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Abstract

Background: Genetic factors are important determinants of overweight. We examined whether there are differential effect
sizes depending on children’s body composition.

Methods: We analysed data of n = 4,837 children recorded in the Avon Longitudinal Study of Parents and Children
(ALSPAC), applying quantile regression with sex- and age-specific standard deviation scores (SDS) of body mass index (BMI)
or with body fat mass index and fat-free mass index at 9 years as outcome variables and an ‘‘obesity-risk-allele score’’ based
on eight genetic variants known to be associated with childhood BMI as the explanatory variable.

Results: The quantile regression coefficients increased with increasing child’s BMI-SDS and fat mass index percentiles,
indicating larger effects of the genetic factors at higher percentiles. While the associations with BMI-SDS were of similar size
in medium and high BMI quantiles (40th percentile and above), effect sizes with fat mass index increased over the whole fat
mass index distribution. For example, the fat mass index of a normal-weight (50th percentile) child was increased by
0.13 kg/m2 (95% confidence interval (CI): 0.09, 0.16) per additional allele, compared to 0.24 kg/m2 per allele (95% CI: 0.15,
0.32) in children at the 90th percentile. The genetic associations with fat-free mass index were weaker and the quantile
regression effects less pronounced than those on fat mass index.

Conclusions: Genetic risk factors for childhood overweight appear to have greater effects on fatter children. Interaction of
known genetic factors with environmental or unknown genetic factors might provide a potential explanation of these findings.
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Introduction

Increasing prevalence of childhood overweight has been

reported worldwide [1]. Genetic factors are important determi-

nants of the overweight risk as has been shown in adoption and

twin studies [2,3] and in observational studies pointing to the

important role of maternal body mass index (BMI) in the

development of overweight in children [4,5].

Recent genome-wide association (GWA) studies allowed

identifying several genetic factors associated with childhood and

adult obesity, such as variants of the FTO and MC4R genes [6,7].

Members of our study group recently combined eight genetic

variants (which had shown individual associations with childhood

BMI in previous studies) to a so-called ‘‘obesity-risk-allele score’’

and found strong statistical evidence for positive associations of this

score with mean BMI and body fat mass at the age of 9 years [8].

Similarly, shifts in mean BMI have been observed for

environmental factors which, upon more detailed scrutiny, were

mainly caused by shifts in the upper tail of the distribution [9,10].

For example, we found that, while the middle part of the BMI

distribution was similar at the age of 5–6 years in formerly

breastfed and formula fed children, the lower tail showed higher

values in breastfed children, and the upper tail lower values [11].

These analyses were performed with the use of quantile regression

[12,13], a statistical method that offers a more comprehensive

approach than the widely used linear regression. While linear

regression focuses on shifts of the mean, quantile regression allows

differentiating shifts in different parts of the distribution.

We therefore hypothesized that effect sizes of genetic risk factors

for overweight might be stronger in children with high compared

to children with normal or low BMI or fat mass. In order to

answer this question, we assessed BMI and fat mass dependent

associations of genetic risk factors for childhood obesity by quantile

regression.

Materials and Methods

Data
The Avon Longitudinal Study of Parents and Children

(ALSPAC) is a longitudinal birth cohort study of the determinants
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of development, health, and disease during childhood and beyond

and has been described in more detail elsewhere [14]. Initially,

14,541 pregnant women with an expected date of delivery

between April 1991 and December 1992 were enrolled; 13,971

of their children formed the original cohort at 1 y of age. Detailed

information has been collected using self-administered question-

naires, data extraction from medical notes, and linkage to routine

information systems and at research clinics. Ethical approval for

the study was obtained from the ALSPAC Law and Ethics

Committee and Local Research Ethics Committees. Publication of

the final paper has been approved by the ALSPAC board. The

Ethics Committee of the Physicians’ Chamber of Bavaria waived

the need for consent, since this study was based on analyses of

anonymized data.

Childhood weight and height was measured annually between

ages 7 and 11 y at dedicated ALSPAC Focus clinics by a trained

research team. Height was measured to the nearest 0.1 cm using a

Leicester Height Measure (Holtain Crosswell, Dyfed) and weight

while wearing underwear was measured to the nearest 0.1 kg using

Tanita electronic scales. Fat mass and fat-free mass was assessed

(only) at the 9-year-old research clinic visit (at which 7,725 of the

children were seen) by whole body dual energy X-ray absorpti-

ometry (DXA) (Prodigy scanner, Lunar Radiation Corp, Madison,

Wisconsin, US).

