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ABSTRACT 27 

New lineages of SARS-CoV-2 are constantly emerging. They contain mutations in the 28 

spike glycoprotein that can affect virus infectivity, transmissibility, or sensitivity to vaccine-29 

elicited antibodies. Here we show that the emergence of new spike variants is accurately 30 

predicted by patterns of amino acid variability (volatility) in small virus clusters that 31 

phylogenetically-precede or chronologically-predate such events. For each spike position, 32 

volatility within the virus clusters, volatility at adjacent positions on the three-dimensional 33 

structure of the protein, and volatility across the network of co-volatile sites describe its 34 

likelihood for mutations. By combining these variables, early-pandemic sequences accurately 35 

forecasted mutations in lineages that appeared 6-13 months later. The patterns of mutations in 36 

variants Alpha and Delta, as well as the recently-appearing variant Omicron were also predicted 37 

remarkably well. Importantly, probabilities assigned to spike positions for within-lineage 38 

mutations were lineage-specific, and accurately forecasted the observed changes. Sufficient 39 

antecedent warning of the imminent changes in SARS-CoV-2 lineages will allow design of 40 

immunogens that address their specific antigenic properties. 41 

 

 

SIGNIFICANCE 42 

New variants of SARS-CoV-2 continue to emerge in the population. Due to mutations in 43 

the spike protein, some variants exhibit partial resistance to therapeutics and to the immunity 44 

provided by COVID-19 vaccines. Thus, there is a need for accurate tools to forecast the 45 

appearance of new virus forms in the population. Here we show that patterns of amino acid 46 

variability across the spike protein accurately predict the mutational patterns that appeared 47 

within SARS-CoV-2 lineages with considerable advance warning time. Interestingly, mutation 48 

probabilities varied greatly between lineages, most notably for critical sites in the receptor-49 

binding domain of spike. The high predictive capacity of the model allows design of vaccines 50 

that address the properties of variants expected to emerge in the future.  51 
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INTRODUCTION 52 

Since emerging in December 2019, SARS-CoV-2 has caused devastating effects 53 

worldwide. By December 2021, more than 5 million deaths have been attributed to the infection, 54 

and estimated economic losses greater than $10 trillion are expected by the end of 2022 (1, 2). 55 

Mutations in the SARS-CoV-2 genome give rise to new forms of its proteins; their emergence is 56 

monitored through sequence-based surveillance studies of the population (3). Most mutations 57 

that impact SARS-CoV-2 infection are found in the spike protein that adorns the virus surface. 58 

Spike mediates fusion with host cells and is the primary target for antibodies elicited by infection 59 

or vaccination (4). Mutations in spike can affect disease progression rate, virus transmissibility, 60 

and sensitivity to vaccine-elicited antibodies and therapeutics (5). Notably, some mutations have 61 

appeared independently in diverse SARS-CoV-2 lineages (6, 7). Such patterns of convergence 62 

suggest that similar selective pressures are applied on the virus in different individuals and 63 

populations.  64 

COVID-19 vaccines effectively reduce SARS-CoV-2 infection rates and spread. 65 

However, the emergence of new SARS-CoV-2 variants with high transmission rates or 66 

resistance to vaccine-elicited antibodies has suggested the need to update the currently-applied 67 

immunogens (8). While RNA-based vaccines can be rapidly produced relative to protein-based 68 

immunogens, several months are required for clinical testing before manufacture and 69 

distribution of the vaccine (9). Such timelines limit our ability to rapidly address the appearance 70 

of new virus forms in the population. Therefore, there is an urgent need for accurate tools to 71 

define the mutational landscape of spike, in order to anticipate the specific changes expected to 72 

occur in each lineage. To this end, several approaches have been applied. Most commonly, 73 

phylogenetic tools are used to identify codons under positive selection (10). However, since 74 

many mutations in spike occur at evolutionarily neutral sites, estimates of positive selective 75 

pressures are not sufficient to predict appearance of mutations at all positions of this protein 76 

(11, 12). Furthermore, such tools have limited utility to forecast insertion or deletion events, 77 

which frequently occur in spike (13). Other approaches have also been used to predict changes 78 

in SARS-CoV-2 proteins. A recent study by Maher and colleagues explored multiple predictors, 79 

including epidemiological measures of variant spread and effects of the mutations on biological 80 

properties of the spike protein (14). Their model based on epidemiological data exhibited good 81 

sensitivity and specificity for predicting some mutations up to four months in advance. An 82 

interesting study by Rodriguez-Rivas and colleagues applied an epistasis-based model, 83 

developed using sequences of non-SARS-CoV-2 coronaviruses (15). Their results 84 
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corresponded well with fitness profiles of sites in the receptor-binding domain of spike and with 85 

sequence diversity patterns of the protein in the population. Nevertheless, higher-performance 86 

tools are needed to predict the precise mutations that appear and to provide greater antecedent 87 

warning times (16). Importantly, additional knowledge is required of the lineage specificity of the 88 

mutational landscape of the spike protein, to determine if each mutation has a similar likelihood 89 

to appear within each of the SARS-CoV-2 variants.  90 

The “noise” in biological systems often contains information that describes future states. 91 

For example, we previously described the patterns of in-host variability in antigenic features of 92 

the HIV-1 envelope glycoproteins (Envs) (17). We discovered that each feature has a 93 

“characteristic” level of variability within the host that is conserved among different individuals. 94 

Interestingly, the in-host variability in Env epitopes measured in a small number of patient 95 

samples from the 1980s accurately predicted the loss of the epitopes in the population during 96 

the next three decades. Thus, the variability in small segments of the population (i.e., within an 97 

infected individual) can predict the changes that occur at a system level. Based on this 98 

relationship, we hypothesized that the emergence of new lineage-dominant mutations in SARS-99 

CoV-2 spike can be forecasted by patterns of amino acid variability in small groups of viruses 100 

that predate or phylogenetically precede the changes. To test this hypothesis, we partitioned 101 

spike sequences from early stages of the COVID-19 pandemic into small clusters. Within each 102 

cluster, we calculated for each spike position: (i) The level of amino acid variability, (ii) Amino 103 

acid variability at adjacent positions on the three-dimensional structure of the protein, and (iii) 104 

Amino acid variability at sites that exhibit co-occurrence of variability with the site of interest. 105 

These measures of positional and “environmental” variability were applied to a model that 106 

assigns a probability to each spike position for emergence as a new lineage-dominant mutation. 107 

Using a small number of sequences from the early pandemic, the model exhibited remarkable 108 

performance in predicting the mutations that appeared in SARS-CoV-2 lineages 6-13 months 109 

later. Our findings suggest that the mutational landscape of spike is diversifying; each position 110 

exhibits a distinct likelihood for mutations in each SARS-CoV-2 lineage. This study 111 

demonstrates the large amount of information contained in the patterns of variability within small 112 

subsets of the virus population. Importantly, we reveal the surprising lineage-specific and 113 

predictable nature of the mutations that arise in SARS-CoV-2, which can be applied to address 114 

future variants of this virus. 115 

  116 
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RESULTS 117 

Spike positions with high volatility appear as sites of mutation in SARS-CoV-2 lineages  118 

We considered a model whereby the likelihood for emergence of a new lineage-119 

dominant mutation at any spike position p is determined by permissiveness of p to 120 

accommodate non-ancestral residues. We further hypothesized that this permissiveness is 121 

proportional to the level of amino acid variability at p in any subgroup of the virus that 122 

phylogenetically precedes the emergence event. To calculate sequence variability at each 123 

position, we divided all SARS-CoV-2 spike sequences into groups and subgroups (clusters). 124 

Nucleotide sequences of 615,374 SARS-CoV-2 spike genes from samples collected worldwide 125 

between December 2019 and July 2021 were used. To reduce the impact of sequencing errors, 126 

we excluded all sequences with character ambiguities and those that appeared only once, and 127 

the remaining dataset was aligned and “compressed” to obtain a single representative for each 128 

unique sequence. A unique-sequence approach allowed us to focus on the diversification 129 

pattern of the spike protein, independent of its rate of spread in the population. Evolutionary 130 

relationships among the 16,808 unique sequences were inferred and a maximum likelihood 131 

phylogenetic tree was constructed (see Methods and Figure 1A). We then partitioned the tree 132 

into discrete groups separated by a minimal distance of 0.004 nucleotide substitutions per site. 133 

As expected, many groups corresponded to known SARS-CoV-2 lineages. We define the 134 

groups by phylogeny rather than by established designations (e.g., the Pango system) because 135 

assignments in the latter are based on mutations in the whole SARS-CoV-2 genome rather than 136 

spike alone (e.g., see partition of the Iota variant into three groups in Figure 1A). We then 137 

distinguished between the baseline groups (collectively colored in grey in Figure 1A) and the 138 

terminal emergent groups (GT1-GT8) using a threshold of 0.0015 substitutions per site between 139 

the centroid of each group and the SARS-CoV-2 spike ancestral sequence. All groups are 140 

described in Table S1. 141 

We quantified amino acid variability at each position of spike within the baseline 142 

sequences. To this end, all baseline groups were partitioned into clusters of 50 sequences 143 

(Figure 1B). For every spike position, we determined in each cluster the absence or presence 144 

of variability (assigned values of 0 or 1, respectively). We then calculated the mean variability at 145 

each position by averaging these values across all clusters of the baseline. We designate this 146 

cluster-averaged measure of amino acid variability “volatility” (V). Such a cluster-based 147 

approach quantifies the frequency of mutation events rather than frequency of the mutants. 148 
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Thus, any cluster of 50 sequences in the baseline group that contains a non-ancestral residue 149 

but no variability is assigned a variability value of 0 (see bottom cluster in Figure 1B).  150 

Volatility values of spike positions were compared with the emergence of mutations at 151 

these sites in the SARS-CoV-2 groups. We define two types of emerging mutations: (i) A 152 

group-dominant mutation (GDM), which is found in the group ancestor and in at least 50% of 153 

all sequences from that group, and (ii) A subgroup-emerging mutation (sGEM), which is not 154 

found in the group ancestor and represents a clonal expansion of less than 50% of all group 155 

sequences (see examples in Figure S1A). A total of 43 GDMs and 16 sGEMs were detected in 156 

the baseline and terminal groups (see Table S1). We observed that most positions with high 157 

volatility values (as calculated using baseline sequences) emerged as GDMs or sGEMs in the 158 

baseline or terminal groups (see positions of spike subunit S1 in Figure 1C and of subunit S2 in 159 

