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Across the population, individuals exhibit a wide variation of susceptibility or resilience
to developing Alzheimer’s disease (AD). Identifying specific factors that promote
resilience would provide insight into disease mechanisms and nominate potential targets
for therapeutic intervention. Here, we use transcriptome profiling to identify gene
networks present in the pre-symptomatic AD mouse brain relating to neuroinflammation,
brain vasculature, extracellular matrix organization, and synaptic signaling that predict
cognitive performance at an advanced age. We highlight putative drivers of these
observed relationships, including Itgb2, Fcgr2b, Slc6a14, and Gper1, which represent
prime targets through which to promote resilience prior to overt symptom onset. In
addition, we identify a genomic region on chromosome 2 containing variants that directly
modulate resilience network expression. Overall, work here highlights new potential
drivers of resilience to AD and contributes significantly to our understanding of early,
potentially causal, disease mechanisms.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by a
combination of severe memory impairment and two classical neuropathologies, extracellular
amyloid plaques and intracellular neurofibrillary tangles (Selkoe, 1991). According to the amyloid
hypothesis, which has been extensively researched for decades, the formation and deposition of
amyloid, particularly the toxic 1-42 amino acid species of beta-amyloid (Aβ1-42), is thought to
be an initiating factor that leads to later neurodegeneration and cognitive impairment (Hardy and
Selkoe, 2002; Selkoe and Hardy, 2016). However, many imaging and post-mortem studies of human
brains have shown that substantial amounts of AD pathology, particularly plaque pathology, can be
present in the brains of cognitively intact individuals (Morris et al., 1996; Negash et al., 2013).
These individuals, who often meet the criteria for a pathological diagnosis of AD but remain
asymptomatic, represent a clinically interesting subset of the population that exhibit a certain
degree of resilience to what are typically highly deleterious neuropathologies.

Resiliency, defined as better cognitive functioning than predicted based on given pathological,
genetic, or molecular characteristics, has been observed in both the general population
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(Hohman et al., 2016) and in families harboring high-risk
genetic mutations that often confer early-onset or familial AD
[FAD, (Ryman et al., 2014)]. While FAD is typically thought
to be a severe form of the disease with an age of onset before
65, there is a wide range in the age at first symptom onset
(Ryman et al., 2014). In both sporadic late-onset AD (LOAD)
and FAD, disease onset is highly heritable (Gatz et al., 1997),
indicating genetic factors likely play a large role in determining
individual susceptibility or resilience. Identifying these specific
genetic factors, particularly those that promote resilience, would
provide key insight into disease mechanisms and nominate
putative targets for therapeutic intervention, as strategies that
delay disease onset even by a few years would provide much
needed disease modifying therapies.

Despite the immense therapeutic potential presented by
resilience factors, their identification in human populations
remains elusive. Several studies have utilized FAD populations
to identify modifiers of the age at first symptom onset (Lee
et al., 2015), but these populations are typically not large enough
to support genome-wide testing and identification of resilience
factors. In addition, the identification of individuals with little
to no family history of AD and who remain cognitively intact
despite high pathology loads is almost impossible in the general
population, as these individuals rarely enter the clinic. Even
when resilient individuals enroll as part of an observational
study, human-oriented research presents additional challenges.
The human genome is incredibly complex, individuals are
consistently exposed to a variety of uncontrollable environmental
factors, and accessing critical disease-relevant tissue at early
stages of disease is uncommon.

To overcome some of the barriers associated with studying
AD in human populations, our lab and others have turned to
the mouse as a model organism with which to study disease
pathogenesis. FAD is often caused by inherited mutations
in the genes encoding for amyloid precursor protein (APP)
and presenilin 1 (PSEN1), and the cognitive and pathological
symptoms observed strongly resemble those seen in late-onset
AD (LOAD), the more prominent form of AD (Duara et al.,
1993; Lippa et al., 1996; Day et al., 2016). As such, mouse
models carrying human mutations in APP and/or PSEN1 have
emerged as a powerful way to study aspects of the human disease
(Elder et al., 2010; Webster et al., 2014; Neuner et al., 2018). In
addition, within the lab we can control environmental variables
and access disease-relevant tissue at early disease time points,
which is critical for understanding molecular mechanisms that
drive AD-related cognitive decline. However, most AD mouse
models utilize a single inbred strain (or single mixed background
non-inbred strain), which precludes the identification of genetic
factors underlying differential susceptibility or resilience to AD.
To address this, our lab has developed the first genetically
diverse transgenic AD mouse population (Neuner et al., 2018).
This population, which we termed the AD-BXDs, combines
two well-established resources, the 5XFAD transgenic model of
AD (Oakley et al., 2006) and the BXD genetic reference panel
(Peirce et al., 2004). The BXD genetic reference panel is a series
of recombinant inbred mouse strains initially derived from a
cross between the two common inbred strains C57BL/6J (B6)

