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Abstract: A feasibility study to predict antimicrobial and antioxidant activity properties of propolis
extracts using 700-MHz 1H-NMR spectra and multivariate regression data analysis is presented.
The study was conducted with thirty-five propolis samples to develop a rapid and reliable method
for the evaluation of their quality. The extracts have been evaluated by measuring phenolic and
flavonoid contents; the antioxidant activity; and the antimicrobial activity. The obtained spectral data
were submitted to multivariate calibration (partial least squares (PLS) and orthogonal partial least
squares (OPLS)) to correlate the relative intensity and position of NMR resonance peaks with the
metabolites contents and biological activities. The developed PLS and OPLS model were successfully
applied to the determination of the target properties for proof of the concept. The OPLS observed vs.
predicted properties plots indicate the absence of systematic errors with determination coefficients
between the ranges 0.7207 to 0.9990. Up to 86.1% of explication of variation in the spectral data and
99.9% in the measured properties were attained with 88.6% of prediction capabilities in the best case
(S. mutans activity) according to the cross-validation procedure. The figures of merit of the developed
PLS and OPLS methods were evaluated and compared as well.

Keywords: propolis extract; proton nuclear magnetic resonance; chemometrics; antibacterial;
antioxidant capacity; multivariate statistical analysis

1. Introduction

Propolis (bee glue), is a sticky dark-colored hive product collected by bees from living plant
sources [1,2]. It possesses pharmacological activities such as antibacterial, antifungal, antioxidant,
antitumoral, anti-inflammatory properties and is used extensively as an ingredient of candies, honeys,
biopharmaceuticals, cosmetics and in beverages in various parts of the world where it is claimed to
improve human health and to prevent diseases such as diabetes and cancer [3,4]. Recently, propolis
has been proposed as chemical preservative in ground meat and as a germicide and insecticide for
food packaging [4].

More than 300 compounds have been identified in different propolis samples [5]. This complex
mixture contains a variety of chemical compounds such as flavonoid aglycones, phenolic acids and
their esters, phenolic aldehydes, alcohols, ketones, sesquiterpenes, coumarins, steroids, amino acids
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and inorganic compounds [4,6–8]. The results have revealed that the propolis composition varies with
geography and is strongly related with the flora surrounding the hive [1,4].

The main constituents of propolis in North America are flavonoids and phenolic acid esters [9].
Limited research has been conducted on the chemical composition and pharmacological properties
of Mexican propolis. A study conducted by Velazquez et al., [10], investigated the antibacterial and
free-radical scavenging (FRS) activities of propolis collected from three different areas of Sonora
(Mexico). Navarro-Navarro et al., [11] reported the anti-Vibrio activity of propolis collected from three
different regions of Sonora. Valencia et al., [3], studied the seasonal effect on the chemical composition
and biological activities (antiproliferative and antioxidant activities) of Sonoran propolis.

The biological effects of propolis can be associated with its antioxidant activity, and in the last few
decades new analytical techniques have been proposed to determine its antioxidant activity [12,13]. They
are based, for example, on the determination of total phenolic and flavonoid contents or the antioxidant
activity/capacity assays: 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing/antioxidant power
(FRAP), and generation of the (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid] (ABTS)) radical
cation [14]. It is known that “quantitative evaluation of antioxidant capacity” needs more than one
single assay method. A range of analytical methods have also been used to profile propolis, including
chromatography techniques, linked to spectroscopic detection, resulting in various modern hyphenated
techniques, e.g., GC-MS and HPLC-MS [15].

As already mentioned, propolis consists of a wide range of organic compounds of varying polarity
and the only technique that can simultaneously examine waxes, terpenoids and phenolics is Nuclear
Magnetic Resonance (NMR) spectroscopy [16]. One of the main advantages of this technique is that
structural and quantitative information can be obtained for a wide range of chemical species in a single
NMR experiment. NMR is frequently applied to samples that can be directly examined as liquids, but
very simple extraction or sample preparation procedures may also be used [17,18].

Since the NMR pattern of natural products in propolis is extremely complex, the use of
chemometric methods to analyze such complex spectral data sets is mandatory [19]. In the case
of propolis, NMR with chemometric techniques have been proposed to identify and classify
different propolis sources or geographic origins [18,20,21]. However, to the best of our knowledge,
no study concerning the prediction of antioxidating and antibacterial properties of propolis based on
multivariate calibration has been reported up to now.

In the present paper, the application of 1H-NMR coupled with multivariate statistical analysis,
based on partial least squares, is employed to quantitatively predict the antibacterial and antioxidant
activities of propolis extracts. The net analyte signal concept is used to determine the figures of merit
of the developed methods. The study was conducted with 35 propolis samples obtained from different
Mexican apiaries and four samples from out of the country (one from Ecuador and three from China)
to develop a rapid and reliable method to evaluate the quality of them.

2. Results and Discussion

2.1. Extraction, Antioxidant and Antibacterial Activities

In this work, the ethanolic extracts of thirty-five samples of propolis obtained from different
Mexican apiaries and four samples out of the country (one from Ecuador and three from China) were
studied. The total phenolic and flavonoid contents were estimated using standard chemical assay
procedures (Folin-Ciocalteu and AlCl3 methods). Several biological activities were evaluated including
antioxidant capacity using the free radical scavenging DPPH assay and antimicrobial properties using
Streptococcus mutans, Streptococcus oralis and Streptococcus sanguinis as test models. The results of
the bioassays of the ethanolic extracts of propolis (EEP) samples are reported in Table 1. The total
phenolic and flavonoid contents and antioxidant activity are in agreement with the literature for poplar
propolis [3,6,10].
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Table 1. Characteristics of the of EEP samples from Mexico City (CDMX), Puebla (PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala (TLAX), Ecuador (ECUA) and
China (CHINA) used in this study.

