According to the United Nations Office on Drugs and Crime 
(UNODC), methamphetamine is the most widely produced synthetic drug worldwide1. It is difficult to regulate 
due to its simple synthesis and low production cost2. Methamphetamine can be synthesized by the easily 
obtainable precursor ephedrine (EPH), which is found in many over-the-counter cough and cold medicines3,4. 
Rapid, accurate, and affordable methods for detecting drug abuse would be of great value to law enforcement in 
mitigating the devastating effects of drug abuse.

For the detection and identification of drug abuse, such as EPH and methamphetamine, common biological 
test materials include blood, urine, saliva and hair5,6. Tears, as an easily accessible biofluid, has not been explored 
for its practicality in detecting illicit drug use. This approach is non-invasive, ethically appropriate, and easily 
accessible. Tear collection can be done under supervision, making it resistant to adulteration. Additionally, tear 
analysis is time-saving and cost-efficient, as it often does not require isolation or pretreatment steps.

Traditional screening methods like immunoassay have high thresholds of detectability, potential 
cross-reactions, and limited applicability6,7. Immunoassay is particularly unsuitable for detecting EPH or 
methamphetamine due to multiple drug interactions6. Confirmatory methods such as gas chromatography-mass 
spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), etc., are commonly 
used, but these technologies are expensive and time-consuming, and require trained operators in laboratories8.

One of the recent advances in identifying drug users is surface-enhanced Raman spectroscopy (SERS), a 
spectroscopic analysis technique for molecular fingerprinting9–14. SERS is fast, sensitive and nondestructive, 
enabling lower concentration detection and in-situ detection9–14. An improved variant, the drop coating 
deposition (DCD)-SERS method, involves depositing a microvolume of solution on a SERS substrate and 
performing SERS after solvent evaporation15–17. This technique preconcentrates and localizes the analyte 
substance, requiring minimal sample amounts, which facilitates trace detection via tear fluids15–17.
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Of late, the combination of tears with SERS has been extensively investigated for clinical applications, 
including the identification of diabetes, breast cancer, gouty arthritis, and neurodegenerative diseases18–21. 
However, its practicality for screening and identifying illicit drug users has not been explored. Tear fluid testing 
combined with DCD-SERS might provide a rapid, accurate, affordable and ethically appropriate analytical 
method for workplace or roadside drug testing.

Despite the potential, the complexity of Raman data has hindered its routine use. To address this, recent studies 
have focused on combining Raman spectroscopy with machine learning (ML) to achieve rapid recognition22. 
In our study, we adopted ML, the data-driven approach, to classify Raman spectral data of tears. Multivariate 
statistical analysis was performed using three traditional ML algorithms: linear discriminant analysis (LDA), 
partial least squares discriminant analysis (PLS-DA) and random forest (RF).

In this study, we demonstrate for the first time the potential of combining tear fluid testing with DCD-SERS 
in identifying drug abuse, through the rapid detection of EPH in the tears of Sprague-Dawley (SD) rats.

Materials and methods
Experimental materials and sample collection
Ephedrine hydrochloride injections (30 mg:1 mL) were sourced from Shenyang First Pharmaceutical Co., Ltd. 
Solutions of the EPH reference standards were sourced from National Institutes for Food and Drug Control of 
China. The SERS substrate, a silicon wafer assembled with silver nanoparticles, was obtained from Xiamen Pushi 
Nano Technology Co., Ltd. The morphology and structure of the SERS substrates were observed using an FEI 
Verios G4 UC ultra-high-resolution field emission scanning electron microscope (FE-SEM; FEI, Eindhoven, 
the Netherlands) (Fig. 1c). The fabrication procedure of the SERS substrates is provided in the Supplementary 
Information. Twelve-week-old female SD rats, weighing between 280 and 300 g, were obtained from Shanghai 
Slac Laboratory Animal Co., Ltd. All procedures involving animals were approved by the Institutional Animal 
Care and Use Committee of Fujian Provincial Hospital (IACUC-FPH-SL-20230911[0093]). This study was 
performed in accordance with relevant guidelines and regulations. All methods are reported in accordance with 
ARRIVE guidelines.