Figure S1B). Of the positions with the highest volatility values, most appeared as GDMs or 160 

sGEMs in at least one group, often in both baseline and terminal groups (Figure 1D). To verify 161 

that GDMs or sGEMs in the baseline do not impact volatility values, we excluded from the 162 

baseline all clusters that compose GDMs or sGEMs and then recalculated volatility values. 163 

Consistent with our intention to represent the frequency of mutation events in the baseline, 164 

depletion of these clusters showed little impact on volatility values (Figure S1C). 165 

GDM and sGEM sites were more volatile than sites with no such mutations (Figure 1E). 166 

Furthermore, non-volatile sites in the baseline did not emerge with GDMs or sGEMs in any 167 

baseline or terminal group (Figure 1F). In most cases, the minority variant with the highest 168 

frequency in the baseline group was also the emergent residue in the terminal groups (Figure 169 

1G). Therefore, a high level of positional volatility in the baseline group precedes (as inferred 170 

phylogenetically) the emergence of GDMs or sGEMs in the terminal groups. This finding is 171 

indeed intuitive – a high frequency of mutations at a given site increases its likelihood to appear 172 

in any new emerging lineage.  173 

 174 

High volatility at adjacent positions on the spike trimer is associated with appearance of 175 

GDMs and sGEMs  176 

 We recently developed a machine learning algorithm to characterize the spatial 177 

clustering patterns of amino acid variability on the HIV-1 Env protein (unpublished data). We 178 

found that the in-host variability at most Env positions can be accurately estimated by the 179 

variability at adjacent positions on the three-dimensional structure of the protein. We 180 
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hypothesized that SARS-CoV-2 spike positions with high volatility (in the population) may exhibit 181 

similar patterns of spatial clustering, and that a high-volatility “environment” may increase the 182 

likelihood for emergence of mutations. As expected, mapping of the baseline volatility values 183 

onto the structure of the spike trimer (18) demonstrated several clusters of high-volatility 184 

positions, most notably in the N-terminal domain (NTD, Figure 2A). Many of these positions 185 

exhibited significantly higher likelihoods for a volatile state when their adjacent positions were 186 

also volatile (see Figure 2B for results of the permutation test described in the Methods 187 

section). We hypothesized that if such associations are stable over time, then the likelihood for 188 

future changes at any position of spike may be associated with volatility of its neighboring 189 

positions. To this end, we generated a variable (designated D) that describes for each position p 190 

the total environmental volatility:  191 

𝐷𝑝 = ∑
1

∆𝑝𝑗
 ∙ 𝑉𝑗

𝑛

𝑗=1

      [Eq. 1] 192 

where n is the number of positions j within 6 Å of position p, pj is the distance between the 193 

closest two atoms of positions p and each position j, and Vj is the volatility at each position j. 194 

Similar to the volatility values (Fig 1E), D values were higher for positions that emerged with 195 

GDMs or sGEMs (Figure 2C). Furthermore, none of the positions with a D value of zero in the 196 

baseline emerged with a GDM or sGEM (Figure 2D), suggesting that a high-volatility 197 

environment increases the likelihood for their occurrence.  198 

 199 

Co-volatility patterns across the spike protein identify positions with high likelihoods for 200 

emergence as GDMs or sGEMs  201 

We hypothesized that the co-occurrence of volatility at adjacent positions on the trimer 202 

can be generalized to describe associations that are not dependent on physical proximity (i.e., 203 

that presence of a volatile state at a given position is associated with presence of a volatile state 204 

at a specific set of other positions). To test this hypothesis, we used all 114 baseline clusters to 205 

calculate the co-occurrence of volatility at any two spike positions using Fisher’s exact test (see 206 

schematic in Figure 2E). P-values of the test were then used to construct a co-volatility network, 207 

whereby the edges that connect the nodes (positions) are defined by the statistical significance 208 

of the association between volatility patterns of the positions (see distribution of P-values in 209 

Figure S2A and example of a network segment in Figure S2B).  210 
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To determine the significance threshold to apply for network construction, we examined 211 

structural properties of the network and its robustness to random deletion of edges. Two 212 

network topological metrics were assessed: (i) Degree distribution, which describes the average 213 

number of connections each node has with other nodes, and (ii) Closeness centrality, which 214 

describes for each node the sum of the path lengths to all other nodes in the network (more 215 

central nodes have lower values) (19). For robust scale-free networks, such random deletions 216 

only minimally perturb their topological properties (20). We found that networks defined at a 217 

more stringent significance threshold (P<0.01) were more robust to edge deletions, with minimal 218 

impact on both degree distribution and closeness centrality (Figure S2C and S2D). By contrast, 219 

when less stringent significance thresholds were used, the number of edges was greater (i.e., 220 

they contained more information regarding the co-volatile positions). This suggested that an 221 

intermediate significance threshold would provide a sufficiently stable network without losing 222 

most information.  223 

We next examined whether, for any position p of spike, presence of high volatility at its 224 

network-associated co-volatile sites (q) increases the likelihood for emergence of mutations. To 225 

this end, we generated a simple measure (R) designed to capture for each spike position p the 226 

total volatility of its network “neighbors” q (q1, q2, … qn), using a P-value of 0.05 as the 227 

threshold:  228 

𝑅𝑝 = ∑  𝑤𝑝𝑞 ∙ 𝑉𝑞

𝑛

𝑞=1
      [Eq. 2] 229 

where n is the number of network-neighboring positions for position p, Vq is the volatility at each 230 

position q calculated using the baseline sequences, and wpq is the evidence for association 231 

between volatility of position p and each of its positions q (calculated as the –log10(P-value) in 232 

Fisher’s test). As shown in Figure 2F, positions with the highest R values in the baseline group 233 

emerged with GDMs or sGEMs in the baseline and terminal groups (see values for all spike 234 

positions in Figure S3A). R values were significantly higher for positions with GDMs or sGEMs 235 

relative to positions with no such mutations (Figure 2G). Furthermore, an R value of zero in the 236 

baseline was invariably associated with lack of GDM or sGEM appearance in the baseline or 237 

terminal groups (Figure 2H). Overall, the V and R values for any position correlated well, and 238 

considerably better than their correlation with D (Figure S3B). Nevertheless, several key 239 

positions of spike that emerged with GDMs showed high R values but relatively low V values, 240 

including position 452 in the RBD, positions 141-143 in the N-terminal domain (NTD), position 241 

950 in the S2 subunit and position 679 near the furin cleavage site (data not shown). Therefore, 242 
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for any spike position, high volatility at its network-associated sites (calculated using the 243 

baseline sequences) describes the likelihood for its emergence as a GDMs or sGEMs. 244 

 We compared the volatility-based variables with a measure of the positive selection 245 

pressures applied on each site. To quantify positive selection, we used the baseline sequences 246 

to calculate for each codon the difference between the nonsynonymous changes (dN) and 247 

synonymous changes (dS). All codons with negative dN-dS values were assigned a value of 248 

zero. Thus, this variable (designated S) quantifies the strength of the positive selective 249 

pressures applied on each site (see comparison with a standard dN-dS metric in Figure S3C). 250 

S values were high for many positions with GDMs and sGEMs (Figure 2I) and correlated 251 

moderately with the V and R values (Figure S3D). Nevertheless, many positions with an S 252 

value of zero in the baseline still emerged as GDMs or sGEMs (Figure 2J). Furthermore, the 253 

performance of S to predict emergence of GDMs or sGEMs was lower than that of V or R 254 

(Figure 2K). A notable limitation of the synonymous and nonsynonymous substitution rates as 255 

predictors of changes is their inability to be computed for sites of deletion (e.g., positions 69, 70 256 

and 144 in GT1(α) or positions 156 and 157 in GT3(δ)). By contrast, high V and R values were 257 

assigned to these sites (Figure 1D and Figure 2F). 258 

 Therefore, the likelihood for emergence of a GDM or sGEM at any spike position is 259 

associated with its volatility, as well as the volatility at adjacent positions on the protein and at 260 

associated sites on the co-volatility network.  261 

  262 

Volatility profiles in sequence clusters from the early pandemic predict appearance of 263 

mutations in the lineage-emerging phase 264 

 We examined the ability of the four variables (V, R, D and S) to forecast changes in 265 

spike. Specifically, we tested whether viruses that temporally preceded emergence of SARS-266 

CoV-2 lineages can predict appearance of lineage-dominant mutations at future time points. To 267 

this end, sequences were classified by their Pango lineage designations rather than our spike-268 

based group definitions. We first determined the formation time of each lineage, defined here as 269 

the date by which 26 unique nucleotide sequences from the lineage were detected (see Figure 270 

3A and Table S2). Based on lineage formation timelines, we decided to apply sequences from 271 

samples collected between December 30th 2019 and September 19th 2020 as the “early-phase” 272 

group that is used to predict emergence of mutations in lineages that formed between October 273 

10th 2020 and June 12th 2021 (Table S2). We designate these latter lineage-defining 274 
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mutations (LDMs). The early-phase group was composed of 1,760 unique sequences, which 275 

included only one sequence from SARS-CoV-2 lineage B.1.1.7 (WHO variant designation 276 

Alpha) and none from the major variants Epsilon, Iota, Gamma or Delta. Six minor lineages 277 

emerged relatively early in the pandemic, which contained mutations at positions 614, 222 and 278 

477 (see Table S2). To avoid a potential bias, the three positions were excluded from these 279 

analyses. A total of 67 LDM sites were identified in the lineage-emerging phase. 280 

We then divided the early-phase sequences into 36 clusters of 50 unique sequences, 281 

which were used to calculate V, R and D values for all spike positions. We also calculated the S 282 

value using all early-phase sequences. These values were compared between the LDM sites of 283 

different SARS-CoV-2 lineages and sites with no such mutations (Figure 3B-3E). For LDM sites 284 

in some variants, the V and R values were modestly higher than the values in the no-mutation 285 

sites. No differences were observed between D or S values at LDM sites in any of the variants 286 

and the no-mutation sites. We hypothesized that a combination of the volatility-based variables 287 

(V, R and D) would exhibit higher performance as a predictor of emerging mutations than each 288 

of them separately. To this end, we used a logistic regression model that applies V, R and D 289 

values of the early-phase sequences to calculate the probability of each site to emerge with an 290 

LDM in the lineage-emerging phase (see Methods). Remarkably, for all SARS-CoV-2 variants, 291 

the probabilities calculated for LDM sites were significantly higher than probabilities assigned to 292 

the no-mutation sites (Figure 3F). 293 

To examine the evolution of the volatility-based variables in the early stages of the 294 