We calculated BMI as weight/height2 (kg/m2). To adjust for sex

and age, we transformed the observed BMI values to sex- and age-

specific standard deviation scores (SDS) established by the World

Health Organisation (WHO, available at: http://www.who.int/

growthref/en/) using the LMS method [15]. The position of

children’s BMI values within the distribution (the quantile) did not

change considerably by the age- and sex-adjusted transformation

to BMI-SDS. For descriptive analyses, we defined overweight and

obesity according to BMI reference values of the International Obesity

Task Force (IOTF) [16]. We calculated fat and fat-free mass indices

for each child from DXA measurements at age 9 y by dividing fat

mass and fat-free mass (kg) by height squared (m2) [17].

Genotype information was available for 7,333 children with

respect to six GWA-obesity variants previously reported to

show association with BMI or obesity in children [6,7,18];

these variants were: rs9939609 (in/near to FTO); rs17782313

(MC4R), rs6548238 (TMEM18), rs10938397 (GNPDA2),

rs368794 (KCTD15), rs2568958 (NEGR1). We further included

the variants rs925946 (BDNF) and rs7647305 (ETV5) in our

analyses which had been reported to be associated with BMI in

adults [19] and were found to be associated with overweight in

children in our previous study [8]. As in the latter study, we

calculated an ‘‘obesity-risk-allele score’’ by counting the total

number of obesity risk alleles across these eight genetic variants.

Only one variant at each locus was chosen and only individuals

with complete genotype data at all eight variants were included in

the obesity-risk-allele score analyses. This score approximated a

normal distribution and showed a linear association with BMI

SDS at age 9 y [8]. We did not make use of a ‘‘weighted obesity-

risk-allele score’’ (with weighted contributions of each variant

according to their apparent effect size on adult BMI), since such a

weighted score showed essentially the same associations as the

unweighted score in our previous study [8].

We restricted our analyses to singleton white Europeans plus

one randomly selected child from each mother for whom more

than one child had entered the study (n = 7,146 children). In total,

the dataset contained n = 4,837 observations with full information

on both BMI at 9 years and the obesity-risk-allele score, n = 4,613

of which had also measurements of fat mass and fat-free mass

recorded.

Statistical analyses
Quantile regression is a statistical approach of modelling

different sample percentiles (‘quantiles’) of an outcome variable

by a number of explanatory variables [12,20,21]. The results of

quantile regression are interpreted in a similar way to those of

linear regression. While linear regression models the mean of the

outcome distribution, quantile regression models selected quan-

tiles, e.g. the 90th percentile (0.90 quantile) - and, like linear

regression, uses all available data, irrespective of the percentile

modelled. In both cases, regression coefficients quantify potential

effects on the specific parameter (mean or quantile) of the outcome

distribution on a population level. This means that linear

regression coefficients for a binary risk factor can be interpreted

as difference of the mean value of the outcome distribution

between subjects exposed and not exposed. Similarly, quantile

regression coefficients for a binary risk factor represent the

difference of the respective quantile in the estimated outcome

distribution in subjects exposed vs. not exposed (irrespectively of

how many exposed and not exposed subjects lie above or below

the respective quantile). In summary, quantile regression leads to

more comprehensive results, because it allows to assess any part of

the outcome distribution.

We calculated separate quantile regression models with either

BMI-SDS, fat mass index or fat-free mass index as outcome

variable and the obesity-risk-allele score as explanatory variable,

assessing the 0.03, 0.1, 0.2,…, 0.9, and 0.97 quantiles of the

respective outcome variable. We adjusted models with fat mass

index and fat-free mass index as an outcome for sex, age and

height. Models for BMI-SDS were initially not adjusted for sex

and age, since BMI-SDS was defined based on sex- and age-

specific transformations. In a sensitivity analysis, we examined

whether adjustment for sex and age changed the results from the

models for BMI-SDS.

We calculated 95% confidence intervals (CIs) for quantile

regression effect estimates using bootstrap methods [12,20].

Additionally, we compared the quantile regression results with

those from linear regression models. This approach has been used

in other quantile regression related literature [9,12,20]. To enable

direct comparison to ordinary linear regression, we did not

examine non-linear effects (such as polynomial splines) in the

quantile regression models.