Tear fluids were collected from bilateral conjunctival sac of the SD rats using quantitative capillary pipettes 
(2 µL), then transferred to Eppendorf tubes by squeezing a matched rubber tip. For the experimental group, SD 
rats received ephedrine hydrochloride (0.08 mg per gram of body weight) via intraperitoneal injection, while 
the control group received an equivalent volume of normal saline. Tear fluids secreted over 3 h post-injection of 
each SD rat were collected intermittently and stored at − 80 °C for ultra performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) and − 4 °C for DCD-SERS. A total of 60 experimental samples and 
60 control samples from 120 SD rats were collected. The procedure is illustrated in Fig. 1a. After the procedure, 
the euthanasia of SD rats via carbon dioxide (CO2) inhalation was performed to minimize pain and distress. The 
process involved placing the SD rat in a clean, transparent chamber that allows for observation. CO2 was then 
introduced into the chamber at a controlled flow rate of 20–30% of the chamber volume per minute to ensure a 
gradual increase in concentration, preventing distress caused by rapid changes. The rat lost consciousness within 
a few minutes, followed by cessation of breathing and heartbeat. The SD rats were monitored continuously 
throughout the process.

To explore the detection threshold of EPH in tear fluid, 2 µL of quantitative tear fluid was mixed with 1 µL 
of ephedrine hydrochloride diluted to various concentrations by normal saline for simulated samples and with 
1 µL of normal saline for blank samples. The concentrations of EPH in the stimulated samples were 10 parts-
per-million (ppm), 25 ppm, 50 ppm, 100 ppm, 250 ppm, and 500 ppm. The procedure is illustrated in Fig. 1b. 
Raman data were collected from these samples using DCD-SERS. For each sample, five acquisitions were taken 
from random points. An average spectrum derived from these five acquisitions was used for subsequent analysis.

UPLC-MS/MS measurement
The identification and quantification of EPH in tear fluid of SD rats collected over 3  h post-injection was 
conducted using the external standard method on UPLC-MS/MS, following the established standards for public 
security of China23. Chromatographic separation was performed using a Waters UPLC system (Waters, Milford, 
USA) equipped with an AB Sciex 4000 MS/MS (SCIEX, Framingham, MA, USA). An isocratic separation was 
achieved on a HSS T3 column (Waters, Milford, USA) with 0.1% formic acid and acetonitrile as the mobile 
phase at a flow rate of 0.3 mL/min for 5 min. EPH was detected and measured utilizing positive ion electrospray 
ionization (ESI) in multiple reactions monitoring (MRM) mode. UPLC-MS/MS data analysis was performed 
using PeakView software (SCIEX, Framingham, MA, USA). Further operational details are provided in the 
Supplementary Information.

DCD-SERS measurement
A 0.4-microliter drop of tear fluid was deposited onto the SERS substrate followed by solvent evaporation for 
approximately one minute at room temperature with 40% relative humidity. Raman spectra were acquired using 
a Renishaw inVia Reflex Raman spectrometer, equipped with a 785 nm diode laser at 10 mW power and a 50× 
objective lens. The spectral range was 400–3000 cm−1 with a spectral resolution of 1 cm−1 and an acquisition time 
of 1 s. The raw SERS data were processed using polynomial fitting for baseline correction with LabSpec (Horiba 
Scientifi, Kyoto, Japan). The processed SERS spectra were analyzed using the Scikit-learn package in Python 
(National Institute for Research in Computer Science and Automation, Rocquencourt, France) and interpreted 
using LabSpec.
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Machine learning methods
Three traditional ML algorithms, including LDA, PLS-DA and RF, were employed to classify tear samples from SD 
rats with and without EPH injection, using the Sci-Kit Learn package in Python. Hyperparameter optimization 
for PLS-DA and RF was performed to improve classification accuracy and other performance metrics. LDA is a 
linear discriminant classification method that maximizes between-class variance while minimizing within-class 
variance to find the optimal linear boundary between different categories. PLS-DA is also a linear classification 
model that projects predicted and observable variables into a new space, using partial least squares regression, 
suitable for multivariate statistical classification. The number of latent variables was tuned to 5. RF is an ensemble 
learning method constructing multiple decision trees and making final decisions based on majority voting. The 
number of decision trees was set to 300, and the maximum depth of each decision tree was also set to 300. 
Monte-Carlo Cross Validation (MCCV) was used to optimize the performance of the learning algorithms. Of 
the 120 samples, 90 were randomly assigned to the training set and 30 to the test set. Multiple training and test 
dataset pairs were created by resampling the SERS data according to the same splitting ratio. Each machine 
learning model was trained on the training data of each pair and then applied to the corresponding test data 
to compute classification results. This process was repeated 100 times to verify model stability. Metrics such as 
accuracy, precision, recall, specificity, F1-score, and the area under the ROC curve (AUC) were calculated based 
on the 100 repeated trials to evaluate the strengths of the algorithms.