Source of Sample Date of
Harvesting

Harvesting
Method Total Phenols a Total

Flavonoids b % DPPH c MIC (µg/mL)

S. oralis S. sanguinis S. mutans

Mexico City (CDMX)

Tlalpan

Topilejo 1 September 2011 plastic nets 112.7 15.7 42.3 128 128 256
Topilejo 2 October 2011 plastic nets 116 24.9 46.1 128 128 256
Topilejo 3 November 2011 plastic nets 106.7 12.6 40.2 32 32 64
Topilejo 4 October 2012 plastic nets 134.1 14.2 52.5 128 128 256
Topilejo 5 October 2013 plastic nets 101.3 13.6 40.8 128 128 256
Topilejo 6 October 2014 plastic nets 106.3 12.1 32.6 128 128 128
Xochimilco
San Luis Tlaxialtemalco 1 October 2011 scraping 99.7 22.1 66.8 512 512 512
San Luis Tlaxialtemalco 2 November 2011 scraping 157.3 15.6 52.9 128 128 256
San Luis Tlaxialtemalco 3 October 2012 scraping 76.4 14.1 26.6 512 512 1024
San Luis Tlaxialtemalco 4 October 2013 scraping 175.9 17.1 60.2 64 128 128
San Luis Tlaxialtemalco 5 October 2013 plastic nets 116.4 14.5 54.6 128 128 256
San Luis Tlaxialtemalco 6 November 2013 plastic nets 134.6 13.5 44.6 128 128 256

Milpa Alta

San Pablo Oztotepec 1 October 2011 plastic nets 101.3 25.2 59.6 128 128 128
San Pablo Oztotepec 2 October 2011 scraping 247.3 27.8 84.4 32 32 32
San Pablo Oztotepec 3 November 2012 plastic nets 128.9 12.2 39.6 128 128 256
San Pablo Oztotepec 4 October 2011 scraping 223.2 34.6 77.5 32 32 64
San Pablo Oztotepec 5 November 2012 scraping 225.4 32.6 75.6 32 32 64
San Pablo Oztotepec 6 October 2011 plastic nets 135.2 27.5 64 64 64 128
San Pablo Oztotepec 7 October 2012 scraping 203.8 31.5 81.7 16 16 32
San Pablo Oztotepec 8 October 2013 plastic nets 204.3 16.3 84.8 32 32 64
San Pablo Oztotepec 9 October 2012 scraping 218.9 22.1 77.5 32 32 32
San Pablo Oztotepec 10 November 2012 scraping 178.3 16.3 57.5 64 128 128
San Pablo Oztotepec 11 October 2013 scraping 168.6 16.1 58.8 64 64 128
San Antonio Tecomitl 1 November 2013 scraping 198.5 23.9 75 32 64 128
San Antonio Tecomitl 2 October 2011 scraping 215.7 30 51.2 32 64 64
San Antonio Tecomitl 3 October 2011 plastic nets 99.6 10.1 33.8 256 256 512
San Antonio Tecomitl 4 October 2013 plastic nets 105.3 13.1 43.6 64 64 128
San Antonio Tecomitl 5 October 2012 plastic nets 89.8 10.5 36.5 256 256 512
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Table 1. Cont.

Source of Sample Date of
Harvesting

Harvesting
Method Total Phenols a Total

Flavonoids b % DPPH c MIC (µg/mL)

S. oralis S. sanguinis S. mutans

Puebla (PUE)

Valsequillo 1 October 2011 wooden wedges 205.6 48.7 80.9 16 32 32
Valsequillo 2 October 2012 scraping 287.2 56.7 86 16 16 16
Cuetzalan October 2011 scraping 24.7 2.3 28.7 1024 1024 2048

Oaxaca (OAX)

Pinotepa Nacional 1 October 2011 scraping 38.5 2.1 7.1 2048 2048 2048
Pinotepa Nacional 2 October 2012 scraping 12 1.3 0 2048 2048 2048

Guanajuato (GUAN)

Silao October 2012 plastic nets 87.3 14.2 52.4 256 256 512

Tlaxcala (TLAX)

Tlaxcala October 2011 scraping 23.5 3.1 12.1 512 512 1024

South America (ECUA)

Quito/Ecuador 2011 198.3 20.1 16.3 64 128 128

China (CHINA)

China 1 * 2013 221.7 28.3 83.7 64 64 64
China 2 * 2013 215.6 29.1 79.1 64 64 64
China 3 * 2012 189.9 27.8 67.8 64 64 128

Positive control † 0.12 0.12 0.24
a Expressed in mg GAE/g EEP; b Expressed in mg QE/g EEP; c DPPH radical scavenging activity (percent); * Purchased in a local market in Mexico City; † Chlorhexidine gluconate.
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2.2. 1H-NMR

The 1H-NMR spectra of the EEP were recorded and, as an example, two selected spectra are shown
in Figure 1. While spectrum Figure 1a belongs to an active extract, the Figure 1b one corresponds
to an inactive one. In spectrum Figure 1a flavonoid compound signals are observed. Antioxidant
and antimicrobial activities are well documented for this type of natural products [22,23]. The
singlets around δ 12.0 ppm could be attributed to intramolecular hydrogen bond forming -OH groups
frequently present in the A-ring of flavonoids. The aromatic protons of these phenolic constituents
are observed between δ 6.0 ppm and 8.0 ppm. The signals between δ 6.0 ppm and 5.0 ppm could
correspond to the vinylic protons of the C-ring of flavones present in the extract. The protons of the
ABX system of the C-ring of a flavanone are expected between δ 5.0 ppm and 2.5 ppm. The singlet
nearby δ 4.0 ppm could be attributed to a methyl moiety of an aromatic methoxy group frequently
observed in flavonoids. On the other hand, spectrum Figure 1b is dominated by signals in the δ