and DBA/2J (D2). As approximately 5 million polymorphisms
segregate across these two strains (Wang et al., 2016), the BXD
panel incorporates a substantial amount of genetic diversity into
our studies but reduces complexity just enough to allow for well-
powered genome-wide trait mapping with reasonable sample
sizes. In addition, as each parental stain of this cross is fully inbred
(B6.Cg-5XFAD, #34848-JAX, and each individual BXD strain),
this approach allows for the rapid generation of genetically
identical F1 AD-BXD mice, enabling repeated sampling across
time and laboratories.

Here we take advantage of the inbred nature of the AD-
BXD panel and identify transcriptional networks present at early
stages of disease (6 months) that predict cognitive impairment
later in disease (14 months). At 6 months of age, the AD-
BXDs are cognitively unimpaired as a population relative to their
non-transgenic littermates (Neuner et al., 2018) as measured by
contextual fear conditioning, making the six-month time point
ideal to profile networks present prior to overt symptom onset.
Understanding the molecular mechanisms that occur early in
disease may help to identify causal drivers of disease pathogenesis
and therapeutic targets for interventions. As there is currently
no cure of AD, work here is poised to contribute significantly to
human health.

MATERIALS AND METHODS

Bioethics
All mouse experiments occurred at University of Tennessee
Health Science Center and were carried out in accordance with
the principals of the Basel Declaration and standards of the
Association for the Assessment and Accreditation of Laboratory
Animal Care (AAALAC), as well as the recommendations of
the National Institutes of Health Guide for the Care and Use
of Laboratory Animals. The protocol was approved by the
Institutional Animal Care and Use Committee (IACUC) at the
University of Tennessee Health Science Center.

Animals
All data used in this study came from mice that were
part of the AD-BXD panel, which has been previously
described (Neuner et al., 2018). Briefly, female B6
mice hemizygous for the 5XFAD transgene (B6.Cg-
Tg(APPSweFlLon,PSEN1∗M146L∗L286V)6799Vas/Mmjax,
Stock No. #34848-JAX) were mated to males from the BXD
genetic reference panel (Peirce et al., 2004; Wang et al., 2016). As
both of these resources (B6.5XFAD and individual BXD strains)
consist of fully inbred mice, one generation of breeding results
in isogenic F1 AD-BXD mice that harbor the 5XFAD transgene
in combination with a genetically diverse BXD chromosome.
As female 5XFAD mice are hemizygous, non-transgenic F1
mice were also generated (in approximately 50/50 ratio), but
only results from 5XFAD positive F1 mice were included here,
and mice are referred to as AD-BXD mice throughout the
manuscript. Male and female AD-BXD mice were group housed
with a mix of transgenic and non-transgenic same-sex littermates
and maintained on a 12 h light/dark cycle.
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Contextual Fear Conditioning
Standard contextual fear conditioning (Neuner et al., 2015) was
used to characterize cognitive function across the AD-BXDs
at either 6 or 14 months of age. On the first day of training,
mice were placed in a training chamber and four 0.9 mA 1 s
foot shocks were delivered after a baseline period. Four post-
shock intervals were defined as the 40 s following the offset
of each foot shock and the percentage of time spent freezing
during each interval was determined using FreezeFrame software
(Colbourn Instruments, PA, United States). The percentage of
time spent freezing following the final shock was used as a
measure of contextual fear acquisition across the panel. Twenty-
four hours after training, mice were placed back into the training
chamber and the percentage of time spent freezing throughout
the entire 10-min test was measured as an index of contextual
fear memory. To evaluate the impact of genetic background,
age, and sex on each of the contextual fear conditioning traits,
a three-way ANOVA on individual-level data was run. Type III
Sum of Squares for each term was compared to the SS value of
the corrected total variance to calculate the percentage variance
explained by each variable. For both contextual fear acquisition
and contextual fear memory, strain background explained the
majority of variance (19 and 15%, respectively – relative to 1%
and 5% for age and 1% and 0.1% for sex). Strain/age/sex specific
averages were generated to compare to RNA-sequencing and
WGCNA results.