Fig. 1. Experimental procedures: experimental group and control group (a); simulated samples and blank 
samples (b). SEM micrograph under 200,000× magnifications of the SERS substrate (c).
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Results
UPLC-MS/MS analysis
The average concentration of EPH in tear fluid collected over a period of 3 h post-injection was 1235 ng/mL 
(1.235 ppm). The product ion spectra (MS/MS) of EPH are demonstrated in Fig. 2.

SERS spectra analysis
SERS spectra of EPH
We initially examined SERS spectra of the blank SERS substrate, a silicon wafer assembled with silver nanoparticles. 
Characterization of the SERS substrate by SEM are demonstrated in Fig. 1c. As shown in Fig. 3a, SERS peaks 
of the blank SERS substrate were found at 520, 684 and 1027 cm−1. To explore the SERS peaks of EPH, as well 
as to evaluate the enhancement and sensitivity of the SERS substrate, EPH without dilution (30 mg:1 mL) was 
examined on a silicon wafer by Raman spectroscopy, and EPH at concentrations of 10 ppm, 25 ppm, 50 ppm, and 

100 ppm were examined on SERS substrates by SERS (Fig. S1 in the Supplementary Information, Fig. 3b). For 

quantification, the enhancement factor (EF) was calculated using EF = ISERS/NSurf
IRS/NVol

 (ISERS: the SERS intensity; 
IRS: the Raman intensity; NSurf: the number of adsorbed molecules; NVol = cRSVSca is the average number of 
molecules in the scattering volume (VSca) for the Raman measurement). Since the SERS substrate we used could 

be approximated as a single-molecule layer, the average intensity of SERS is proportional to the number (or 

concentration) of molecules, and this calculation can be written as EF = ISERS/cSERS
IRS/cRS

 (cSERS: the concentration 
of the analyte for SERS measurement; cRS: the concentration of the analyte for Raman measurement). Based on 
the intensity of the peak at 1001 cm−1, the EF of EPH at the SERS substrate was calculated to be approximately 104 
(Fig. S1). In comparison with the SERS spectra of blank SERS substrate, the SERS peaks of EPH were identified 
at 424, 616, 752, 797, 832, 946, 1001, 1027, 1100, 1390, 1550, and 1601 cm−1. Notably, as the EPH concentration 
decreased to 10 ppm, peaks at 1001, 1027 and 1601 cm−1 remained detectable.

Optimization of the spectral acquisition locations for DCD-SERS
Figure  4a is an overview of the coffee-ring formed by a dried teardrop. The coffee-ring comprises a central 
region which is rich in tear fern structures (Fig. 4b), and a ring region (Fig. 4c, d), illustrating the heterogenous 
composition of tear fluids. To optimize the spectral acquisition locations for DCD-SERS, we divided the coffee-
ring into four distinct regions, labeled A, B, C, and D, corresponding to the central fern region, central blank 
region, inner ring region and outer ring region (Fig. 4). Ten DCD-SERS spectra were randomly collected from 
each region and compared accordingly (Fig.  5). To evaluate the differences in DCD-SERS signal intensities 
across the four regions, we employed Analysis of Variance (ANOVA) and posthoc test. ANOVA test (P < 0.001, 
F-ratio = 590.400) and posthoc test (Tukey’s HSD test; P < 0.05) revealed significant differences between regions 
A-C, A-D, B-C and B-D. The central region (comprising regions A and B) showed stronger SERS signals 
compared to the ring regions (regions C and D). Consequently, we excluded the ring regions from SERS signal 
collection. For each sample, five acquisitions were taken from random points in the central region of the coffee-
ring. An average spectrum derived from these five acquisitions was used for subsequent analysis.

SERS analysis of EPH in tear fluid
To explore the potential of DCD-SERS for drug abuse detection, we analyzed the spectral differences within the 
experimental group and control groups, as well as between the two groups. Figure 6 presents 10 representative 

Fig. 2. Product ion spectra (MS/MS) of EPH.

 

Scientific Reports |         (2025) 15:1108 4| https://doi.org/10.1038/s41598-025-85451-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 4. (a) An overview of the coffee-ring formed by a dried teardrop; (b) a magnified view of the central 
region; (c,d) magnified views of the ring region. The coffee-ring pattern is divided into four distinct regions: a 
central fern region (A), a central blank region (B), an inner ring region (C) and an outer ring region (D).