2.0 ppm–0.5 ppm region, which could be originated from protons belonging to waxes or linear fatty
acids whose contribution to antimicrobial or antioxidant activities may be considered less relevant.
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spectra of propolis showed that with six components 73.3% of spectral variation was explained 
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explain the dispersion observed when comparing the different sample spectra. The percent of 
variation that can be predicted by the model according to a leave-one-out cross-validation procedure 
reached 48.7% (Q2X(cum)). Cross-validation is used to estimate how accurately a predictive model 
will perform in practice and it is employed as an estimator of the prediction behavior in the absence 
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spectral similarities in the plot of scores t2 vs. t1 (Figure 2), where the scores are the values of the 
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Figure 1. The 700-MHz 1H-NMR spectra of 40 mg of propolis sample dissolved in 0.6 mL of DMSO-d6

containing TMS. (a) Sample Puebla; Valsequillo 1 and (b) sample Puebla, Cuetzalan.

2.3. Multivariate Analysis

The obtained spectral data were submitted to multivariate analysis; first, to study the variations
among the sample spectra, and second, to correlate the relative intensity and position of NMR
resonance peaks to antioxidant activity determined by DPPH, the total phenolic and flavonoid contents,
and the antimicrobial activity.

Principal component analysis (PCA) is a technique used to emphasize variation and bring out
strong patterns in a dataset. It’s often used to make data easy to explore and visualize. By examining
the underlying structure of the variables, a new coordinate system is defined. The original variables
are linear combined in new ones, named principal components, and in such form the dimensionality,
i.e., complexity of the data space is reduced. The PCA analysis of the 1H-NMR spectra of propolis
showed that with six components 73.3% of spectral variation was explained (R2X(cum)). This value
is a measure of the amount of information contain within the model to explain the dispersion
observed when comparing the different sample spectra. The percent of variation that can be predicted
by the model according to a leave-one-out cross-validation procedure reached 48.7% (Q2X(cum)).
Cross-validation is used to estimate how accurately a predictive model will perform in practice and it
is employed as an estimator of the prediction behavior in the absence of an independent set of samples
for validation. A quick view of the sample distribution according to spectral similarities in the plot of
scores t2 vs. t1 (Figure 2), where the scores are the values of the new variables, indicated a natural
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tendency of the samples of the same apiary or apiaries to lie in close proximity, but no grouping among
the samples according to their different origins is in fact observed in the plot. This was confirmed by
the tolerance ellipse that defines a 95% confidence interval for a Hotelling T2 test, indicating that all
samples can be considered as representative of the same population. It was also observed that although
some samples lay very close to the limits of the ellipse, no outliers were really present in the data. On
the basis of the analysis of the loadings plots (supplementary information), the differences among
samples are mainly of quantitative rather than of qualitative nature, as the chemical shifts in their NMR
spectra cannot be assigned to any particular discriminant unique features. In addition, the analysis
showed that some samples had distance to the model (DModX) values just slightly above the critical
value; however, it was decided to include them in further treatments. DModX is the distance of an
observation in the data set to the X model plane or hyperplane, which is proportional to the residual
standard deviation (RSD) of the X observation. Interestingly such values corresponded to samples
outside Mexico City (Puebla) and even the country (China).

The spectra were also treated with PLS regression analysis. PLS is a method for relating two data
matrices, X (the 1H-NMR spectra) and Y (the properties, e.g., phenol content), by a linear multivariate
model, but goes beyond traditional regression in that it models the structure of X and Y by PCA
analysis as well. The regression is then performed with the analogous of the principal components,
named latent variables, of the X and Y matrices.

In a first step the complete spectral range was employed (0.5 ppm–13.5 ppm). However, from the
analysis of the regression coefficients, an improvement in regression parameters was observed when
the range was restricted to 0.5 ppm–8.2 ppm, and further processing was done using this interval.
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Figure 2. t2 vs. t1 score plot for PCA analysis of 1H-NMR spectra of propolis samples labeled according
to their origin: Mexico City (CDMX), Puebla (PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala
(TLAX), Ecuador (ECUA) and China (CHINA).

In Table 2, the values of R2X (cum), R2Y (cum), and Q2X (cum) for the different evaluated
properties are indicated. R2Y (cum) has the same meaning that R2X (cum) but instead of analyzing
spectrum data, it considers the data contained in Y matrix (responses). Values for the determination
coefficient (R2), the Root Mean Square Error of Estimation (RMSEE) and the Root Mean Standard
Error of Cross Validation (RMSECV), as well as for the number of latent variables used in the models
are in addition included. RMSEE and RMSECV are descriptive statistic parameters that allow the
accuracy of the model to be quantitatively measured. The numbers of significant latent variables were
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selected according to the cross-validation rules included in SIMCA for such purposes: (i) Q2 > limit,
where limit = 0 for PLS models with more than 100 observations. Limit = 0.05 for PLS models with
100 observations or less, and limit = 0.01 for OPLS; (ii) Q2V > limit for at least 20% of the y-variables
when M ≥ 25 or sqrt(M) when M < 25, where M = number of y-variables and Q2V is Q2 for individual
variables. Overall, good performance is achieved for all properties and no systematic variations are
detected based on the slope and intercept values of the regression equations between the defined and
predicted values.