RNA Sequencing
Initial RNA sequencing from hippocampus of the AD-BXD
panel [5XFAD positive only; 6 months, n = 33 (15 females/18
males) and 14 months n = 36 (16 female/20 male)] has been
previously reported [(Neuner et al., 2018), GEO accession
number GSE101144]. Here, we expand upon this dataset and
include RNA sequencing data from an additional 38 (32 female/6
male) 6 month and 50 (29 female/21 male) AD-BXD mice, for
a total of 157 AD mice, 71 of which were 6 months of age (47
female/24 male) and 86 of which were 14 months of age (45
female/41 male). RNA-sequencing was performed as previously
described (Neuner et al., 2018). Briefly, all samples were isolated
using the Qiagen RNeasy Mini kit, libraries were prepared using
Truseq Stranded mRNA Sample Preparation Kit (Illumina Inc.),
and sequenced by 75 bp sequencing on an Illumina HiSeq2500.
The GBRS pipeline was used to first align reads to a diploid B6/D2
transcriptome using Bowtie (Langmead et al., 2009) followed by
an expectation maximization algorithm to quantify the number
of reads aligned to either the B or D allele. The total number
of reads assigned to a gene (across B and D alleles) was used
here1. Genes were filtered to require an average of at least 1
transcript per million (TPM) in 50% of samples, RNA data
was batch corrected using ComBat (Johnson et al., 2007; Leek
et al., 2012), and biological replicates were averaged together
for downstream analyses (Choi et al., 2017; Raghupathy et al.,
2018). Specifically, samples from individual mice from the same
strain, sex, and age were averaged together to derive one group
average. Data from both GSE101144 and new data reported here

1https://github.com/churchill-lab/gbrs

(available now on GEO as GSE119215) represents data from 79
strain/sex/age groups across 28 background strains. Differential
expression analysis comparing strain/sex averaged 6 month AD-
BXD and 14 month AD-BXD gene expression was performed
using DESeq2 (Love et al., 2014).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed according
to established procedures (Subramanian et al., 2005; Liberzon
et al., 2011). Genes significantly differentially expressed relative
to age in the AD-BXDs (14 months versus 6 months, adjusted
p-value ≤ 0.05) were sorted by log2 fold change and uploaded to
GSEA desktop software. Using the “GSEAPreranked” tool and the
Molecular Signatures Database 3.0, Gene Ontology (GO) terms
from all categories (Biological Process, Molecular Function,
and Cellular Compartment) significantly enriched among either
down-regulated or up-regulated genes were identified.

Cell-Type Specific Enrichment Analysis
For cell-type specific enrichment analysis, a list of genes and
their cell-type assignment based on max FPKM from single-cell
RNA-sequencing in the mouse cerebral cortex was obtained from
brainrnaseq.org (Zhang et al., 2014). A hypergeometric test was
used to determine the statistical significance of overlap between
our list of differentially expressed genes and lists of cell-specific
genes. Only genes from differential expression that had a cell-
type assignment were used; as such, the list of 12,978 genes
downloaded from brainrnaseq.org was used as our background
gene set for calculating statistical significance of overlap.

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA) was
performed according to established methods (Langfelder and
Horvath, 2008). Additional filtering required at least 1 TPM
in 20% of samples, for a final gene list containing ∼16,000
genes. A minimum module size of 30 was implemented, and
block-wise network construction was used to assemble modules
using only 6 month-old AD-BXD RNA data. The WGCNA
function GOenrichmentAnalysis was used to identify GO terms
significantly enriched within each of the modules using a false
discovery rate of 0.05. Hub gene identification using partial
correlation analysis was performed using the Statistical Inference
of Large-Scale Gaussian Graphical Model in Gene Networks
(SILGGM) package in R (Zhang et al., 2018). Module eigengenes
representing the first principal component of the expression
matrix of the corresponding module were derived using standard
methods within the WGCNA package (Langfelder and Horvath,
2008). These eigengenes were used as representative measures
of gene expression profiles within a given module and are
represented using arbitrary standardized units throughout the
manuscript. To evaluate how increased module eigengene
expression related to actual module member expression, we also
derived a standardized module expression value from the mean
expression level of all genes as previously reported (Mostafavi
et al., 2018).
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Quantitative Trait Loci (QTL) Mapping
Genotypes for BXD strains were obtained from GeneNetwork.org
(Mulligan et al., 2017). Module eigengenes as generated by
WGCNA were exported and used as quantitative traits for
downstream QTL mapping in r/qtl (Broman et al., 2003). Sex was
used as an additive covariate and permutation tests were used to
determine statistical significance.