COVID-19 pandemic, we calculated V, R and D values at different time points of the early 295 

phase. In addition, we examined the changes in the probabilities assigned by the combined 296 

model. We observed that the pattern of emerging LDMs was predicted with high sensitivity and 297 

specificity by the time 5 clusters were formed (249 unique sequences), corresponding to 298 

samples collected before April 1st 2020 (Figure 4, A-C). Of the individual predictors, R exhibited 299 

the highest performance, modestly lower than the combined model. We further analyzed the 300 

changes in R values assigned to the specific sites-of-emergence in the highly-prevalent SARS-301 

CoV-2 variants Alpha and Delta (B.1.617.2). For variant Alpha, five of the nine sites exhibited R 302 

values in the 95th percentile by April 1st 2020 (see Figure 4D and all variables in Figure S4A). 303 

For variant Delta, four of the nine sites-of-emergence also showed high R values at the above 304 

early time point (Figure 4E and Figure S4B).  305 

We further examined the predictive performance of the first 249 unique sequences. 306 

Higher probabilities were assigned by these sequences to LDM sites of lineages that emerged 307 
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at earlier stages of the pandemic (Figure 4F and Figure S4C). Higher probabilities were also 308 

assigned to convergent sites (i.e., those that emerged with LDMs in multiple lineages) (Figure 309 

4G and Figure S4D). We examined the classification metrics for the probability values assigned 310 

by the first 249 or all 1,760 early-phase sequences. Using a probability of 0.5 as the cutoff value 311 

(i.e., the decision threshold of the algorithm), high levels of sensitivity, specificity, accuracy and 312 

recall were observed, indicating a low false-negative rate (Figure 4H). By comparison, the level 313 

of precision calculated for this threshold was low, reflecting an apparently large number of false-314 

positive predictions. We note that the indicated precision over-estimates the false positive rate 315 

due to our definition of LDMs, whereby only mutations that are contained in more than 50% of 316 

all lineage strains are considered LDM sites. Thus, many sites that are emerging within lineages 317 

(i.e., equivalent to the sGEMs in the phylogeny-indexed analyses) were classified as “non-318 

emergent”. We also note that the false positive rate decreased with increasing probability 319 

values, resulting in a gradual increase in precision (Figure 4I). For positions assigned 320 

probability values within the 98th percentile, a precision level of approximately 0.5 was observed.  321 

Taken together, these findings show that a high level of volatility at any site and at its 322 

spatial- and network-associated sites precedes (temporally) emergence of LDMs in the 323 

population. Volatility profiles calculated using a small number of unique sequences (e.g., 249 324 

collected until April 1st 2020) can predict with high sensitivity and specificity the LDMs that would 325 

appear 6 to 13 months later. Thus, clear indications of the sites-of-emergence can be identified 326 

at very early stages of the pandemic.  327 

 328 

Mutations in the SARS-CoV-2 Omicron variant are accurately predicted by the combined 329 

model  330 

 The SARS-CoV-2 variant Omicron (lineage B.1.1.529) emerged in November 2021. The 331 

first known case of infection occurred in South Africa; since then, it has rapidly spread 332 

worldwide (21). This variant contains a staggering 37 mutations in the spike protein, 333 

approximately two-thirds of which were not observed as LDMs in other SARS-CoV-2 lineages 334 

(22, 23). We examined the ability of the volatility-based model to predict emergence of these 335 

LDMs using sequences from samples collected in South Africa. Since the NCBI database, 336 

which served as the source for all sequences used in this study, contained only five SARS-CoV-337 

2 sequences from South Africa, we applied data from the GISAID database (24). Sequences 338 

collected between March 6th 2020 and November 21st 2021 were used. All Omicron and 339 

Omicron-probable sequences were removed from this dataset. The final dataset was composed 340 

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.01.478697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

of 269 unique nucleotide sequences, which were used to calculate V, R and D values that were 341 

applied as input for the logistic regression model. Figure 5A shows the probability percentiles 342 

assigned to the 36 LDM sites of Omicron. The insertion at position 214 was not included since 343 

our analyses focused on the 1,273 spike positions of the SARS-CoV-2 ancestral sequence. Of 344 

the 36 mutation sites in Omicron, 25 were assigned probabilities higher than the 0.5 decision 345 

threshold of the algorithm; of these, 15 sites were assigned probabilities in the 95th percentile 346 

and 12 in the 99th percentile. Fourteen of the mutation sites also appeared as LDMs in other 347 

SARS-CoV-2 lineages (see symbols above bars in Figure 5A). Of the remaining 22 Omicron-348 

unique LDM sites, 15 were assigned probability values higher than the 0.5 decision threshold.  349 

 We examined the predictive capacity of the combined model using different sequence 350 

datasets as input. For predicting the 36 LDMs in Omicron, the 269 sequences from South Africa 351 

performed modestly better than the 5,700 baseline sequences (see black and grey bars in 352 

Figure 5A and classification metrics in Figure 5B). We compared this performance with 353 

predictions of the LDMs that appeared in variants Alpha and Delta, using the 249 early-phase 354 

sequences as input. Most classification metrics were higher for prediction of changes in 355 

lineages Alpha and Delta relative to Omicron (Figure 5B). Nevertheless, the distribution of 356 

probability percentiles assigned to the LDM sites in the variants differed considerably. For 357 

example, 33 and 44 percent of LDMs in the Omicron and Alpha variants, respectively, were 358 

assigned probabilities in the 99th percentile relative to 11 percent in the Delta variant (Figure 359 

5C). Nevertheless, the overall performance of the volatility-based model to predict all lineage 360 

changes was still lower for the Omicron variant, reflecting a higher proportion of LDM sites with 361 

low V, R and D values.  362 

Therefore, volatility patterns in 269 sequences from samples collected in South Africa 363 

until November 2021 predicted well most mutations in the Omicron variant. One-third of the 364 

Omicron LDM sites were assigned to the 99th probability percentile. However, relative to other 365 

variants, a higher proportion of the Omicron mutations exhibited low probability values. 366 

 367 

Mutations that occurred within SARS-CoV-2 lineages are accurately predicted by the 368 

combined model 369 

We tested the ability of the model to predict occurrence of within-lineage mutations. For 370 

this purpose, we indexed sequences by phylogeny rather than time (i.e., we applied our group-371 

based assignments rather than the Pango lineage-based designations of LDMs). We focused 372 
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these studies on groups GT1(α) and GT3(δ). Both groups contain mutations that affect virus 373 

infectivity, neutralization sensitivity or transmission efficacy (25, 26). According to data collected 374 

until the end of July 2021, GT1(α) contains six sGEMs (Figure 6A, right). In GT3(δ), four sGEMs 375 

emerged until July 2021 (Table S1). To address the rapid expansion of GT3(δ) between July and 376 

September (from 674 to 4,283 unique sequences), we used an extended GT3(δ) dataset that 377 

includes sequences from samples collected until September 5th 2021. All emergent sublineages 378 

within GT1(α) and GT3(δ) (i.e., clusters that contain the sGEMs as the dominant-cluster residues) 379 

were excluded from our datasets, and the remaining sequences were used to calculate the 380 

predictors V, R and D. These values were applied to the logistic regression model to assign a 381 

probability to each position for emergence as an sGEM within GT1(α) or GT3(δ). Figures 6A and 382 

6B show the 35 positions with the highest probabilities for mutations in GT1(α) and GT3(δ), 383 

respectively. Remarkably, five of the six sGEM sites that appeared in GT1(α) were among the 384 

top 16 mutations predicted to occur (see blue bars in Figure 6A). For GT3(δ), 6 of the 12 sGEMs 385 

were among the sites assigned the highest probability scores (Figure 6B). We note that all 386 

sGEM sites in GT1(α) were assigned higher probabilities by the GT1(α) sequences than the 387 

probabilities assigned to them by the GT3(δ) or baseline sequences (Figure S5A). Most sGEM 388 

sites in GT3(δ) exhibited a similar pattern, suggesting that the likelihood for emergence of 389 

sGEMs is group specific. Lineage specificity of the predictions is described in the next section. 390 

We also compared the predicted and observed residues at the sites of emergence. 391 

Consistent with the results shown in Figure 1G, for all sGEMs in GT1(α) and GT3(δ), the minority 392 

variant with the highest frequency in each group also appeared as the new emergent residue 393 

(see characters above bars in Figure 6). Interestingly, high probabilities were assigned for 394 

reversion of several GDM sites in GT1(α) to the SARS-CoV-2 ancestral residue (indicated by 395 

filled star symbols). For example, the sites of deletion in GT1(α), at positions 69, 70 and 144, 396 

showed high probabilities for insertions (see sequence alignment of selected variants in Figure 397 

S6B). This finding is consistent with the high mutation rates at these sites (13). Several GDM 398 

sites in GT3(δ) also showed high probabilities for reversion to the SARS-CoV-2 ancestral 399 

residue, including predicted changes D142G, N950D, del156E and G158R.  400 

Many of the positions assigned high probabilities for emergence have known effects on 401 

SARS-CoV-2 infectivity, neutralization or transmission. For GT1(α), such sites include: (i) L18F in 402 

the NTD, which increases resistance to antibodies (27), (ii) P479S, F490P and S494P in the 403 

RBD, which are also associated with resistance to antibodies (28, 29), and (iii) D427N and 404 

V367L in the RBD, which increase virus infectivity (30, 31). For GT3(δ), many of the high-405 
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probability mutations are also associated with resistance to neutralizing antibodies, including 406 

D80Y, Y28H, Y144del and H146Y in the NTD (27) or S494P in the RBD. 407 

An example of the high performance of the combined model to predict within-lineage 408 

changes is the new lineage of the Delta variant designated AY4.2. This lineage appeared in 409 

October 2021 and contains two mutations in the NTD, namely A222V and Y145H. Notably, both 410 

sites exhibit high probabilities for emergence of mutations, and the highest-frequency minority 411 

variants in GT3(δ) were the same as the emergent residues of AY4.2 (Figure 6B). Position 222 412 

shows a high S value in GT3(δ), whereas position 145 shows no indication of positive selection 413 

(see purple inverted bars in Figure 6B). Indeed, several sGEM sites in GT1(α) and GT3(δ) were 414 

assigned high probabilities but low non-significant S values. These sites, as well as the high-415 

probability insertion events that cannot be assigned S values, highlight the contribution of 416 

volatility patterns to predicting the emerging mutations in SARS-CoV-2. 417 

 418 

The mutational landscape of spike is lineage specific  419 

To better understand the lineage specificity of the predictions, we examined the 420 

distribution of sites with high mutation probabilities on the cryo-EM structure of spike. 421 