With the aim of improving the prediction error for the data by eliminating orthogonal variation in
X, the OPLS method was tested. This orthogonal variation is due to sources of variation which are
not correlated with the measured properties, i.e., it is the non-predictive part of the variation in the
X matrix. As observed in the same Table, in general, better performance characteristics are obtained,
i.e., a reduction in RMSEE and RMSECV, an increase in R2X (cum), R2Y (cum), Q2 (cum) and R2,
without deterioration in the regression equations, as most of the points fall close to the 45 degree
line, with no systematic errors present. Values of R2 ranging from 0.7207 to 0.9990 were observed for
the regression lines indicating strong relationships between the defined and predicted values of total
phenol and flavonoid content, DPPH radical scavenging activity, and in vitro antibacterial activity
against Streptococcus mutans, Streptococcus oralis and Streptococcus sanguinis. At this point it is also
important to mention that the residual plots of the data for both the PLS and OPLS analyses showed
no systematic trends and a satisfactory fit to normal probability plots, thus confirming the correct
application of the models.

Table 2. Results of the PLS and OPLS modeling of propolis samples.

Property Number of Latent
Variables

Regression
Equation a R2 R2X

(cum)
R2Y

(cum)
Q2

(cum) RMSEC RMSECV

PLS

Phenol content 2 x − 1.397 × 10−6 0.6003 0.400 0.600 0.263 43.548 56.086
Flavonoid content 2 x + 1.212 × 10−7 0.7204 0.397 0.720 0.482 6.334 8.305

DPPH 2 x + 1.61 × 10−7 0.7110 0.388 0.711 0.325 12.760 18.511
MIC (S. oralis) 3 x + 1.165 × 10−5 0.9411 0.460 0.941 0.778 118.005 244.768

MIC (S. sanguinis) 3 x + 7.404 × 10−6 0.9434 0.460 0.943 0.784 115.076 241.684
MIC (S. mutants) 3 x + 2.033 × 10−6 0.9245 0.463 0.925 0.696 156.141 322.235

OPLS

Phenol content 1 + 2+ 0 x − 1.106 × 10−5 0.7207 0.472 0.721 0.249 36.920 57.356
Flavonoid content 1 + 2 + 0 x + 1.22 × 10−6 0.8298 0.463 0.830 0.627 5.012 7.027

DPPH 1 + 3 + 0 x − 5.353 × 10−6 0.8603 0.542 0.860 0.515 9.128 15.878
MIC (S. oralis) 1 + 4 + 0 x + 1.108 × 10−5 0.9736 0.596 0.974 0.850 81.405 178.283

MIC (S. sanguinis) 1 + 4 + 0 x + 3.338 × 10−5 0.9744 0.595 0.974 0.854 79.644 174.984
MIC (S. mutants) 1 + 12 + 0 x − 2516 × 10−6 0.9990 0.861 0.999 0.886 20.785 181.999

a observed vs. predicted values.

To better understand the differences between PLS and OPLS methods to model and predict the
response values, some characteristic examples of the inner relationship plot of the analysis of the
models described in Table 2 are shown in Figures 3 and 4. These plots represent the correlation between
the scores of the predictors (u data) and response (t data). A perfect match between the X- and the Y-data
is observed when all data points are located on the diagonal line with slope equal to one. Conversely,
when there is a weak correlation structure between X and Y, there is a considerable spread of the points
around such line. The plot is also useful to identify curved (non-linear) relationships between the
predictors and the responses and to identify outliers in X- and Y-data, and in the relationship between X
and Y. As observed in Figure 3, PLS models give moderate correlations between spectra and properties,
denoted by both medium values of the determination coefficient (r2 values ranging from 0.3867 to
0.4617) and significant spread of the samples along the reference line. Some samples inside Mexico City
(CDMX) and outside the city (Oaxaca (OAX), Puebla (PUE) and Tlaxcala (TLAX)) and even the country
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(China) look like outliers in the relationship between the X- and Y-blocks. In contrast, OPLS modeling
produces very strong correlation results (Figure 4) as high reduction in the spread of the samples along
the reference line is observed with a considerable increase in the values of the determination coefficients
(r2 values ranging from 0.8298 to 0.999). This time, the outlier samples observed in PLS modeling
practically disappear at all, suggesting that OPLS modeling reduces a particular source of variability in
the NMR chemical shifts associated with such samples. Further analysis of the regression coefficients
of the PLS and OPLS models will be latter performed to identify the chemical shifts responsible for
differences in PLS and OPLS modeling. Similar results were observed for the properties not shown in
Figures 3 and 4.

Molecules 2017, 22, 1184 8 of 16 

 

such samples. Further analysis of the regression coefficients of the PLS and OPLS models will be 
latter performed to identify the chemical shifts responsible for differences in PLS and OPLS 
modeling. Similar results were observed for the properties not shown in Figures 3 and 4. 

 
Figure 3. Inner relationship plots for the X-scores (u-data) and Y-scores (t data) between the first 
latent variables of the PLS models for (a) flavonoid content; (b) antioxidant (DPPH) content; and (c) 
antimicrobial S. mutants MIC activity, labeled according to their origin: Mexico City (CDMX), Puebla 
(PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala (TLAX), Ecuador (ECUA) and China (CHINA). 
Inside the figures the lineal regression equation and determination coefficient value of the data  
are reported. 

 
Figure 4. Inner relationship plots for the X-scores (u-data) and Y-scores (t data) between the first 
latent variables of the OPLS models for (a) flavonoid content; (b) antioxidant (DPPH) content; and (c) 
antimicrobial S. mutants MIC activity, labeled according to their origin: Mexico City (CDMX), Puebla 
(PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala (TLAX), Ecuador (ECUA) and China (CHINA). 
Inside the figures the lineal regression equation and determination coefficient value of the data  
are reported. 