 

Fig. 3. SERS spectra of blank SERS substrate (a); SERS spectra of EPH at 10 ppm, 25 ppm, 50 ppm, and 100 
ppm (b).
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DCD-SERS spectra from each group. ANOVA was performed to evaluate the intra-group variation in spectral 
intensity, yielding p-values < 0.05, which indicate significant differences. In the experimental group, the SERS 
peaks of EPH at 616, 752, 797, 832, 946, 1100, 1390, 1550 and 1601 cm−1 were absent, while SERS peaks of 
EPH at 424 and 1027 cm−1 could be observed in both experimental and control groups (Fig. 6). Although most 
spectral peaks in both groups overlap, notable differences exist in peak location and intensity, particularly at 
1001 cm−1 and 1242 cm−1 (Fig. 6). Independent sample t-test conducted on the spectral intensity at these peaks 
yield p values < 0.05, indicating significant differences. To further explore the detection threshold of EPH, we 
investigated the spectral differences between stimulated samples (with EPH concentrations at 10 ppm, 25 ppm, 

Fig. 5. DCD-SERS spectra in regions A (a), B (b), C (c) and D (d).
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50 ppm, 100 ppm, 250 ppm, and 500 ppm) and blank samples. By DCD-SERS, difference in peak intensity 
at 1001 cm−1 was observed, but not at 1242 cm−1. An independent sample t-test on the spectral intensity at 
1001 cm−1 between the stimulated and blank samples revealed that when the concentration of EPH was as low 
as 10 ppm, the p value exceeded 0.05.

Multivariate statistical analysis
The performance results, assessed using confusion matrices and receiver operating characteristic (ROC) curve 
analysis, are presented in Fig. 7; Table 1. Using LDA, tear samples from SD rats with or without EPH injection 
was classified with 93.33% accuracy, 92.86% precision, 92.86% recall, 93.75% specificity, a 92.86% F1-score and 
an AUC of 0.9688 after MCCV. After dimension reduction of PLS-DA, five latent variables were selected to 
achieve optimal performance. PLS-DA achieved 93.33% accuracy, 87.50% precision, 100.00% recall, 87.50% 
specificity, a 93.33% F1-score and an AUC of 0.9911 after MCCV. For RF, using 300 trees with a maximum depth 
of 6, the classification achieved 90.00% accuracy, 92.31% precision, 85.71% recall, 93.75% specificity, an 88.89% 
F1-score and an AUC value of 0.9821. The results from RF, LDA, and PLS-DA indicate that notable intra-group 
variability does not undermine the ability of machine learning algorithms to distinguish between groups.

Discussion
In this study, we applied DCD-SERS for the first time to detect EPH in tear fluids, highlighting its potential in 
drug abuse detection. Using ML, we achieved rapid differentiation between EPH-injected and non-injected SD 
rats.

UPLC-MS/MS analysis, a standard method for drug abuse detection, was applied to confirm that part of EPH 
could be excreted unchanged in tear fluids, laying a foundation for our study. The average concentration of EPH 
in tear fluid collected over a period of 3 h post-injection was 1235 ng/mL (1.235 ppm). The detection of EPH 
in tears aligns with previous studies on its excretion in other body fluids24–26. By comparing the Raman spectra 
with the SERS spectra of EPH, EF of EPH on the SERS subtrate was calculated to be approximately 104. We then 
acquired the SERS spectra of blank SERS substracts and EPH at concentrations of 10 ppm, 25 ppm, 50 ppm, 
and 100 ppm, finding peaks at 424, 616, 752, 832, 1001, 1027, 1601 cm−1 consistent with previous study27,28. The 
strongest peaks27,28 were also at 1001 cm−1 and 1027 cm−1. The slight differences in band positions may be due to 
the interaction of target analyte with the SERS substrate’s nanoparticle surface. The recognition of characteristic 
peaks in 10 ppm EPH revealed the potential for trace EPH detection using DCD-SERS.

To optimize the spectral acquisition locations for DCD-SERS, we investigated the SERS spectral intensity 
across the four distinct regions of the coffee-ring. This coffee-ring pattern has been described in previous 
studies29,30. ANOVA test (P < 0.001, F-ratio = 590.400) and posthoc test (Tukey’s HSD test; P < 0.05) indicated 
significant differences between regions A-C, A-D, B-C, B-D. The central region had stronger SERS signals 
compared to the ring region, differing from previous finding by S. Choi et al., likely due to the smaller teardrop 
volume used in our study (0.4 µL vs. 2.0 µL)30. We adopted smaller teardrop volume to improve user-friendliness 
for both the examinee and the examiner, by reducing the tear collection time and conjunctival stimulation, and 
accelerating the solvent evaporation process during DCD-SERS. Based on our experiment, we excluded the ring 
region for SERS signals collection.