Specifically, we compared the location of sites within the 95th probability percentile, as 422 

calculated using the baseline and GT3(δ) sequence datasets (Figures 7A). As expected, many 423 

high-probability sites were located in the NTD. This domain contains an epitope that is targeted 424 

by multiple potent antibodies and is thus designated the “NTD supersite” (27, 32-35). The 425 

epitope is composed of loops N1, N3 and N5 of the S1 subunit (see Figure 7B). Interestingly, 426 

the sites with high probabilities for mutations in the baseline group and GT1(δ) formed three 427 

clusters on the NTD supersite (Figure 7C): (i) Positions within the 95th percentile only in the 428 

baseline group, (ii) Positions within the 95th percentile only in GT3(δ), and (iii) Positions within 429 

the 95th percentile in both GT3(δ) and in the baseline. In most cases, considerable differences 430 

were observed between the mutation probabilities assigned by the baseline and GT3(δ) 431 

sequences (see boxed regions comparing percentiles in Figure 7C).  432 

We also compared the location of high-probability sites in the RBD, as calculated using 433 

sequences from the GT1(α), GT3(δ) and baseline groups. Again, considerable differences were 434 

observed in the probabilities assigned to each site by the three datasets (Figure 7D). 435 

Interestingly, all major RBD sites that impact antibody sensitivity showed lower probabilities for 436 

mutations to occur within GT1(α) and GT3(δ) relative to their probabilities to occur from the 437 
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baseline (see also Table S3). For example, position 484 in the RBD, which impacts virus 438 

sensitivity to vaccine-induced immune sera (36), exhibits a high probability for mutations in the 439 

baseline but a low probability for mutations within the two lineages (Table S3). Similarly, 440 

position 501 that is converging to Tyr in diverse SARS-CoV-2 lineages (6), shows a lower 441 

probability in GT3(δ) (the N501Y mutation is already found in the ancestor of GT1(α)). Such 442 

differences reflect the divergent volatility profiles of spike in these groups, which is also 443 

manifested by the distinct topologies of their co-volatility networks (Figure S5C). These patterns 444 

suggest a shift to a new state in the emergent lineages. This notion was further supported by 445 

the considerable differences in the inferred positive selective pressures applied on spike 446 

positions in the above groups. Indeed, many positions in the RBD that affect infectivity or 447 

antibody sensitivity exhibit lower S values in GT1(α) and GT3(δ) relative to the baseline group 448 

(Table S3). Analysis of the GDM sites in GT1(α) and GT3(δ) also revealed considerable changes 449 

in S. Interestingly, while several sites showed a decrease in S values upon transition from the 450 

baseline to the emergent groups, other sites showed dramatic increases in these values (Table 451 

S4). Therefore, similar to the distinct profiles of volatility, these results conform to a lineage 452 

specific state of spike. 453 

 Taken together, these findings show that patterns of volatility among strains that 454 

phylogenetically precede emergence of new sublineages can accurately predict the sites and 455 

identity of the mutations. The vast differences in the volatility profiles and selective pressures 456 

applied on spike positions suggest that the mutational landscape of this protein is evolving. 457 

Each position has a unique likelihood for emergence of mutations that is distinct for the viruses 458 

of each SARS-CoV-2 lineage.  459 

 460 

DISCUSSION 461 

 New variants of SARS-CoV-2 are constantly appearing in the population. The mutations 462 

they contain in the spike glycoprotein impact virus infectivity, transmissibility or sensitivity to 463 

immune sera. To address the antigenic pattern of these new forms, including the recently-464 

appearing hyper-mutated Omicron variant (37, 38), there are increasing calls for the design of 465 

new variant-specific vaccines (39, 40). Assuming persistence of SARS-CoV-2 in the population, 466 

and continuing emergence of new spike forms, the arms race between virus and vaccine is 467 

expected to be lengthy and costly. Thus, there is a clear need for accurate tools to forecast the 468 

antigenicity of variants expected to emerge in the future within each lineage. Standard 469 

phylogenetic tools can identify sites subjected to positive selective pressures; however, these 470 
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only constitute a minority of the mutations observed. At most other sites, mutations appear to be 471 

random and are thus regarded as unpredictable. Here we show that, in contrast to the above 472 

perception, the large majority of mutations that define SARS-CoV-2 lineages and those that are 473 

emerging as sublineages within them can be accurately forecasted using a small number of 474 

sequences that precede the emergence events. To this end, we apply a novel approach to 475 

calculate the likelihood of each position to appear as a lineage-dominant mutation. We show 476 

that the volatility profile of each position and volatility of its environment (i.e., network- and 477 

spatial-neighbors) contain sufficient information to predict such events with high sensitivity and 478 

specificity. Importantly, the predicted changes differ among the SARS-CoV-2 lineages. The 479 

surprising predictability of the mutations suggests that immunogens and therapeutics can be 480 

tailored to future population-dominant forms of spike expected to appear. 481 

The volatility-based variables quantify the likelihood for occurrence of a mutation at each 482 

site. A high frequency of independent substitution events at a given site (quantified by volatility) 483 

is expected to increase the likelihood for its appearance in any emerging clonal lineage. In 484 

addition, we show that the emergence of mutations at spike positions is associated with volatility 485 

of their spatially-adjacent and network-associated sites (quantified by D and R, respectively). 486 

The spatial clustering of volatile sites is intuitive. Indeed, clustering on the linear sequence of 487 

the protein can be explained by mutational hotspots due to properties of the viral RNA (41, 42) 488 

or protein segments with high permissiveness for changes due to their limited impact on fitness 489 

(31). Clustering on the three-dimensional structure can also be explained by spike regions that 490 

are subjected to fitness or immune selective pressures. By contrast, the association between 491 

volatility of sites separated by larger distances on the protein is less intuitive. We propose that 492 

such associations describe the epistasis network of spike (i.e., the relationships between fitness 493 

profiles of different spike positions). Indeed, the volatility of each position likely captures its 494 

fitness profile; low volatility describes a state with a single high-fitness residue, whereas high 495 

volatility describes the presence of multiple residues with high fitness. Accordingly, we 496 

hypothesize that co-volatility patterns may capture the associations between the fitness profiles 497 

of the different sites. For example, a high R value for any position p describes its propensity for 498 

sequence variability due to permissiveness of its associated epistatic sites q. Therefore, such 499 

relationships may capture the adaptive sites q required to facilitate changes at site p. 500 

Comparisons of co-volatility network structure with structure of the epistasis network of spike, as 501 

determined by deep mutational scanning (31), will reveal the accuracy of the above hypothesis.  502 
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 The mutational landscape of the spike protein was surprisingly lineage-specific; different 503 

patterns of changes were predicted for the baseline group, GT1(α) and GT3(δ). For example, 504 

different segments of the NTD neutralization supersite were assigned distinct probabilities for 505 

mutations (Figure 7C). Similarly, all major sites in the RBD that affect sensitivity to antibodies 506 

show high probabilities to occur from the baseline group but low probabilities to occur from 507 

GT1(α) or GT3(δ) (Figure 7D and Table S3). Furthermore, most sGEM sites in GT1(α) or GT3(δ) 508 

were assigned the highest mutation probabilities by sequences of the same group (Figure 509 

S5A). Based on the lineage-specific probabilities, the changes that occurred within them were 510 

predicted well: 5 of the 6 sGEMs in Alpha and 6 of the 12 sGEMS in Delta were assigned 511 

probability values in the 99th percentile. Similarly, the changes in the AY4.2 lineage of Delta 512 

were also assigned high probabilities for occurrence within this variant. These findings suggest 513 

that the fitness landscape of the spike protein is diversifying. Supportive of this notion are the 514 

considerable differences between the inferred positive selective pressures applied on spike 515 

positions in the different lineages (Table S3 and Table S4) and the distinct structures of their 516 

co-volatility networks (Figure S5C). Such differences may reflect properties of the virus, but 517 

also the immune pressures applied by the host (e.g., by different proportions of vaccinated 518 

individuals in the groups).  519 

 Some lineage-dominant mutations allow the virus to adapt to fitness and immune 520 

selective pressures, whereas others are “hitchhikers” on the driver mutations (43). The drivers 521 

are subject to positive selection whereas the hitchhikers are mostly evolutionarily neutral or can 522 

exhibit reduced fitness (44, 45). In variants Alpha, Delta and Omicron, most mutations show no 523 

evidence for positive selection. Using our model, both drivers and hitchhikers are readily 524 

predicted by small numbers of sequences that phylogenetically precede or chronologically 525 

predate their appearance as lineage-dominant changes. Many of the LDMs in variants Alpha 526 

and Omicron were assigned probability values in the 99th percentile (44 and 33 percent of their 527 

LDMs, respectively; Figure 5C). However, performance of the model to predict the entire 528 

mutational profile (i.e., all LDMs) was lower for the Omicron variant. Indeed, 8 of the 36 LDM 529 

sites in Omicron had both V and R values of zero, whereas none of the 32 sites in variants 530 

Alpha, Gamma, Delta, Epsilon or Iota exhibited such a pattern (data not shown). The basis for 531 

appearance of mutations at such low-volatility sites raises questions regarding the origin of the 532 

Omicron variant: Is it derived from a host with unique selective pressures, or from a sublineage 533 

of the virus that has expanded in a poorly characterized population? Increased sequence 534 

surveillance as well as data accessibility of SARS-CoV-2 isolated from human and non-human 535 
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hosts may provide the information required to understand the rare pattern that appeared in 536 

variant Omicron. 537 

 Several of sites with high probabilities for mutations have been characterized for their 538 

effects on infectivity and antigenicity whereas the effects of others, and specifically in the 539 

context of existing mutations in each lineage, are still unknown. Advance notice of the imminent 540 

changes in each lineage allows testing of their impact on virus fitness and sensitivity to vaccine-541 

elicited antibodies, for tailoring vaccines to the mutations expected to emerge within each 542 

lineage. Knowledge of the sites that are not expected to change is as important as the 543 

prediction of positions that are likely to mutate. For example, most mutations in the RBD that 544 

affect virus infectivity or sensitivity to antibodies, including E484K, L452R, S477N and N501Y 545 

are assigned high likelihoods to occur from the baseline group but low likelihoods to occur in 546 