Statistical Analysis and Software
R software version 3.4.3 was used for data analysis. WGCNA
version 1.63 was used for network analysis. Statistical tests
included paired t-tests, ANOVA, hypergeometric tests for
overlap, Spearman’s correlation, and permutation tests. Data are
reported here as mean ± standard error unless otherwise stated.

RESULTS

Inflammation and Loss of Synaptic
Genes Underlie Population-Level
Cognitive Decline in AD-BXDs
As a population, the AD-BXDs significantly decline in cognitive
function from 6 months to 14 months of age (Figure 1). In

order to first understand the population-level transcriptional
changes driving this decline, we profiled the transcriptome
from a total of 157 AD-BXD mice, 71 of which were
6 months of age (47 female/24 male) and 86 of which
were 14 months of age (45 female/41 male). Together, these
mice represented a total of 79 sex/age groupings across 28
genetically diverse background strains, and biological replicates
were averaged together for downstream analyses. Differential
expression analysis using DESeq2 identified a total of 1278 genes
that significantly change in expression (774 upregulated and
504 downregulated, adjusted p-value < 0.05) throughout the
course of aging. Using gene set enrichment analysis (GSEA),
a slight but significant upregulation of genes enriched for
immune-related functions was observed (Figure 2A), suggesting
neuroinflammation increases with age in the AD-BXDs. This
increase seems to be driven by an increase both in microglia and
astrocytes, as up-regulated genes that show cell-type specificity in
their expression profiles showed enrichment for both microglia
and astrocyte localization (Figure 2B, hypergeometric test,
p < 0.0001 and p = 0.02, respectively). This up-regulation
of immune-related genes mirrors changes observed in brain
tissue collected post-mortem from human AD patients relative
to controls (Zhang et al., 2013; International Genomics of

FIGURE 1 | Cognitive function declines with age across genetically diverse AD mice. (A) At 6 months of age, heritable variation in contextual fear acquisition (CFA)
exists across AD-BXDs, as measured by freezing following the final shock during the training trial of contextual fear conditioning. (B) Variation in CFA also exists at
14 months. (C) As a population, the AD-BXD panel declines significant in CFA performance with age [ANOVA main effect of age, F (1, 354) = 3.3, p < 0.001],
although the extent of this decline varies widely by background strain. (D) At 6 months of age, heritable variation in contextual fear memory (CFM) exists across the
AD-BXDs, as measured by total freezing during the 10-min testing trial of contextual fear conditioning. (E) Variation also exists at 14 months. (F) As a population, the
AD-BXD panel declines significantly with age [ANOVA effect of age, F (1, 354) = 3.5, p < 0.001], although as with CFA, the extent of this decline varies widely across
background strain. ∗Raw data originally reported in (Neuner et al., 2018). Each point in C and F represents a strain/age average.
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FIGURE 2 | Inflammation and loss of synapses likely underlie population-level cognitive decline in AD-BXDs. (A) Gene set enrichment analysis (GSEA) identified a
significant enrichment for gene ontology (GO) terms related to immune function among genes up-regulated with age across AD-BXDs. Designations before each
term indicate category of GO term; MF, Molecular function, BP, Biological process, CC, Cellular compartment. (B) Genes upregulated in 14 month AD-BXDs that
show cell-type specificity in their expression profiles showed enrichment for localization to microglia (p < 0.001), astrocytes (p = 0.02), and myelinating
oligodendrocytes (p < 0.001), but not oligodendrocyte precursor cells (OPCs), endothelial cells (EC), newly formed oligodendrocytes (new oligo.), or neurons.
(C) Among genes down-regulated in 14 month AD-BXDS, GSEA identified a significant enrichment for terms related to neuron function and in particular, synapse
localization. (D) Genes upregulated in 14 month AD-BXDs that show cell-type specificity in their expression profiles showed enrichment for localization to neurons
(p < 0.001). ∗p < 0.05.