To evaluate the potential of DCD-SERS for drug abuse detection, we analyzed the SERS differences of tear 
samples in the 400–3000 cm−1 range both within and between the experimental and control groups. As shown 
in Fig.  6, the SERS peak wavenumbers exhibit high reproducibility, demonstrating the repeatability of the 
measurement method. However, ANOVA test indicate significant intra-group variations in spectral intensity, 
which reveal the inherent heterogeneity in tear fluids among individuals. Most spectral peaks in experimental 
and control samples overlap, reflecting the common tear fluid components. The tentative assignments of the 
SERS vibrational sources, based on available SERS data from previous literature, are listed in Table 216,27. In the 
experimental group, the SERS peaks of EPH at 616, 752, 797, 832, 946, 1100, 1390, 1550 and 1601 cm−1 are absent. 

Figure 5. (continued)
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This is due to the extremely low concentration of EPH in tear fluid, which falls below the detection threshold 
of SERS. As shown in Fig. 3, when the concentration of EPH decreases to 10 ppm, only the Raman peaks at 
1001, 1027 and 1601 cm−1 remain detectable, with the peak at 1001 cm−1 being more prominent. According to 
the UPLC-MS/MS quantification results, the average concentration of EPH in tear fluid collected over a period 
of 3 h post-injection was only 1.235 ppm. Therefore, many characteristic SERS peaks of EPH are either not 

Fig. 6. (a) Ten representative DCD-SERS spectra of the experimental group; (b) Ten representative DCD-
SERS spectra of the control group; (c) SERS spectra of EPH for reference. Notable difference in peak intensity 
at 1001 cm−1 and 1242 cm−1 was indicated by arrows in panel (a) and (b).
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SERS peak (cm−1) Assignment Component

424 C-C shearing, bending, and twisting –

644 COO–wag. Amino acids

730 COO–def. Amino acids

807 6-ring def. C8–H wag. DNA/RNA

858 C-C str. Amino acids

1027 Ring breathing mode Amino acids

1134 C8–N9 str. N9–H, C8–H bend. DNA/RNA

1212 C5–C9 str. DNA/RNA

1329 C-H def. Aspartic acid, amino acids

1373 C2–H, N9–H bend. C8–N9, C4–N9 str. DNA/RNA

1455 C–H def. DNA/RNA, proteins, lipids and carbohydrates

1626 Indole N-H, C=O str. Amino acids

Table 2. Principal contributions in SERS spectra of tear samples and their tentative assignments. def. 
deformation, wag. wagging, str. stretching, bend. bending.

 

Method Accuracy Precision Recall Specificity F1-score AUC

RF 0.9000 0.9231 0.8571 0.9375 0.8889 0.9821

LDA 0.9333 0.9286 0.9286 0.9375 0.9286 0.9688

PLS-DA 0.9333 0.9333 0.8750 1.0000 0.8750 0.9333 0.9911

Table 1. Multivariate statistical analysis by RF, LDA and PLS-DA. RF random forest, LDA linear discriminant 
analysis, PLS-DA partial least squares discriminant analysis.

 

Fig. 7. Confusion matrices for the RF, LDA and PLS-DA models (a); ROC curves for the RF, LDA and PLS-
DA models (b).
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visible or are obscured by the background signals of tear fluid. SERS peaks of EPH at 424 and 1027 cm−1 could 
be observed in both experimental and control groups, with the peak at 1027 cm−1 being more prominent. The 
Raman peak at 424 cm−1 can be assigned to the shearing, bending, and twisting vibrations of C–C bonds. The 
Raman peak at 1027 cm−1 is typically attributed to vibrational modes of the benzene ring structure, specifically 
C–H in-plane bending and C–C skeletal stretching vibrations28. Consequently, this characteristic peak may 
be observed in EPH, which contains a benzene ring, as well as in tear fluid, which includes amino acids and 
proteins. Despite the overall similarity in shape and intensity, SERS peaks at 1001 cm−1 and 1242 cm−1 can be 
used to distinguish between EPH-injected and non-injected SD rats. The 1001 cm−1 peak is directly associated 
with EPH, as measured previously, corresponding to the benzene ring in EPH28. While the 1242 cm−1 peak may 
originate from the metabolites or analogues of EPH28.