GT1(α) and GT3(δ) (Table S3). These findings clearly suggest that immunogens should be 547 

designed according to the mutational landscape that is specific to each lineage.  548 

We note that, despite the high predictive capacity of the model described, these studies 549 

constitute a relatively simple framework to demonstrate predictability of the changes in SARS-550 

CoV-2. Our forecasts can likely be improved by the use of more sophisticated learners to 551 

combine V, R and D values, alternative methods to define architecture of the co-volatility 552 

networks, and incorporation of additional statistics that describe the positive (and negative) 553 

selective pressures applied on each site. Furthermore, the use of more homogenous donor 554 

populations (e.g., vaccinated versus non-vaccinated individuals) will likely improve the ability of 555 

the models to predict emergence of lineage-dominating changes in SARS-CoV-2.  556 

 557 

 558 

METHODS 559 

Sequence alignment 560 

 Nucleotide sequences of SARS-CoV-2 isolated from humans were downloaded from the 561 

National Center for Biotechnology Information (NCBI) database and the Virus Pathogen 562 

Database and Analysis Resource (ViPR). For analysis of variant Omicron, sequences were 563 

downloaded from the GISAID repository (24). The following processing steps and analyses 564 

were performed within the Galaxy web platform (46). To facilitate alignment of sequences that 565 

contain more nucleotides than those corresponding to the spike gene, we trimmed excess 566 

bases with Cutadapt, using 5’-ATGTTTGTT-3’ and 3’-TACACATAA-5 “adapters” that flank the 567 

spike gene. Adapter sequences were allowed to match once with a minimum overlap of 5 568 
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bases, an error rate of 0.2 with a sequence length between 3,700 and 3,900 bases. To ensure 569 

accuracy of the data, all sequences with any nucleotide ambiguities were removed by replacing 570 

the non-standard bases to ‘N’ with snippy-clean_full_aln, followed by filtration of N-containing 571 

sequences using Filter FASTA. Sequences that cause frameshift mutations were excluded 572 

using Transeq. Nucleotide sequences were aligned by MAFFT, using the FFT-NS-2 method 573 

(47). The aligned sequences were then “compressed” using Unique.seqs to obtain a single 574 

representative for each unique nucleotide sequence (48). Nucleotide sequences were then 575 

translated with Transeq and amino acid sequences were aligned with MAFFT, FFT-NS-2 (47). 576 

The first position of each PNGS motif triplet (Asn-X-Ser/Thr, where X is any amino acid except 577 

Pro) was assigned a distinct identifier from Asn. Our phylogenetic analyses were performed 578 

using the full-length spike protein, which contained several sequences with amino acid 579 

insertions. To maintain consistent numbering of spike positions, all calculations described in this 580 

work were performed for the 1,273 positions of the spike protein in the SARS-CoV-2 reference 581 

strain (accession number NC_045512). 582 

                 583 

Phylogenetic tree construction and analyses  584 

 A maximum-likelihood tree was constructed for the aligned compressed nucleotide 585 

sequences using the generalized time-reversible model with CAT approximation (GTR-CAT) 586 

nucleotide evolution model with FASTTREE (49). The tree was rooted to the sequence of the 587 

SARS-CoV-2 reference strain (NC_045512) with MegaX (50). To divide the tree into “Groups” of 588 

sequences, we used an in-house code in Python (see link to GitHub repository in the Data 589 

Availability section). This tool uses the Newick file to divide the dataset into sequence groups 590 

with a user-defined genetic distance between their centroids. All analyses described in this work 591 

were performed using a distance of 0.004 nucleotide substitutions per site for group partitioning. 592 

Groups that did not contain at least 50 unique sequences were excluded from our analyses. To 593 

discern between baseline groups and terminal groups, we used a distance of 0.0015 nucleotide 594 

substitutions per site between each group centroid and the SARS-CoV-2 reference strain. A 595 

total of 20 groups were obtained, composed of 12 baseline and 8 terminal groups.  596 

 597 

Calculations of volatility  598 

 To calculate volatility of spike positions, we divided all sequences in each group into 599 

clusters of 50 sequences. Sequence variability in each cluster was quantified using two 600 

approaches. To calculate volatility (V) values, we used a binary approach, whereby every 601 

position in a 50-sequence cluster was assigned a value of 1 it if contains any diversity in amino 602 
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acid sequence, or a value of 0 if all sequences in the cluster contain the same amino acid. Thus, 603 

each cluster is assigned a 1,273-feature vector that describes the absence or presence of 604 

volatility at each position of spike. Volatility was then calculated by averaging values by position 605 

across all clusters tested. For calculations of D or R values for each position p, we used a 606 

quantitative approach to define volatility at positions associated with p (i.e., at positions j and q 607 

in Equation 1 and Equation 2, respectively). Briefly, sequence variability within each cluster 608 

was measured by assigning amino acids hydropathy scores according to a modified Black and 609 

Mould scale (17). Each amino acid is assigned a distinct value. The Asn residue in PNGS motifs 610 

and deletions are also assigned unique values. The values assigned were: PNGS, 0; Arg, 611 

0.167; Asp, 0.19; Glu, 0.203; His, 0.304; Asn, 0.363; Gln, 0.376; Lys, 0.403; Ser, 0.466; Thr, 612 

0.542; Gly, 0.584; Ala, 0.68; Cys, 0.733; Pro, 0.759; Met, 0.782; Val, 0.854; Trp, 0.898; Tyr, 0.9; 613 

Leu, 0.953; Ile, 0.958; Phe, 1; deletion site, 1.5. Variability in each cluster was calculated as the 614 

standard deviation in hydropathy values among the 50 sequences, and variability values of all 615 

clusters were averaged to obtain the volatility value for each position j or q (i.e., Vj or Vq, 616 

respectively).  617 

 618 

Co-volatility calculations and network analyses 619 

 To determine the propensity for co-volatility of any two spike positions, we generated a 620 

matrix that contains binary volatility values in all clusters of the tested group (rows) for all 1,273 621 

spike positions (columns). The co-occurrence of a volatile state between any two spike positions 622 

was calculated using Fisher’s exact test and the associated P-value determined using a custom 623 

Java script. To construct the network of co-volatility, we used as input the matrix that describes 624 

the –log10(P-value) between the volatility profiles of any two spike positions, whereby nodes are 625 

the positions of spike and the edges that connect them reflect the P-values of their association. 626 

Network structure was visualized using the open-source software Gephi (51). Networks were 627 

generated using different P-value thresholds (i.e., an edge was assigned only if the P-value was 628 

lower than 0.1, 0.05 or 0.01). To determine robustness of network structure, we randomly 629 

deleted 10, 20 or 30 percent of all edges for each of the networks, and network topological 630 

properties were computed using the Cytoscape Network Analyzer tool (52). Two metrics were 631 

calculated for the complete and depleted networks: (i) Degree distribution, and (ii) Closeness 632 

centrality (19).  633 

 634 
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Calculation of total weighted volatility at network-associated sites (R) 635 

 The variable R describes for each spike position the total weighted volatility at all 636 

positions that are associated with it on the co-volatility network. To calculate R for each position 637 

p, we first identified all positions q (q1, q2, … qn) that are associated with p on the co-volatility 638 

network, as defined by a P-value of less than 0.05 in the Fisher’s exact test. We then calculated 639 

for each position p the R value: 640 

𝑅𝑝 = ∑  𝑤𝑝𝑞 ∙ 𝑉𝑞

𝑛

𝑞=1
  641 

where n is the number of q positions for each position p, wpq is the association index between 642 

volatility of position p and each position q (calculated as the –log10(P-value) in Fisher’s test), and 643 

Vq is the volatility at each position q.  644 

 645 

Calculations of the positive selection measure S 646 

 We estimated for each codon of spike the number of inferred synonymous (S) and 647 

nonsynonymous (N) substitutions using the Mega7 platform (53). Estimates were generated 648 

using the joint Maximum Likelihood reconstructions of ancestral states under a Muse-Gaut 649 

model of codon substitution (54) and a Felsenstein 1981 model of nucleotide substitution (55). 650 

The input phylogenetic tree was constructed using FASTTREE. The dN-dS metric was used to 651 

detect codons that have undergone positive selection, where dS is the number of synonymous 652 

substitutions per site and dN is the number of nonsynonymous substitutions per site. dN-dS 653 

values were normalized using the expected number of substitutions per site. Maximum 654 

Likelihood computations of dN and dS were conducted using the HyPhy software package (56). 655 

Sites of deletion within groups GT1(α) and GT3(δ) were excluded from the analyses. For all 656 

calculations, negative dN-dS values were assigned an S value of 0.  657 

 658 

Permutation test to determine spatial clustering of volatility 659 

We performed a permutation test to determine the spatial clustering of volatile sites 660 

around each spike position. To this end, for each position p, we identified the 10 closest 661 

positions on the trimer, using coordinates of the cryo-EM structure of the cleavage-positive 662 

spike (PDB ID 6ZGI) (18). We then calculated for each position p the statistic 𝑇𝑝
0:  663 
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𝑇𝑝
0 =  ∑ 𝑉𝑝

0

𝑗∈𝜑𝑝

∗ 𝑉𝑗
0 667 

where 𝑉𝑝
0 describes the volatility at position p, 𝑉𝑗

0 is the volatility at the jth neighboring position to 664 

p, and 𝜑𝑝 denotes the positions numbers of the 10 closest neighbors to position p. We then 665 

permuted all positions identifiers other than p and calculated the statistic 𝑇𝑝
𝑘: 666 

𝑇𝑝
𝑘 =  ∑ 𝑉𝑝

0

𝑗∈𝜑𝑝

∗ 𝑉𝑗
𝑘 669 

where 𝑉𝑗
𝑘 is the volatility at the jth adjacent position in the 𝑘th permutation (k=1,2, … 5,000).  668 

Under the null hypothesis of no spatial clustering, we would expect the neighbor labels to be 670 

arbitrary. We therefore test this null hypothesis by estimating the probability of observing a 671 

positive departure from the null distribution via:  672 

𝑃 =
∑ 𝐼{𝑇𝑝

𝑘≥𝑇𝑝
0}

𝑁
𝑘=1

𝑁
 673 

where 𝑁 is the total number of permutations (5,000) and 𝐼 is the indicator function. Therefore, 674 

the P-value quantifies the fraction of times the volatility of the surrounding residues is larger for 675 

the permuted values relative to the non-permuted values.  676 

 677 

Calculations of total weighted volatility at adjacent positions on the spike trimer (D) 678 