In Figures 5 and 6 the observed vs. predicted values plots of the different properties using OPLS 
modeling are shown. It is obvious that the samples are not homogeneously distributed, as most of 
the observations are clustered and others grouped outside the main array. This is especially true 
concerning the antibacterial activity, in which it is clearly noted that the inclusion of samples outside 
Mexico City (CDMX), especially Puebla (PUE), Oaxaca (OAX) and Tlaxcala (TLAX), allows a more 
suitable prediction due to the extend range that such samples confers for modeling. This fact is 
reflected in the RMSEE and RMSECV values which are lower for phenol and flavonoids contents 
and DPPH activity than for MIC assays. The plots also shown that although phenol and flavonoid 
contents as well as DPPH activity are almost equally spaced between samples, the MIC activities are 
not. This trend clearly indicates that although the compounds that produce the antioxidant 
properties are presents in an extended range of concentrations in the samples discernable by the 
measuring method by a continuous variable, not all of them have antimicrobial activities. In 
addition, the observed grouping in the MIC activities is a logical consequence of the nature of the 
MIC analysis (two-fold serial dilutions) which produces a discrete variable as results and the 
similarities between samples concerning this parameter. The low antibacterial activity of certain 
samples, especially those from Puebla (PUE), Oaxaca (OAX) and Tlaxcala (TLAX), is clearly related 
to their low phenol and flavonoid contents, as expected for the antioxidant capacity of such 
compounds. The inclusion of new samples with a diversity of origins and further characterization of 
the propolis samples will be a recommendable form to extend the model prediction capabilities. 

Figure 3. Inner relationship plots for the X-scores (u-data) and Y-scores (t data) between the first
latent variables of the PLS models for (a) flavonoid content; (b) antioxidant (DPPH) content; and
(c) antimicrobial S. mutants MIC activity, labeled according to their origin: Mexico City (CDMX),
Puebla (PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala (TLAX), Ecuador (ECUA) and China
(CHINA). Inside the figures the lineal regression equation and determination coefficient value of the
data are reported.

Molecules 2017, 22, 1184 8 of 16 

 

such samples. Further analysis of the regression coefficients of the PLS and OPLS models will be 
latter performed to identify the chemical shifts responsible for differences in PLS and OPLS 
modeling. Similar results were observed for the properties not shown in Figures 3 and 4. 

 
Figure 3. Inner relationship plots for the X-scores (u-data) and Y-scores (t data) between the first 
latent variables of the PLS models for (a) flavonoid content; (b) antioxidant (DPPH) content; and (c) 
antimicrobial S. mutants MIC activity, labeled according to their origin: Mexico City (CDMX), Puebla 
(PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala (TLAX), Ecuador (ECUA) and China (CHINA). 
Inside the figures the lineal regression equation and determination coefficient value of the data  
are reported. 

 
Figure 4. Inner relationship plots for the X-scores (u-data) and Y-scores (t data) between the first 
latent variables of the OPLS models for (a) flavonoid content; (b) antioxidant (DPPH) content; and (c) 
antimicrobial S. mutants MIC activity, labeled according to their origin: Mexico City (CDMX), Puebla 
(PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala (TLAX), Ecuador (ECUA) and China (CHINA). 
Inside the figures the lineal regression equation and determination coefficient value of the data  
are reported. 

In Figures 5 and 6 the observed vs. predicted values plots of the different properties using OPLS 
modeling are shown. It is obvious that the samples are not homogeneously distributed, as most of 
the observations are clustered and others grouped outside the main array. This is especially true 
concerning the antibacterial activity, in which it is clearly noted that the inclusion of samples outside 
Mexico City (CDMX), especially Puebla (PUE), Oaxaca (OAX) and Tlaxcala (TLAX), allows a more 
suitable prediction due to the extend range that such samples confers for modeling. This fact is 
reflected in the RMSEE and RMSECV values which are lower for phenol and flavonoids contents 
and DPPH activity than for MIC assays. The plots also shown that although phenol and flavonoid 
contents as well as DPPH activity are almost equally spaced between samples, the MIC activities are 
not. This trend clearly indicates that although the compounds that produce the antioxidant 
properties are presents in an extended range of concentrations in the samples discernable by the 
measuring method by a continuous variable, not all of them have antimicrobial activities. In 
addition, the observed grouping in the MIC activities is a logical consequence of the nature of the 
MIC analysis (two-fold serial dilutions) which produces a discrete variable as results and the 
similarities between samples concerning this parameter. The low antibacterial activity of certain 
samples, especially those from Puebla (PUE), Oaxaca (OAX) and Tlaxcala (TLAX), is clearly related 
to their low phenol and flavonoid contents, as expected for the antioxidant capacity of such 
compounds. The inclusion of new samples with a diversity of origins and further characterization of 
the propolis samples will be a recommendable form to extend the model prediction capabilities. 

Figure 4. Inner relationship plots for the X-scores (u-data) and Y-scores (t data) between the first
latent variables of the OPLS models for (a) flavonoid content; (b) antioxidant (DPPH) content; and
(c) antimicrobial S. mutants MIC activity, labeled according to their origin: Mexico City (CDMX),
Puebla (PUE), Oaxaca (OAX), Guanajuato (GUAN), Tlaxcala (TLAX), Ecuador (ECUA) and China
(CHINA). Inside the figures the lineal regression equation and determination coefficient value of the
data are reported.