All calculations were carried out with the statistical software R

2.6.2 (http://cran.r-project.org), using the quantreg package.

Table 1. Characteristics of the study population (n = 4,837).

Variable Mean (SD)/n (%)

Children’s BMI [kg/m2] 17.6 (2.8)

Children’s BMI standard deviation score (SDS) 0.35 (1.14)

Fat mass index [kg/m2] * 4.3 (2.4)

Fat-free mass index [kg/m2] * 12.6 (1.0)

Age [y] 9.9 (0.3)

Girls n = 2,450 (50.7%)

Overweight/obese children ** n = 993 (20.5%)

Obese children ** n = 191 (3.9%)

*n = 4,613
**classified using IOTF cut-off values [16]
doi:10.1371/journal.pone.0019057.t001
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Results

The children analysed had a mean BMI of 17.6 kg/m2, a mean

BMI-SDS of 0.35 and a mean fat mass index of 4.3 kg/m2 at 9

years of age (table 1). The prevalence of overweight (including

obesity) and obesity according to IOTF criteria was 20.5% and

3.9%, respectively. Children excluded due to missing genotype

data were similar with respect to mean values of BMI (17.8 kg/

m2), BMI-SDS (0.40) and fat mass index (4.4 kg/m2).

The linear regression estimates indicated a mean increase of

0.08 units (95% confidence interval (CI): 0.07, 0.10) in BMI-SDS

and of 0.13 kg/m2 (95% CI: 0.09, 0.16) in fat mass index per allele

increase in the obesity-risk-allele score (table 2). These values were

almost identical to those obtained by median (50th percentile)

regression. The respective quantile regression coefficients were

positive for any BMI-SDS or fat mass index percentile. This

indicates that the obesity-risk-allele score was associated with shifts

to higher values in any category of both BMI-SDS and fat mass

index.

However, the estimated effects increased by child’s BMI-SDS

and fat mass index percentiles, pointing to an additional shift of

the upper percentiles. While the associations were of similar size in

medium and high BMI-SDS quantiles (40th percentile and above),

increasing effect sizes over the whole distribution were observed

with respect to children’s fat mass index (figure 1). For example,

the fat mass index of a normal-weight (50th percentile) child was

increased by 0.13 kg/m2 (95% CI: 0.09, 0.16) per additional allele

of the obesity-risk-allele score. This risk factor was associated with

an average difference of 0.24 (95% CI: 0.15, 0.32) kg/m2 in

children at the 90th percentile and of 0.38 (95% CI: 0.26, 0.49)

units at the 97th percentile per allele. The effects on fat-free mass

index were weaker compared to those on fat mass index, and there

was no clear pattern of increasing effect sizes by fat-free mass index

percentiles. The sensitivity analyses for BMI-SDS with adjustment

for sex and age yielded virtually identical results compared to those

without adjustment (data not shown).

Discussion

Our analyses showed evidence of weight status dependent

effects of genetic risk factors for overweight on body composition:

In general, the obesity-risk-allele score was associated with an

increase in any part of the BMI and fat mass distributions.

However, particularly with respect to body fat mass, the effect size

was directly modified by the percentile of the outcome variable.

These results suggest that genetic risk factors influence body

composition not only continuously over the whole distribution, but

also to a stronger extent in heavier children. An additional

implication of our findings might lie in risk prediction. If gene-

environment, and gene-gene, interactions have such marked

effects on fat mass as suggested by our findings, it is therefore

possible that genetic variants and environmental determinants

might have far stronger predictive abilities for obesity among

children who are already overweight, or those with obese parents.

The mechanisms by which certain genetic variants contribute to

higher body mass are still largely unclear. We hypothesize that our

findings reflect one of the following two potential mechanisms:

Firstly, hitherto unknown obesity risk genes could interact with, or

modify, the effects of the genetic factors examined in this study.

Table 2. Regression coefficients [95% confidence intervals] of the obesity-risk-allele score on sex- and age-specific BMI-SDS or fat
mass index [kg/m2] at 9 years as estimated by linear regression (LR) and quantile regression at specific percentiles p.