Alzheimer’s Disease Consortium, 2015). Interestingly, there was
also a significant enrichment among positively changed genes
for expression in myelinating oligodendrocytes. In contrast,
a robust downregulation of genes specifically enriched for
localization to synapses, with functions involved in channel
activity was observed (Figure 2C). As expected based on
GO term enrichments, down-regulated genes that show cell-
type specificity in their expression profiles showed enrichment
for neuronal localization (Figure 2D, hypergeometric test,
p < 0.0001), reminiscent of neurodegeneration observed in the
classical 5XFAD model (Oakley et al., 2006) and human AD
patients (Crews and Masliah, 2010).

Characterization of Pre-symptomatic AD
Transcriptional Network
To begin to understand transcriptional networks present prior
to overt symptom onset, we used weighted gene co-expression
network analysis (WGCNA, Figures 3A,B) to identify modules of
highly correlated genes present among genes that were expressed
at a level of at least one transcript per million (TPM) in >20% of
our samples. As groups of highly co-expressed genes presumably

function in similar biological processes or pathways, module
construction using only 6 month AD-BXD samples should
provide a snapshot of the transcriptional profile within the pre-
symptomatic population (Langfelder and Horvath, 2008). From
WGCNA, we identified 43 modules ranging in size from 35 to
2038 genes. Of the 43 modules, 27 were enriched for at least one
functional category (gene ontology, GO term) at FDR ≤ 0.05.
A variety of GO terms were represented (Supplementary
Table S1), including immune processes, neuronal function,
mRNA binding, protein binding, and myelination, suggesting
we are capturing a number of physiologically relevant processes
occurring in young AD-BXD mice.

Select Pre-symptomatic Gene
Signatures Correlate With Cognitive
Function Later in Disease
Although as a population the AD-BXDs decline with age,
the extent of cognitive decline varies widely across the panel.
Background strain explains a large portion of observed variation
in cognitive decline (19% of total variance in contextual fear
acquisition and 15% of the total variation in contextual fear
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FIGURE 3 | Identification of pre-symptomatic gene signatures predictive of AD resilience. To profile gene networks present in pre-symptomatic AD-BXDs, we
performed weighted gene-co-expression network analysis (WGCNA) on hippocampal RNA-sequencing data. Modules were summarized by a single module
eigengene (i.e., the first principal component) to simplify network visualization and analyses (Langfelder and Horvath, 2007). (A) Dendrogram depicting hierarchical
clustering of all module eigengenes; dissimilarity indices were calculated by subtracting the r value for any given correlation from 1. (B) Heatmap illustrating
correlation strength across the module eigengene network. (C) Expression of the 6 month pink module, as measured by the module eigengene, significantly
correlates with strain-matched 14 month contextual fear acquisition (CFA). (D) Expression of the 6 month darkgray module significantly correlates with
strain-matched 14 month contextual fear memory (CFM).

memory) across 6 and 14 month-old AD-BXDs (Figure 1). To
identify which, if any, of our identified modules correlate with
this observed strain-specific variation in cognitive decline, we
first summarized module expression using the module eigengene
(ME) generated by WGCNA. In order to generate the ME, the