In Figures 5 and 6 the observed vs. predicted values plots of the different properties using OPLS
modeling are shown. It is obvious that the samples are not homogeneously distributed, as most of
the observations are clustered and others grouped outside the main array. This is especially true
concerning the antibacterial activity, in which it is clearly noted that the inclusion of samples outside
Mexico City (CDMX), especially Puebla (PUE), Oaxaca (OAX) and Tlaxcala (TLAX), allows a more
suitable prediction due to the extend range that such samples confers for modeling. This fact is reflected
in the RMSEE and RMSECV values which are lower for phenol and flavonoids contents and DPPH
activity than for MIC assays. The plots also shown that although phenol and flavonoid contents as well
as DPPH activity are almost equally spaced between samples, the MIC activities are not. This trend
clearly indicates that although the compounds that produce the antioxidant properties are presents
in an extended range of concentrations in the samples discernable by the measuring method by a
continuous variable, not all of them have antimicrobial activities. In addition, the observed grouping in



Molecules 2017, 22, 1184 9 of 17

the MIC activities is a logical consequence of the nature of the MIC analysis (two-fold serial dilutions)
which produces a discrete variable as results and the similarities between samples concerning this
parameter. The low antibacterial activity of certain samples, especially those from Puebla (PUE),
Oaxaca (OAX) and Tlaxcala (TLAX), is clearly related to their low phenol and flavonoid contents,
as expected for the antioxidant capacity of such compounds. The inclusion of new samples with a
diversity of origins and further characterization of the propolis samples will be a recommendable form
to extend the model prediction capabilities.Molecules 2017, 22, 1184 9 of 16 
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In Table 3 the figures of merit of the PLS and OPLS methods are reported. As observed,
both methods perform similarly. Clearly the orthogonal signal correction of OPLS algorithm filters
uncorrelated variability in the sample spectra, thus increasing the selectivities up to its maximum
values of 1.00, thus allowing better prediction capabilities of the model as measured by Q2X (cum).
By comparing PLS and OPLS selectivity results, this uncorrelated variability has an average value
of 17%. A comparison of the sum of squares of the regression coefficients for all properties for the
PLS and OPLS models (Figure 7) reveals that both models give high importance to predict the target
properties to the 0.5 ppm–6.0 ppm region; however the OPLS technique give more relevance to
the 1.7 ppm–2.2 ppm and 5 ppm–5.8 ppm regions of the 1H-NMR spectra, which according to the
discussion above, such chemical shifts were mainly attributed to protons belonging to waxes or linear
fatty acids and to the vinylic protons of the C-ring of flavones present in the extract, respectively,
which content seems to be determinant in the values of the of total phenol and flavonoid content,
DPPH radical scavenging activity, and in vitro antibacterial activity against Streptococcus mutans,
Streptococcus oralis and Streptococcus sanguinis.
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Table 3. Figures of merit of the PLS and OPLS models.

Figure of Merit Phenol Content Flavonoid Content DPPH MIC (S. oralis) MIC (S. sanguinis) MIC (S. mutants)

PLS

LD 0.37 mg GAE g EEP−1 0.35 mg QE g EEP−1 0.40% 0.51 µg mL−1 0.51 µg mL−1 0.53 µg mL−1

LC 1.12 mg GAE g EEP−1 1.08 mg QE g EEP−1 1.21% 1.55 µg mL−1 1.55 µg mL−1 1.61 µg mL−1

Evaluated linearity 12–287.20 mg GAE g EEP−1 1.30–56.70 mg QE g EEP−1 0.40–86% 16–2048 µg mL−1 16–2048 µg mL−1 16–2048 µg mL−1

Sens 39.93 g EEP mg GAE−1 41.39 g EEP mg QE−1 36.80%−1 25.23 mL µg−1 25.27 mL µg−1 25.89 mL µg−1

Sel 0.87 0.87 0.86 0.79 0.79 0.79
γ 8.94 g EEP mg GAE−1 9.28 g EEP mg QE−1 8.28%−1 6.45 mL µg−1 6.46 mL µg−1 6.19 mL µg−1

γ−1 0.11 mg GAE g EEP−1 0.11 mg QE g EEP−1 0.12% 0.15 µg mL−1 0.15 µg mL−1 0.16 µg mL−1

OPLS

LD 0.45 mg GAE g EEP−1 0.39 mg QE g EEP−1 0.49% 0.67 µg mL−1 0.66 µg mL−1 0.66 µg mL−1

LC 1.38 mg GAE g EEP−1 1.20 mg QE g EEP−1 1.50% 2.03 µg mL−1 1.86 µg mL−1 1.99 µg mL−1

Evaluated linearity 12–287.20 mg GAE g EEP−1 1.30–56.70 mg QE g EEP−1 0.40–86% 16–2048 µg mL−1 16–2048 µg mL−1 16–2048 µg mL−1

Sens 40.34 g EEP mg GAE−1 45.12 g EEP mg QE−1 37.76%−1 28.92 mL µg−1 29.13 mL µg−1 29.59 mL µg−1

Sel 1.00 1.00 1.00 1.00 1.00 1.00
γ 7.24 g EEP mg GAE−1 8.35 g EEP mg QE−1 6.66%−1 4.92 mL µg−1 4.95 mL µg−1 5.03 mLµg−1

γ−1 0.14 mg GAE g EEP−1 0.12 mg QE g EEP−1 0.15% 0.20 µg mL−1 0.20 µg mL−1 0.20 µg mL−1
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Figure 7. Sum of squares of the regression coefficient vectors of the PLS and OPLS models for
all properties.

Further improvement in the developed methods may be performed for the implementation of
potential quality control protocols and more accurate predictions by the inclusion of new samples with
a diversity of origins, the determination of flavanones and dihydroflavonols with specific methods
and the addition of IC50 values of the samples as a target property. Specifically, as the method which
involves the measurement at 410 nm–430 nm after addition of AlCl3 solution is selective only for
flavonols (quercetin, morin, kaempferol and rutin) and flavones luteolin, complementing the data
with a measurement procedure at 510 nm in the presence of NaNO2 in alkaline medium, may be a
feasible form to evaluate rutin, luteolin and catechins, although it should be considered that phenolic
acids exhibit considerable absorbance at this wavelength. With this new information, an improved
interpretation of the relationship between polyphenols/flavonoids quantification and antimicrobial
activity may be anticipated. This article allows a proof of the concept for such purposes.