Outcome
variable LR 0.03p 0.10p 0.20p 0.30p 0.40p 0.50p 0.60p 0.70p 0.80p 0.90p 0.97p

BMI-SDS 0.08 0.04 0.06 0.06 0.07 0.09 0.10 0.10 0.10 0.10 0.09 0.09

[0.07, 0.10] [0.00, 0.08]* [0.03, 0.08] [0.04, 0.08] [0.05, 0.10] [0.07, 0.11] [0.07, 0.12] [0.08, 0.12] [0.07, 0.13] [0.06, 0.13] [0.06, 0.13] [0.05, 0.13]

Fat mass index 0.13 0.04 0.04 0.05 0.07 0.10 0.13 0.17 0.17 0.19 0.24 0.38

[0.09, 0.16] [0.01, 0.06] [0.02, 0.06] [0.03, 0.07] [0.05, 0.10] [0.07, 0.13] [0.10, 0.17] [0.12, 0.21] [0.11, 0.22] [0.12, 0.25] [0.15, 0.32] [0.26, 0.49]

Fat-free mass
index

0.03 0.00 0.01 0.03 0.03 0.02 0.02 0.03 0.04 0.03 0.03 0.07

[0.01, 0.04] [-0.03, 0.02] [-0.01, 0.03] [0.01, 0.05] [0.01, 0.04] [0.01, 0.04] [0.01, 0.04] [0.01, 0.05] [0.02, 0.06] [0.01, 0.05] [0.01, 0.06] [0.03, 0.12]

*p.0.05
Models with fat mass index and fat-free mass index as outcome variable were adjusted for sex, age and height.
doi:10.1371/journal.pone.0019057.t002

Figure 1. Point estimates and 95% confidence bounds (grey
areas) for increase in fat mass index (FMI) at 9 years per
obesity-risk-allele (n = 4,613). The dots represent specific FMI
percentiles (0.03 percentile, 0.1 to 0.9 deciles, and 0.97 percentile) in
the quantile regression model with adjustment for sex, age and height
and are connected by dashes to visualize trends by outcome
percentiles. The grey horizontal lines represent the linear regression
coefficients and their respective confidence intervals (dashed).
doi:10.1371/journal.pone.0019057.g001
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However, as yet there is little evidence for marked gene-gene

interactions between known disease-related variants. Interestingly,

one study reported differential associations of the FTO gene for

Whites and African-Americans with respect to obesity [22].

Although this finding cannot help to explain our results, since

we restricted our analyses to white children, it points to potential

interactions of genetic factors with respect to obesity. Unfortu-

nately, we are not aware of other studies of this kind in the context

of obesity. Advanced statistical approaches such as random forests

may be helpful in identifying interacting genes in GWA studies, as

demonstrated with respect to rheumatoid arthritis susceptibility

[23].

Another potential explanation is that genetic risk factors for

overweight may cause an increased susceptibility to certain

environmental obesity risk factors. The presence of gene-

environment interactions could also explain the similar quantile

regression patterns found for environmental risk factors of

overweight in previous studies [9,10]. Specifically, it has been

shown that overweight children with a specific MC4R variant

were not able to maintain their weight loss achieved during a

lifestyle intervention in contrast to children without these

mutations [24]. Further studies of this kind might provide further

evidence for gene-environment interactions.

A particular strength of our study is the appliance of quantile

regression which offers a more comprehensive approach than

linear regression. While linear regression focuses on shifts of the

mean which may be caused by a true shift of the mean with a shift

of the entire distribution or a shift in the upper tail or lower tail

only, quantile regression allows differentiating shifts in different

parts of the distribution. Therefore, this approach enabled us to

reveal an additional shift of the upper percentiles of BMI-SDS and

fat mass in children, additionally to the previous shown mean shift

of these two outcomes [8].

A potential limitation of our study might consist in the high

drop-out rate (44.7%) between enrolment and 9-year visit.

Reasons for loss to follow-up were that children were no longer

eligible, did not respond to the invitation letter for the 9-year visit,

refused or failed to attend the visit. However, it is difficult to

imagine why nonparticipation might account for different effects

of genotype data on different parts of the body composition

distribution.

Selection bias due to children with missing genotype data should

not be a major issue with respect to our analyses, since there were

no substantial differences in BMI or fat mass index at 9 years

between responders and non-responders.

Potential intercorrelation in close family members is another

important issue in studies assessing effects of genetic predisposi-

tions. We had therefore restricted our analyses to one child per

mother in the dataset.

In conclusion, for genetic risk factors of childhood overweight,

stronger associations in children with higher levels of BMI and fat

mass were observed. Interaction between genetic and environ-

mental risk factors might provide a potential explanation of these

findings.
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