expression of all genes in a given module is summarized via
principal component analysis in order to obtain the first principal
component, which explains the largest proportion of expression
variation across a module. A ME is particularly useful as it
reduces dimensionality of a module to a single representative
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measure, which then can be used to relate module expression to
both genotypes and external phenotypes. Here, we correlate ME
expression at 6 months to strain-matched cognitive performance
at 14 months to obtain a quantitative measure of transcriptional
networks that predict strain-specific susceptibility or resilience to
AD-related cognitive decline. The module most highly correlated
with contextual fear acquisition, as measured by freezing
following the final shock on day 1, was the pink module (r = −0.4,
nominal p = 0.02, Figure 3C), which was significantly enriched
for over 200 GO terms at an FDR ≤ 0.05 (Supplementary
Table S1). A vast majority of these terms involved immune
system function, including immune system process, immune
response, and regulation of cytokine production. Given the
enrichment of immune-related terms among genes that increase
with aging in the AD-BXDs (Figure 2A), the identification of
an immune-enriched module as a critical predictor of late-life
learning abilities suggests the ability of a strain to modify or
fine-tune these processes as early as 6 months is critical for
disease progression. A single 6 month module, the darkgray
module (Figure 3D) was identified as highly correlated with
14 months contextual fear memory performance as measured
by the percentage of time spent freezing throughout the 10-min
test (r = 0.3, nominal p = 0.046). The darkgray module was also
significantly enriched for a number of GO processes, although a
smaller number than the pink module (n = 50). A large number
of these GO terms related to extracellular matrix organization,
extracellular organelle and vesicle localization, and aspects of
protein binding (integrin binding, heparin binding, calcium ion
binding, etc.). Interestingly, the identification of the darkgray
module also highlights a putative role for brain vasculature in
disease progression, as the module was significantly enriched
in the GO terms blood vessel development, circulatory system
development, cardiovascular system development, blood vessel
morphogenesis, and angiogenesis (FDR ≤ 0.05).

Identification of Specific Drivers of
Module-Trait Associations
While GO enrichment analyses give a broad snapshot of specific
functions and pathways that may be targeted to promote
resilience, one of the strengths of network analysis is that specific
‘hub genes’, or drivers of intra-modular connectivity, can be
identified. These genes represent ideal therapeutic targets with
which to manipulate the transcriptome on a modular level, as
they are highly connected to other genes within a given module.
However, traditional hub gene identification in WGCNA relies
simply on a measure of gene-gene correlation (Langfelder and
Horvath, 2008), and sometimes identifies a number of indirect
connections such that if gene A regulates gene B and gene B
regulates gene C, gene A and C will be appear to be highly
connected based on their mutual relationship with gene B. To
limit the use of indirect connections in nominating hub genes,
we utilized partial correlation analysis (Zhang et al., 2018), where
measures of gene-gene correlations are obtained by conditioning
on all other genes in the module, such that the only genes
that would appear to be connected in the previous scenario
are genes A and B and genes B and C, but not genes A and

C. It was our hypothesis that this approach would nominate
hub gene candidates that could be targeted to most efficiently
and directly modulate the broader network. In addition to hub
genes, we were interested in module members highly correlated
with the specific trait of interest themselves, independent of
relationship to the ME or other module members. In order to
come up with a list of candidates that may be targeted to promote
networks hypothesized to be underlying resilience (i.e., the pink
and darkgray modules), we selected genes appearing both in
the list of top 30 hub genes remaining after partial correlation
analysis and which exhibited significant correlation with either
contextual fear acquisition or memory or at a p-value ≤ 0.05.
The top 4 candidates from each module were identified and
their relationship with 14 m cognitive performance is highlighted
in Figure 4. A number of candidates with known links to AD
were identified, including low affinity immunoglobulin gamma
Fc region receptor II-b (Fcgr2b) (Kam et al., 2013), as well
as candidates not well studied in the context of aging or AD,
including G-protein coupled estrogen receptor 1 (Gper1) (Briz
et al., 2015), both validating our approach and identifying novel
candidates that likely contribute to disease onset.