We calculated for each position p of spike the total volatility at all sites that are within a 679 

distance of 6 Å on the spike trimer structure. The coordinates of the cryo-electron microscopy 680 

structure of the cleaved spike protein in the closed conformation (PDB ID 6ZGI) were used (18). 681 

Coordinates of all atoms were included; N-acetyl-glucosamine atoms were assigned the same 682 

position number as their associated Asn residues. We then determined for each spike position 683 

the minimal distance between its atoms and the closest atoms of all other spike positions using 684 

coordinates of the three spike protomers. This information was used to calculate for each 685 

position p the weighted sum of volatility values at all spike positions that are within 6 Å distance 686 

on the spike trimer: 𝐷𝑝 = ∑  
1

∆𝑝𝑗
∙ 𝑉𝑗

𝑛

𝑗=1

 687 

where ∆𝑝𝑗 is the distance (in Å) between position p and each of the neighboring positions j on 688 

the trimer, Vj is the volatility value at each position j, and n is the number of j positions for 689 
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position p. We note that the 6ZGI structure is missing the following spike residues (numbered 690 

according to the SARS-CoV-2 reference strain): 1-13, 71-75, 618-632, 677-688, 941-943 and 691 

1146-1273. To calculate D values for these positions, we applied the volatility values of the 692 

positions immediately adjacent on the linear sequence of spike (i.e., positions -1 and +1). 693 

 694 

Combined model to predict emergence of dominant-group and subgroup-emerging 695 

mutations 696 

 To assign a probability for each position to emerge with a mutation, we used a logistic 697 

regression model that applies V, R and D values. The model was trained using V, R and D 698 

values calculated using the 5,700 sequences of the baseline group, with the positive outcome 699 

being the 43 GDM and 16 sGEM sites described in Figure 1. To this end, we first created 700 

interaction terms between the initial predictors (i.e., V, R and D). To address the class 701 

imbalance in our datasets (59 of the 1,273 spike positions contained a GDM or sGEM) we used 702 

the adaptive synthetic sampling approach (ADASYN) (57). Nested cross-validation was used to 703 

tune the model while estimating the metrics of interest. This procedure was also used to 704 

generate the prediction probabilities for each position. Five folds were used for both the inner 705 

and outer parts of the nested cross-validation. Grid search was utilized to optimize 706 

hyperparameters with the area under the receiver operating characteristic curve (ROC) as the 707 

objective for optimization. The model-specific parameters that we incorporated into the 708 

hyperparameter tuning procedure are the inverse of the regularization strength 𝐶 and the 709 

penalty type. For this purpose, we used a set of values from 0.001 to 100 for parameter 𝐶, and 710 

for penalization we used L1 norm, L2 norm, elastic net, or no penalty in the parameter space. 711 

Since we used ADASYN to handle the class imbalance, we also added the number of positions 712 

with similar feature values as another hyperparameter to the search grid. The number of 713 

positions with similar feature values was set between 5 and 45. As classification metrics, we 714 

used sensitivity, specificity, precision, recall, AUC and balanced accuracy. The balanced 715 

accuracy metric, which is the average of sensitivity and specificity, was used due to the relative 716 

imbalance in the datasets. 717 

 718 

DATA AVAILABILITY 719 

The following data used in our analyses are available on the Mendeley Data repository at doi: 720 

10.17632/wn7jwk9n22.1.  721 
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1.  Sequence GenBank IDs of all 615,374 nucleotide spike sequences isolated from samples 722 

collected between December 2019 and July 2021.  723 

2.  Nucleotide alignment of the 16,808 unique spike sequences derived from the above.  724 

3.  Nucleotide alignment of 4,283 unique spike sequences of variant Delta isolated from 725 

samples collected between December 2019 and September 5th, 2021. 726 

4. Sequence GISAID IDs of all 24,054 spike sequences isolated from samples collected in 727 

South Africa between March 6th 2020 and November 21st 2021. 728 

 729 

CODE AVAILABILITY 730 

The custom code used in our studies is publicly available within the following hub repository: 731 

https://github.com/RoberthAnthonyRojasChavez/SARS2-Volatility 732 

Instructions to the use of the code can be found in the following folders: 733 

1. For calculation of V, R and D values, see the accordingly named folders. 734 

2. For grouping sequences based on genetic distance cutoffs, see the ‘Tree’ folder. 735 

3. For performing Fisher’s exact test to determine the relationship between the volatility profile 736 

of any two spike positions, see the ‘R’ folder.  737 

4. For calculating the minimal distance between any two residues on the spike protein based on 738 

coordinates of the trimer structure, see the ‘D’ folder.  739 
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Figure 1. Spike positions with high volatility appear as sites of group-dominant or subgroup-
emerging mutations. (A) Phylogenetic tree based on 16,808 unique spike sequences. Terminal groups 
are colored and labeled, with their WHO variant designations in parentheses. (B) Schematic of our 
approach to calculate volatility for each position of spike. (C) Volatility values for all positions of 
spike subunit S1, calculated using the 114 baseline clusters (see values for S2 subunit in Figure 
S1C). (D) Thirty spike positions with the highest volatility values. The baseline (“B”) or terminal (“T”) 
groups that contain mutations at these positions are indicated. (E) Comparison of volatility values for 
spike positions that emerged with a GDM, sGEM or no such mutations. P-values in an unpaired T 
test: ***, P<0.0005; ****, P<0.00005; ns, not significant. (F) Number of sites that appeared with 
GDMs and sGEMs when volatility (V) in the baseline group was zero or larger than zero. The 
number of site in each subset (n) is indicated. (G) Frequencies of minority variants (non-
ancestral residues) at the ten positions of spike with the highest volatility values (see panel D). 
Frequencies are expressed as a percent of all sequences with a non-ancestral residue at the indicated 
position. The residues that emerged as GDMs or sGEMs are indicated in red font.
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Figure 2. High volatility at spatially-adjacent and network-neighboring sites is associated with 
emergence of GDMs and sGEMs. (A) Cryo-EM structure of the spike trimer (PDB 6ZGI). Residues are 
colored by positional volatility values in the baseline group. (B) Results of a permutation test to identify 
sites that are more likely to be volatile when their 10 closest positions are volatile. (C) A measure of the 
total volatility at adjacent positions on the spike trimer. The variable D describes for each position p the 
sum of the volatilities at all positions within a distance of 6Å, weighted by their proximity to p (see 
Equation 1). D values are compared between positions with GDMs, sGEMs or no such mutations. (D) 
The number of sites that emerged with GDMs or sGEMs when the D value was zero or larger than zero. 
(E) Schematic of our approach to calculate co-volatility of spike positions. The absence (0) or presence 
(1) of amino acid variability was determined in each cluster of 50 sequences for all positions of spike. 
The co-occurrence of a volatile state at all position pairs was determined using Fisher’s test, and the P-
values were used to construct the network of co-volatility between all positions. (F) Thirty spike positions 
with the highest R values (see all in Figure S3A). Sites of GDMs or sGEMS are indicated by bar color 
and the groups of emergence are indicated above the bars. (G) R values for spike positions that 
emerged with a GDM, sGEM or with no such mutations. (H) Number of GDMs and sGEMs that emerged 
at spike positions when R in the baseline group was equal to or greater than zero. (I) Comparison of the 
positive selection metric S between positions that emerged with a GDM, sGEM or with no such 
mutations, as calculated using the baseline group. (J) Number of sites that emerged with GDMs or 
sGEMs when S in the baseline group was zero or larger than zero. (K) Classification metrics for 
evaluating performance of the indicated variables to predict presence of a mutation (either GDM or 
sGEM) in any group (baseline or terminal). Probabilities were calculated using a logistic regression 
model that applies the baseline group of sequences. Error bars, standard errors of the means for five-
fold cross validation.
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Figure 3. V, R and D values in early-pandemic sequences predict appearance of mutations in the 
lineage-emerging phase. (A) Timeline for emergence of SARS-CoV-2 lineages, defined as the 
date by which 26 sequences that contain all lineage mutations were identified. Lineages with 
WHO variant designations are indicated by their symbols (see list in Table S2) and the number of 
LDMs in each is shown by dots. Variant Beta (lineage B.1.351) was not included due to the small number 
of unique sequences it contained.  (B-E) Data points describe V, R, D and S values calculated for all 
spike positions using the early phase sequences, and are grouped by the lineage in which they 
emerged as LDMs. Positions 614, 477 and 222 appeared as LDMs during the early phase and were 
excluded from these analyses. Sites of emergence in the minor SARS-CoV-2 lineages are grouped and 
labeled “Other Lin.”. Significance of the difference between values calculated for the LDM sites in each 
lineage and sites that did not emerge with LDMs (“No Mut.”) is shown: *, P<0.05; **, P<0.005; ***, P<0.0005; 
****, P<0.00005; ns, not significant. (F) Probabilities assigned by a logistic regression models that applies V, 
R and D values to predict emergence of mutations. Probabilities are compared between the LDM sites in the 
lineages and the no-mutation sites.
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Figure 4. Accurate predictions of lineage-dominant mutations using subsets of the early-
phase sequences. (A-C) V, R and D values were calculated using sequences from different time 
points of the early phase. These values were applied to the logistic regression model to calculate the 
probability for emergence of a mutation at each spike position. Sensitivity, specificity and the area 
under the receiver operating characteristic curve (AUC) are shown for each time point, for predicting 
emergence of the 67 LDMs in the lineage emerging phase. The number of spike sequences 
applied for each time point is indicated. (D,E) R values assigned to the LDM sites of lineages 
B.1.1.7(α) and B.1.617.2(δ) at different time point of the early phase. (F) LDM sites were grouped
according to the emergence time of the first lineage that contains them. Mutation probabilities
assigned to the sites using sequence data collected until April 1st 2020 are shown and compared with
the probabilities assigned to the no-mutation sites. (G) Probabilities assigned by the April 1st 2020 
dataset are compared between LDM sites that appeared in one or more lineages. Values are 
compared between all groups using an unpaired T test: *, P<0.05, ***, P<0.0005; ns, not significant. 
(H) Classification metrics for evaluating performance of the combined model to predict emergence of 
LDMs using the April 1st 2020 dataset or all sequences of the early phase. (I) Precision of the 
combined model at different probability percentile thresholds. Probabilities were calculated for all 
spike positions using the April 1st 2020 dataset or all early-phase sequences. The number of spike 
positions in each probability percentile is shown.
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Figure 5. Mutations in the SARS-CoV-2 Omicron variant are accurately predicted by the 
combined model. (A) Probabilities assigned by the combined model to the 36 substitution or deletion 
sites of the Omicron variant. To calculate probabilities, we used the 269 unique sequences isolated from 
samples collected in South Africa between March 2020 and November 2021 (black bars) or all 5,700 
unique sequences of the baseline group (gray bars). Sites that appear as LDMs in other SARS-CoV-2 
variants are indicated by their WHO designations above the bars (or by star symbols if no WHO 
designation). (B) Classification metrics for the probabilities assigned to the LDM sites that appeared in 
variants Omicron, Alpha and Delta using the indicated input datasets. The number of LDMs in each 
variant is indicated in parentheses. (C) Distribution of the probability percentiles assigned by the model 
to the LDM sites of variants Omicron, Alpha and Delta, and to all 67 LDM sites of the lineage-emerging 
phase.
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Figure 6. Accurate predictions of mutations that occurred within SARS-CoV-2 variants Alpha and 
Delta. (A,B) Sequences from GT1(α) or GT3(δ) were used to calculate the probabilities for mutations at 
each spike position using the model that applies V, R and D values. The 35 positions with the highest 
probabilities are shown. Blue bars indicate the sGEM sites of each group. Star symbols indicate 
positions that contain a different residue in GT1(α) or GT3(δ) relative to the SARS-CoV-2 ancestral 
sequence (filled symbols indicate reversion to the ancestral residue). Characters above the bars indicate 
the highest-frequency minority variant/s in each lineage (multiple residues indicate equal frequencies). 
Characters in blue font indicate concordance between the residue predicted to emerge and the observed 
emergent residue. Symbols indicate the impact of each position on biological properties of the 
virus. S values calculated using sequences from the respective groups are shown with their associated 
P-values: *, P<0.05; P, **, P<0.005; ***, P<0.0005.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.01.478697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478697
http://creativecommons.org/licenses/by-nc-nd/4.0/