Han et al. developed a portable kit containing SERS to detect drug abuse via urine10. In their study, human 
urine spiked with 10 ppm amphetamines underwent SERS analysis after pretreatment procedures. Several 
Raman peaks were attributed to amphetamines, with a strong peak at 1001 cm−1 suggested for high-throughput 
screening of drug suspects. However, identifying target analytes based solely on specific Raman peaks can 
be challenging. The complex signals from body fluid components often cover or overlap with those of target 
analyte, making the characteristic peaks of target analyte difficult to discern, especially for non-professionals. 
ML has been increasingly used to interpret spectral data, with many studies demonstrating its effectiveness22. 
For instance, previous researches combining dynamic-SERS and ML successfully identified methamphetamine 
in human urine with over 90% accuracy, though the analysis was limited to only three urine samples from three 
drug abusers13,14. While urine is the most commonly used sample, it can be easily adulterated or substituted, and 
spontaneous sample collection can be problematic6. In contrast, tear fluids offer resistance to adulteration, easy 
accessibility, non-invasiveness, and ethical appropriateness. To achieve rapid, accurate and efficient classification 
of the complex SERS data from tear fluids, our study introduced three commonly used supervised ML algorithms: 
LDA, PLS-DA and RF.

Generalisability is crucial when assessing ML model performance. An overfitting model struggles to handle 
previously unseen data in practical setting. Internal validation is widely applied for ML optimization, in which 
the dataset was split into training and test sets22,31. In the current study, MCCV, a non-exhaustive form of cross-
validation, was employed. Multiple permutations of training/test dataset pairs were created by resampling the 
spectral data according to a predetermined splitting ratio. This process was iterated 100 times to compute the 
outcome. LDA achieved 93.33% accuracy, 92.86% precision, 92.86% recall, 93.75% specificity, a 92.86% F1-score, 
and an AUC of 0.9688 after MCCV. It provides high interpretability and computational efficiency. However, LDA 
assumes normal distribution and equal covariance among classes, which may not always be true. PLS-DA, which 
excels in handling high-dimensional data, achieved 93.33% accuracy, 87.50% precision, 100.00% recall, 87.50% 
specificity, a 93.33% F1-score, and an AUC of 0.9911 after MCCV. The method’s ability to reduce dimensionality 
and handle collinear data makes it advantageous for complex datasets like Raman spectra. PLS-DA’s perfect recall 
indicates its strength in identifying all positive cases, reducing the likelihood of false negatives. However, it had 
lower specificity and the risk of overfitting, especially with a small sample size. RF, a robust ensemble learning 
method, achieved 90.00% accuracy, 92.31% precision, 85.71% recall, 93.75% specificity, an 88.89% F1-score, and 
an AUC of 0.9821. It is less likely to overfit compared to PLS-DA due to its ensemble nature. RF provides robust 
performance with non-linear data and insights into feature importance but is computationally demanding and 
less interpretable. Given the potential for our technique to be used in rapid workplace or roadside drug testing, 
minimizing false negatives is crucial. Therefore, PLS-DA might be preferable due to its high recall and F1-score.

Conclusion
This study demonstrates that DCD-SERS can successfully detect EPH in tear fluids, with notable differences in 
SERS peaks at 1001 cm−1 (corresponding to the benzene ring in EPH) and 1242 cm−1. When combined with ML, 
it enables rapid differentiation between EPH-injected and non-injected SD rats, demonstrating accuracy over 
90% and AUC values of 0.9821–0.9911. Among RF, LDA and PLS-DA, PLS-DA might be preferable due to its 
high recall and F1-score. This study provides proof-of-principle for a novel approach in drug abuse screening.

Tear fluid detection via DCD-SERS addresses several limitations in conventional detection techniques of 
drug abuse: (a) it is easily accessible, non-invasive and ethically appropriate; (b) it can be performed under 
supervision; (c) it is time-saving and cost-efficient; (d) combined with a portable Raman spectrometer, it 
provides a quick analytical method for on-spot detection of drug abuse. Furthermore, ML enhances the ability to 
detect subtle patterns in the Raman spectrum, realizing the full potential of SERS. The primary limitation of our 
study is its preliminary nature in exploring a new approach to drug abuse screening. Future studies should focus 
on evaluating the limit of detection and detection time of drugs and exploring a broader range of substances, to 
facilitate the teanslation of this new approach into practical applications.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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