3. Materials and Methods

3.1. Samples

Thirty-nine propolis samples were provided by local beekeepers (Federico Palma Valderrama and
MVZ Ángel López Ramírez). The propolis samples were collected between 2011 and 2014 (Table 1).
These 39 samples were obtained by different harvesting methods, 18 by scraping, one by wooden
wedges (3 mm−5 mm thick), and 16 by plastic nets (mesh size = 2 mm).

3.2. Chemicals and Reagents

The reagents 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, 97%), gallic acid,
2,2-diphenyl-1-picrylhydrazyl (DPPH), sodium carbonate, chlorhexidine gluconate, and quercetin,
were supplied by Sigma-Aldrich (St. Louis, MO, USA). Ethanol was supplied by Merck (Darmstadt,
Germany). Dimethyl sulfoxide-d6 (D, 99.9%) +0.05% V/V TMS was supplied by Cambridge Isotope
Laboratoriesn (Tewksbury, MA, USA).
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3.3. Extract Preparation

Five g of each crude propolis sample was extracted with ethanol (250 mL) at room temperature
during 7 days. Each extract was taken to dryness under reduced pressure to afford the ethanolic
extracts of propolis (EEP). Extracts were stored at −20 ◦C until analysis.

3.4. DPPH Radical Scavenging Assay

DPPH radical scavenging activity was investigated according to the method of Cheng et al. [24].
Briefly, an ethanolic solution of DPPH (0.208 mM, 0.1 mL) was mixed with extract (1 mg/mL, 0.1 mL)
or Trolox (positive control, 1 mg/mL). The 96-well plate was incubated in the dark at room temperature
for 20 min, and the absorbance was recorded at 540 nm. The percentage inhibition of the DPPH by each
sample was calculated considering the percentage of the steady DPPH in solution after the reaction. All
the determinations were performed in triplicates. The percentage scavenging effect was calculated as:

Scavenging rate = [1 − (A2 − A1)/A0] × 100%

where A0 is the absorbance of the control, A1 the absorbance in presence of the sample, A2 the
absorbance of sample without DPPH radical.

3.5. Total Phenolic Content

The total phenolic content of propolis was determined as described by Singleton and Rossi [25]
and Popova et al. [26]. Briefly, propolis extract (1 mg/mL, 20 µL) and Folin-Ciolcateau reagent (80 µL)
were mixed well during 5 min and 7.5% sodium carbonate solution (80 µL) was added. The plate was
covered and incubated in the dark (at room temperature) during 2 h. The absorbance was measured at
760 nm with a spectrophotometric microplate reader (Benchmark 11130, Bio-Rad, Hercules, CA, USA).
Distilled water was used as a blank. The obtained absorbances were interpolated in a calibration curve
(y = 4.10x + 0.0324, R2 = 0.9980) of gallic acid. The results were expressed as mg equivalents of gallic
acid/g of dry extract of propolis (EEP). All the determinations were performed in triplicates. The total
phenolic content was estimated using gallic acid and quercetin as standards.

3.6. Total Flavonoid Content

The concentration of flavonoids was determined using the method described by Marquele et al. [27]
using aluminum chloride reagent (2% in methanol). Extract (100 µL) was mixed with aluminum
chloride solution (2% in methanol, 100 µL). After incubation for 30 min at room temperature, the
absorbance was read at 420 nm and concentrations of flavonoids were determined from a calibration
curve obtained with quercetin. The obtained absorbances were interpolated in a calibration curve
(y = 16.33x + 0.1032, R2 = 0.9993) of quercetin. The results were expressed as mg equivalents of
quercetin/g of dry extract of propolis (EEP).

3.7. Determination of Minimum Inhibitory Concentration (MIC)

The in vitro antibacterial activity of each EEP was determined using a broth microdilution test as
recommended by Clinical and Laboratory Standards Institute M7-A4 for bacteria CLSI [28]. The MIC
was defined as the lowest concentration of the test agent that had restricted growth to a level <0.05 at
660 nm after incubation at 37 ◦C for 16 h–24 h. Growth inhibitory effects of the extracts were tested
against Streptococcus mutans (ATCC 10449), Streptococcus oralis (ATCC 35037) and Streptococcus sanguinis
(ATCC 10556). The procedures employed were as described previously [29]. Sterile 96-well microtiter
plates were used. Each well in the microtiter plate contained Streptococcus (final concentration of
5 × 105 colony forming units (CFU)/mL), serially diluted EEP, and the appropriate growth medium.
Triplicate samples were performed for each test concentration. The controls included inoculated
growth medium without test compounds. Sample blanks contained uninoculated growth medium
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only. All plates were incubated at 37 ◦C under appropriate atmospheric conditions with growth
estimated spectrophotometrically (A660 nm) after 24 h using a microtiter plate reader. The MIC value
for each test organism was defined as the minimum concentration of test compound limiting turbidity
to <0.05 A660 nm. As a positive control, chlorhexidine gluconate (CHX) was used.

3.8. NMR Experiments

All 1H-NMR spectra of propolis extract were collected at 300 K on an Avance III HD 700 MHz
spectrometer (Bruker, Billerica, MA, USA) equipped with a 5-mm z-axis gradient inverse probe. The
spectrum was recorded using the standard single-pulse sequence, with the 90◦ pulse length of 7.76 µs.
128 scans were collected into 32 k data points using a spectral width of 14 kHz with a relaxation delay
of 5 s, and acquisition time 2.3 s. The free induction decays (FIDs) were multiplied by an exponential
function with a line-broadening factor of 0.3 Hz before Fourier transformation. The 1H-NMR spectra
were manually corrected for phase and baseline distortion using MestReNova software (version 10.0.2,
Mestrelab Research, Santiago de Compostela, Spain). The 1H-NMR chemical shifts were referenced
to TMS signal at 0.0 ppm. 20 mg of sample was weighed out and dissolved in 0.5 mL of DMSO-d6

containing 0.03% TMS.