(141-156)(
NN33

157 156

145

146

159

2017

60
Probability percentile

80 90 95 99
Baseline

GT3(δ)

18

144

520

479

477

458

367

385

344

346

501

490494 452 484

427
60

Probability Percentile
80 90 95 99

Baseline
GT3( )

GT1(⍺)

Probability percentile:

255138

152

153

246

A B C

D
95th in GT1(α)

95th in baseline
95th in GT3(δ)

95th in GT1(α) GT3(δ)    

95th in baseline & GT3(δδ)

76

NN5 5 (246-260)

NN1 1 (14-26)

Probability percentile:
95th in baseline

Figure 7

....i:3 .....I .....I ....i:3 

■ 
□ 
■ 
■ 
■ 

Top 
View

Side
View

95th in GT3(δ)
95th in baseline & GT3(δ)

Figure 7. The mutational landscape of SARS-CoV-2 spike is lineage specific. (A) Distribution on the 
SARS-CoV-2 spike trimer (PDB ID 6ZGI) of positions with mutation probabilities in the 95th percentile, as 
calculated using sequences from the baseline and GT3(δ) groups. (B) Top view of the NTD supersite of 
neutralization, highlighting the N1, N3 and N5 loops and the residues that compose them. (C) Same view 
as in panel B. Spike positions with probabilities in the 95th percentile are colored as in panel A. The 
probability percentiles assigned to each position by the baseline group and by the GT3(δ) group are compared. 
(D) Side view of the RBD showing positions with mutation probabilities in the 95th percentile in at least one of
the indicated groups.
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Figure S1. Amino acid volatility of SARS-CoV-2 spike positions. (A) Examples of group-dominant and 
subgroup-emerging mutations in SARS-CoV-2 spike. (Left) Branches are colored by the amino acids that occupy 
spike position 501. The pattern corresponds to presence of a group-dominant mutation in GT1(α), GT6(γ) and GT8. 
(Right) Branches are colored by the amino acids that occupy position 1191, showing a subgroup-emerging 
mutation in GT1(α). (B) Volatility of spike positions of the S2 subunit, as calculated using the baseline group of 
5,700 sequences (114 clusters). Red bars indicate positions with group-dominant mutations (in any terminal or 
baseline group). Blue bars indicate positions with subgroup-emerging mutations. (C) Correlation between volatility 
measured using all clusters of the baseline group and volatility measured using the same panel after depletion of 
all baseline clusters that compose GDMs or sGEMs. 
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Figure S2. Analyses of the co-volatility networks across spike. (A) The co-occurrence of a volatile state 
at any two spike positions was determined using the 114 clusters of the baseline group. The histogram 
shows the distribution of P-values calculated using Fisher’s exact test. (B) P-values were used to construct 
the network of co-volatility between all spike positions. The co-volatility network around position 614 as the 
root node is shown, whereby edges are assigned to positions pairs if the P-value was smaller than 
0.05. First- and second-degree nodes are shown. Strength of the associations (i.e., significance in Fisher’s 
exact test) is indicated by thickness of the connecting edges. Node size corresponds to the number of 
triangle counts for each position (as a measure of node centrality). (C,D) Network robustness analyses. 
Networks were constructed using P-value thresholds of <0.01, <0.05 or <0.1. For each of the three 
networks, we randomly deleted 10%, 20% or 30% of edges and examined the effect on network 
stabilities. In panel C, the degree distribution is shown for the intact and depleted networks (i.e., the 
number of nodes associated with each position). In panel D, closeness centrality values are shown 
(higher values indicate shorter distances to all other nodes). Bars indicate the second and third quartiles and 
whiskers indicate minimum and maximum values. 
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Figure S3. Total weighted volatility at network-neighboring sites. (A) R values calculated for all 
spike positions using the baseline group of 5,700 sequences. Sites of GDMs or sGEMs (in any baseline 
or terminal group) are colored in red or blue, respectively. (B) Correlations between V, R and D values of 
all spike positions. (C) A variable that describes the positive selection pressures applied on spike 
codons. Synonymous and nonsynonymous changes at spike codons 1 to 600 were determined using 
4,488 spike sequences from the GT1(α) group that include a single representative for each sequence 
appearing at least twice in the population. Synonymous and nonsynonymous changes were also 
calculated for a panel of 4,488 randomly-selected sequences from the same dataset that can include 
identical sequences. The normalized difference between nonsynonymous and synonymous changes 
was calculated for the unique-sequence dataset (S) and for the dataset that contains 
sequence replicates (dN-dS). All positions with negative dN-dS or S values were assigned a value of 0. 
Values calculated by the two approaches are compared. (D) Correlations between S and V or R values 
calculated for all positions of spike.
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Figure S4. Evolution of V, D and mutation probabilities calculated for spike positions using sequences 
from the early phase of the COVID-19 pandemic. (A,B) Sequences from the early phase (December 30th 
2019 to September 19th 2020) were divided into 36 clusters of 50 sequences. V, R and D values were 
calculated using sequences isolated from samples collected until the indicated time points. In addition, we 
calculated the probability for emergence of a mutation at each spike position using a logistic regression model 
that applies V, R and D values. Panels A and B show V, D and probability values for the mutation sites of 
lineages B.1.1.7(α) and B.1.617.2(δ), respectively. The shaded area describes probability values below the 
90th percentile calculated for each time period. (C) Mutation probabilities assigned to spike positions by all 1,760 
sequences of the early phase. LDM sites are grouped by the emergence time of the lineage that contains them 
(i.e., the date by which 26 sequences of the lineage were identified). The probabilities assigned to each time 
group are compared with the probabilities assigned to the no-mutation group. (D) Comparison of 
probabilities assigned to LDM sites that appeared in one or more lineages. Probabilities assigned to positions 
in each group are compared between all groups using an unpaired T test: *, P<0.05, ***, P<0.0005; ns, 
not significant. 
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Figure S5. Lineage specificity of mutation probabilities. (A) Mutation probabilities assigned to sGEM 
sites by different sequence datasets. V, R and D values were calculated for the sGEM sites of GT1(α) and 
GT3(δ) using as input sequence data from the indicated groups. Values describe the probabilities 
assigned to each position using the combined model. (B) Insertions at spike positions 69, 70 and 144 in 
GT1(α) and at spike positions 156 and 157 in GT3(δ). The GT1(α) consensus (Con.) sequence contains 
deletions at positions 69, 70 and 144 (compare with SARS-CoV-2 ancestral sequence, NC_045512). The 
GT3(δ) consensus sequence contains deletions at positions 156 and 157. A selected number of 
sequences that contain GT1(α) or GT3(δ) mutations but also contain insertions in at least one of the above 
deletion sites are shown. (C) Comparison of the co-volatility networks of SARS-CoV-2 spike in the 
baseline group, GT1(α) and GT3(δ). Sequences from these groups were used to construct the network of 
co-volatility using a P-value threshold of 0.05. (Left) Comparison of degree distribution of the networks. 
The baseline network, and to a lesser extent that of GT1(α), are mostly composed of intermediate-degree 
nodes, with 10-15 edges each. The GT3(δ) network is mostly composed of lower-degree nodes. (Right) 
Comparison of closeness centrality values for the networks of the above groups. These results mirror the 
edge distribution results, whereby GT3(δ) exhibits lower closeness centrality values than the baseline group 
or GT1(α).  

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.01.478697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478697
http://creativecommons.org/licenses/by-nc-nd/4.0/


Group type Groupa,b WHO 
variant

Pango
lineagec

# of unique 
sequencesd Group-dominant mutationse,f Subgroup-emerging mutationg,h

Terminal 
(T)

GT1(α) Alpha B.1.1.7 4,714 H69del, V70del, Y144del, N501Y, A570D, D614G, 
P681H, T716I, S982A, D1118H L5F, S98F, D138H, D178H, V327I, K1191N

GT2(ε) Epsilon B.1.429 874 S13I, W152C, L452R, D614G P26S, W258L

GT3(δ) Delta B.1.617.2 674
(4,283)

PNGS17N, T19R, G142D, E156del, F157del, R158G, 
L452R,T478K, D614G, P681R, D950N

K77T, T95I, A222V, V1264L (L5F, V70I, 
K97E, S112L, R214H, V289I, N1074S, 
V1104L)

GT4(ι3) Iota B.1.526 664 L5F, T95I, D253G, E484K, D614G, A701V S477N

GT5(ι1) Iota
B.1.526,

D2,
B.1.160

598 L5F, T95I, D253G, S477N, D614G, Q957R -

GT6(γ) Gamma P.1 430
L18F, T20N, P26S, D138Y, N188PNGS, R190S, 
K417T, E484K, N501Y, D614G, H655Y, T1027I, 
V1176F

-

GT7(ι3) Iota B.1.526 337 D80G, Y144del, F157S, L452R, D614G, T859N, 
D950H T791I

GT8 - B.1.623 53 S494P, N501Y, D614G, P681H, K854N, E1111K -

Baseline 
(B)

GB1 - B.1.2 2,204 D614G H69del, V70del, G72R, G142del, V143del, 
N439K, Q675H, P681H, V1228L

GB2 - B.1.177,
B.1.2 2,181 A222V, D614G L18F, A262S, P272L, T716I

GB3 - B.1.575,
B.1.1.519 559 T478K, D614G, P681H, T732A S494P, T716I

GB4 - B.1.2,
B.1.1.239 354 D614G, Q677H -

GB5 - B.1.2 173 D614G -

GB6 - B.1.2 166 D614G -

GB7 - B.1.596 125 D614G, Q677P -

GB8 - B.1.2 84 L5F, D614G -

GB9 - R.1 80 W152L, E484K, D614G, G769V -

GB10 - C.30,C.16,
B.1.1.1 80 D614G -

GB11 - B.1.2 61 D614G -

GB12 - P.2 60 E484K, D614G, V1176F -

a Grouping is based on phylogenetic analysis of 16,808 unique nucleotide sequences of spike isolated from 
samples collected worldwide between December 2019 and July 2021.
b Groups were assigned to the baseline set of sequences (GB) if their centroid was located 0.0015 or less 
nucleotide substitutions per site from the reference spike sequence (accession number NC_045512).
c Only Pango linages that represent 10 percent or more of sequences within a group are listed.
d  The number of GT3(δ) sequences isolated from samples collected between December 2019 and September 
2021 is indicated in parentheses.
e A mutation is defined as group-dominant if it is found in the inferred ancestral sequence of the group and in 
more than 50 percent of group sequences.
f PNGS indicates presence of Asn at the first position of a PNGS triplet where the third position is occupied by 
Thr or Ser and the second position is not occupied by Pro.
g A mutation is defined as subgroup-emerging if it is not found in the inferred group ancestor but is the 
dominant residue in at least one of the group clusters and constitutes less than 50% of the residues in the 
group.
h  Subgroup-emerging mutations that appeared in GT3(δ) between July 2021 and September 2021 are indicated 
in parentheses and in bold font.

S . Table S1
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Phase of 
pandemic Pango lineagea Cluster formation 

dateb Mutation sites (Probability)c,d,e

Early 
phase

A.1 03/19/2020
B.1 03/27/2020 614

B.1.1 04/30/2020 614
D.2 07/28/2020 477, 614

B.1.177 09/02/2020 222, 614
B.1.1.37 09/10/2020 614

Lineage-
emerging 

phase

B.1.1.1 10/10/2020 614
AD.2 10/12/2020 614
B.1.2 10/14/2020 614

B.1.1.311 10/14/2020 614
B.1.243 10/15/2020 614
B.1.258 10/29/2020 614, 439 (0.990)

B.1.36.17 10/30/2020 614
B.1.177.4 11/05/2020 614, 222

B.1.177.57 11/05/2020 614, 222
B.1.240 11/06/2020 614
B.1.160 11/23/2020 477, 614

B.1.1.7 (Alpha) 12/10/2020 69 (1.0), 70 (1.0), 144 (1.0), 501 (1.0), 570 (0.38), 614, 681 (1.0), 716 (0.95), 982 (0.25), 1118 (0.81)
B.1.36 12/16/2020 614

B.1.177.87 12/17/2020 222, 262 (1.0), 272 (0.84), 614
B.1.369 12/20/2020 614
B.1.36.8 12/29/2020 614

B.1.177.17 12/29/2020 176 (0.999), 222, 614
B.1.1.222 01/01/2021 732 (1.0), 614
B.1.234 01/02/2021 614

B.1.429 (Epsilon) 01/07/2021 13 (0.990), 152 (1.0), 452 (0.996), 614
B.1.221 01/08/2021 98 (1.0), 614
B.1.596 01/09/2021 614
B.1.400 01/17/2021 614

B.1.177.44 01/20/2021 222, 614
B.1.311 01/25/2021 614
B.1.595 01/29/2021 614
B.1.427 01/31/2021 13 (0.98), 152 (1.0), 452 (0.99), 614

B.1.526 (Iota) 02/08/2021 5 (1.0), 95 (1.0), 253 (0.999), 614
B.1.1.519 02/10/2021 68 (0.67), 478 (0.83), 614, 732 (1.0)
B.1.517 02/24/2021 501 (1.0), 614

B.1.177.7 02/24/2021 18 (1.0), 222, 614
P.2 03/04/2021 484 (0.998), 614, 1176 (0.70)

B.1.110.3 03/04/2021 614
B.1.575 03/08/2021 494 (0.30), 614, 681 (1.0), 716 (0.95)

B.1.1.434 03/17/2021 614
B.1.1.316 03/18/2021 614, 677 (1.0), 732 (1.0)
B.1.609 03/20/2021 614

R.1 03/23/2021 152 (1.0), 484 (0.998), 614, 769 (0.98)
B.1.623 04/01/2021 494 (0.30), 501 (1.0), 614, 681 (1.0), 1111 (0.25)

P.1 (Gamma) 04/07/2021 18 (1.0), 26 (1.0), 20 (0.99), 138 (1.0), 190 (0.70), 417 (0.16), 484 (0.998), 501 (1.0), 614, 655 (1.0), 
1027 (0.62), 1176 (0.70)

B.1.525 04/11/2021 52 (0.51), 67 (0.89), 69 (1.0), 70 (1.0), 144 (1.0), 484 (0.998), 614, 677 (1.0), 888 (0.28)
B.1.351 04/20/2021 47 (0.24), 50 (0.83), 80 (1.0), 70 (1.0), 215 (0.95), 241 (0.18), 242 (0.99), 243 (1.0), 484 (0.998), 614
B.1.241 04/22/2021 614

B.1.617.2 (Delta) 05/05/2021 19 (1.0), 142 (1.0), 156 (0.28), 157 (0.82), 158 (0.57), 452 (0.999), 478 (0.83), 614, 681 (1.0), 950 
(0.90)

C.37 06/30/2021 75 (0.999), 76 (0.999), 246 (0.89), 247 (0.87), 248 (0.33), 249 (0.23), 250 (0.65), 251 (0.26), 252 
(0.83), 253 (0.999), 452 (0.996), 490 (0.10), 614, 859 (0.999)

AY.3 07/12/2021 19 (1.0), 156 (0.28), 157 (0.82), 158 (0.57), 452 (0.999), 478 (0.83), 614, 681 (1.0), 950 (0.90)

S . Table S2

a Pango lineages associated with the sequences.
b Date by which at least 26 sequences of the indicated lineage were detected.
c Spike mutations associated with the indicated Pango lineage based on data obtained from Outbreak.info, 2021. 
d Values in parentheses describe the probabilities assigned to each position for a mutation, based on a 
logistic regression model that combines V, R and D values (see Figure 3F).
e Sites of mutation in lineages that formed before September 19th 2020 are shown in red font. These positions 
were excluded from our time-indexed analyses.
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Position Effecta

Probability for mutationb,c,d,e Positive selective pressure (S)f

Baseline GT1(α) GT3(δ) Baseline GT1(α) GT3(δ) 

417 Ab resistance 
0.23 

(416) 

0.36 

(315) 

0.45 

(75) 

0 0 1.04 

452 
Ab resistance 

Serum resistance 

0.999 

(24) 

0.42 

(212) 

0.31 

(207) 

4.21 

(*) 

0 1.09 

477 Ab resistance 
0.9999 

(15) 

0.49 

(149) 

0.22 

(345) 

2.43 0 0 

478 Ab resistance 
0.70 

(111) 

0.26 

(564) 

0.17 

(451) 

19.69 

(***) 

0.5 0.51 

484 
Ab resistance 

Serum resistance 

ACE2 binding

0.98 

(48) 

0.39 

(259) 

0.18 

(443) 

0 0 0.97 

501
Ab resistance

ACE2 binding

1 

(4) 

0.29 

(510) 

0.27 

(271) 

11.32 

(**) 

2.37 0 

a Biological phenotype associated with mutations at the indicated positions. Ab, antibody. 

b Probability for emergence of mutations at the indicated positions, assigned by the logistic 

regression model that applies V, R and D values. Position ranks by probability values are shown 

in parenthesis and italics (lower rank corresponds to higher probability value). 

c For GT1(α) and GT3(δ), all clusters that compose sGEMs were removed from the datasets. 
 

d The GT1(α) and GT3(δ) datasets are composed of sequences isolated from samples collected 

until July 28th 2021 and September 5th 2021, respectively. 

e Values for GDM sites in GT1(α) or GT3(δ) are shown in red font. 
 

f S values calculated for the positions using the different datasets. Indicators of the associated P-

values are shown in parentheses: *, P<0.05; **, P<0.005; *** P<0.0005. 

Supp. Table S3 
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S value b,c,d

Group of 

emergence
Positiona Baseline GT1(α) GT3(δ) 

GT1(α)

69 0 N/A 0.45 

70 0 N/A 0 

144 0 N/A 0.58 

501 11.3 (**) 2.73 0 

570 1.40 0 0.58 

614 2.60 (**) 1.06 1.91 

681 42.4 (***) 0.26 4.78 

716 4.48 (***) 1.41 0.95 

982 0.38 0 0 

1118 0 0.83 0 

GT3(δ)

17 0.00 0.00 0.45 

19 1.12 1.72 0.58 

142 0.16 2.58 (*) 222.7 (***) 

156 0 0 N/A 

157 0 0 N/A 

158 0 0 0 

452 4.21 (*) 0 1.09 

478 19.7 (***) 0.55 0.51 

614 2.60 (**) 1.06 1.91 

681 42.4 (***) 0.26 4.78 

950 0 0 46.3 (**) 

a Data describe S values calculated for the indicated GDM sites of groups GT1(α) or GT3(δ). 
 

b S values were calculated using sequences from the baseline group, GT1(α) or GT3(δ), 

which are composed of 5700, 3950 or 2550 unique sequences, respectively. For GT1(α) and 

GT3(δ), all clusters that compose sGEMs were excluded from the datasets. 
 

c P values associated with S: *, P<0.05; **, P<0.005; *** P<0.0005. 

d GT3(δ) includes sequences from samples collected between December 2019 and 

September 5th 2021. 
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