3.9. Data Processing for Multivariate Analysis

Using the software MestReNova each one-dimensional 1H-NMR spectrum was sliced into
0.02 ppm sections between 0.5 ppm and 13.5 ppm. Processed spectra were normalized to the total
average sum of integrals. The resulting normalized integrals composed the data matrix that was
submitted to multivariate analysis.

3.10. Multivariate Analysis

Principal component analysis (PCA), an unsupervised explorative data analysis technique,
and partial least squares regression projection to latent structures (PLS), and its orthogonal form
(OPLS), regression models employed to find the fundamental relations between two data matrices,
were used for data analysis. The quality of the models was evaluated based on the diagnostic tools: the
cumulative modeled variation in matrix X, R2X (cum), the proportion of the variance of the response
variable that is explained by the model, R2Y (cum), and the predictive ability parameter, Q2 (cum).

All statistical data analyses were performed as implemented in the SIMCA 14.1.0.2047 software
(MKS Umetrics, Malmö, Sweden) using unit variance (UV) scaling after optimization of this variable.
For figures of merit determination an in house-made MATHLAB program was used with the outputs
of the SIMCA software.

3.11. Figures of Merit

A figure of merit is a quantity used to characterize the performance of an analytical method. Well
known in univariate calibration (where a single number is measured for each sample), the figures of
merit can also be defined in multivariate calibration in an easy form through the Net Analyte Signal
(NAS) concept [30–32].

The NAS concept arises from the fact that a prediction sample spectrum may have varying
contributions from other sample components. Hence, the spectrum can be decomposed in two
orthogonal parts: a part that can be uniquely assigned to the analyte of interest (the NAS), and the
remaining part that contains the contribution from other components. Using the NAS, a multivariate
calibration model can be represented in a pseudo-univariate plot. NAS is evaluated as:

NASi = (xi · b) · (bT · b)−1 · bT

where xi is a sample spectrum after preprocessing and b is a column vector of the PLS
regression coefficients.
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Accuracy. It expresses the proximity between the reference value and that predicted by the model.
It can be measured in many forms, among them the Root Mean Square Error of Estimation (RMSEE)
and the Root Mean Standard Error of Cross Validation (RMSECV):

RMSEE =

√
∑n

i=1 (yi − ŷi)
2

n− 1

where yi y ŷi are the estimated and reference values, respectively, of the i, simple and n the total
number of samples. RMSECV is calculated in a similar way by leaving out all permutations of a given
number of samples from the training set and computing the total RMSEE value of the procedure by
adding the RMSEE value for each calibration. RMSEE measures the fit of the model while RMSECV its
predictive power.

Selectivity (sel). It expresses the fraction of the signal that changes when the concentration of the
analyte varies in one unit. It can be evaluated through the NAS concept as:

sel =
||s∗k
∣∣∣∣

||sk||

where ||sk|| stands for the norm of the sensitivity coefficients of the spectra containing the analyte k at
unit concentration and ||s∗k

∣∣∣∣ for that corresponding to its NAS.
Sensitivity (sen). It is a measure of the response change with analyte concentration. In multivariate

context represents the NAS generated by an analyte concentration equal to unity, and is evaluated
through:

sen = ||s∗k || =
1
||b||

where ||b|| is the norm of the vector of regression coefficients of the calibration model.
Analytical sensitivity (γ). Defined by the ratio between sensitivity and instrumental noise, δx, as:

γ =
sen
|δx|

it allows a comparison between methodologies based on very different instrumental measurements,
as it is independent on the measured signal. The inverse of this parameter, γ−1, establishes
a minimum concentration difference that is discernible by the analytical method considering the
random experimental noise as the only source of error.

Limit of detection (LD). It is defined as the minimum detectable value of the net signal
(or concentration) for which the probabilities of false negatives (β) and false positives (α) are at
maximum 5%. It is evaluated as:

LD = 3.3δx
1

sen
Limit of quantitation (LQ). It determines the net signal or analyte concentration value which can be

estimated with a relative error lower than 10%. It is evaluated as:

LQ = 10δx
1

sen

4. Conclusions

The total phenol and flavonoid contents as well as the antioxidant (DPPH) and in vitro
antibacterial activities against Streptococcus mutans, Streptococcus oralis and Streptococcus sanguinis
were quantitatively correlated with 1H-NMR spectra data using PLS and OPLS calibration models.
Preliminary PCA analysis was performed to characterize the samples and to identify possible outliers.
Results indicated a natural tendency of the samples of the same apiary or apiaries to lie in close
proximity. PLS and OPLS regression methods gave excellent calibration models, although OPLS
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performed better in terms or the RMSEE, RMSECV, R2X (cum), R2Y (cum), Q2 (cum) and R2 values,
as expected due to the separation of the systematic variation in the predictive and non-predictive
parts. The figures of merit of the developed methods were determined as well, so that methods
were characterized in terms of their limits of detection and quantitation, sensitivity, selectivity and
analytical sensitivity values (Table 3). The inclusion of new samples with a diversity of origins will
be a recommendable form to improve the prediction capabilities of the developed models. The study
demonstrates for the first time the possibility to develop a rapid and reliable method based on 1H
NMR for the evaluation of the quality of propolis samples of different origin in terms of the evaluation
of their chemical composition and antioxidant and antibacterial properties.

Supplementary Materials: Supplementary Materials are available online.
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