Genomic Region on Chromosome Two
Underlies Variation in Resilience
Networks
As the AD-BXD population was derived from the BXD genetic
reference panel, which has been densely genotyped, we can begin
to investigate the contribution of specific genetic variants to
observed phenotypes, including the variation in transcriptional
networks described here. In order to identify regions of the
genome involved in regulating observed variation in identified
resilience networks, we performed quantitative trait loci (QTL)
mapping using either the pink or darkgray ME as a quantitative
trait. No QTLs were identified for the pink module, but there was
a significant QTL on chromosome 2 identified as a regulator of
the darkgray module (Figure 5A). Strains carrying a copy of the
D2 (D) allele at the peak QTL marker had lower expression of the
darkgray module, as represented by lower ME values (Figure 5B),
and lower contextual fear memory performance at 14 m
(Figure 5C). We confirmed higher ME values were associated
with higher module member expression by relating the mean
standardized expression level of all member genes (Mostafavi
et al., 2018) to the WGCNA-derived eigengene (r = 0.93,
p < 0.01). These results demonstrate the presence of genetic
variants in the region that significantly modify the expression
of the group of genes that make up the darkgray module
and contribute to variation in cognitive decline. The identified
interval is large (∼30 Mb), so pinpointing the causal variant
is difficult. Three module members, sperm associated antigen
6 (Spag6), olfactomedin-like 2A (Olfml2a), and prostaglandin
D2 synthase (Ptgds) appear in the QTL interval, although as
they were not top hub genes identified via partial correlation
analysis, it’s unclear if they play a causal role in regulating module
expression. These positional candidates are highly correlated
with hub genes Slc6a13 and Eln, suggesting they associate more
strongly with the darkgray CFM module than the pink CFA
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FIGURE 4 | Identification of putative candidate genes that may be targeted to
promote resilience networks. A combination of hub gene identification via
partial correlation analysis and single-gene correlation prioritization was used
to identify likely candidates driving the association between 6 month modules
and 14 month cognitive performance. (A) Gene expression of putative
candidates Fcgr2b, Ctsh, Hcls1, and Itgb2 at 6 months is plotted against
strain-matched 14 month contextual fear acquisition (CFA). (B) Gene
expression of putative candidates Slc6a13, Eln, Acta2, and Gper1 at
6 months is plotted against strain-matched 14 month contextual fear
acquisition (CFM). TPM = transcripts per million.

module. Exactly, how genes and variants in the QTL regulate
module expression remain to be elucidated; any number of
positional candidates may play a role in transcription and gene
regulation at the protein level rather than transcriptional level.
Alternatively, a number of micro-RNAs (miRNAs) and long non-
coding RNAs (lncRNAs) exist in the identified interval and may
post-transcriptionally regulate module gene expression.

DISCUSSION

Utility of the AD-BXDs for Studying
Resilience
Resilience to AD, defined as better than expected cognitive
functioning based on high pathology load or high-risk genetic
background, has traditionally been difficult to study, both in
mice and humans. Specifically, human individuals with intact
cognitive functioning rarely enter the clinic, and if they do, lack
of access to relevant brain tissue early in disease precludes the
identification of causal molecular mediators of cognitive decline.
Studies in the mouse have traditionally utilized only a single AD
model (Onos et al., 2016), where genetic variance and phenotypic
variance is low relative to a highly penetrant AD transgene.
We overcome some of these barriers by utilizing the genetically
diverse AD-BXD mouse population, as this series of genetically
diverse inbred mice show highly variable susceptibility to disease
(Neuner et al., 2018). All of the AD-BXD mice harbor a high-
risk genotype in the form of the 5XFAD mutation, however not
all strains show the expected degree of cognitive decline that
is typically seen as a result of the aggressive 5XFAD transgene
(Oakley et al., 2006). Instead, a number of strains demonstrate a
certain degree of cognitive resilience (Figure 1). Given the inbred
nature of the panel, the AD-BXDs represent an ideal opportunity
to study the molecular determinants of resilience, as we now
have the opportunity to obtain brain tissue early in disease
while repeatedly sampling genetically identical individuals later
in life in order to phenotypically classify certain strains as either
susceptible or resilient to disease onset and better understand
which individuals would have gone on to develop severe AD
dementia.

Hub Genes as Putative Candidates for
Promoting Resilience
Here we identify two modules, the pink module and the darkgray
module, as gene networks present early in disease that correlate
with cognitive function later in life. It is our hypothesis that the
biological pathways and processes represented by these modules
play a role in priming the brain for late-life susceptibility or
resilience to AD. As such, we hypothesize that manipulating the
expression of either of these modules in the desired direction
(i.e., down-regulating the pink module or up-regulating the
darkgray module) early in life would maintain cognitive function
late in disease, as observed in our resilient strains. Hub genes,
or highly connected gene within a given module, represent
viable targets to manipulate whole-module expression, and
they likely influence expression of a number of their nearest
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FIGURE 5 | Identification of genomic regions underlying variation in resilience networks. (A) A significant quantitative trait locus (QTL) was identified as regulating the
expression of the darkgray module (LOD = 3.8, 1.5 LOD interval = 15–44.5 Mb). (B) Strains carrying the D allele at the peak QTL marker exhibited significantly lower
expression of the darkgray module [t(1, 37) = 4.4, p < 0.001]. (C) Strains carrying the D allele at the peak QTL marker with strain-matched 14 month cognitive data
exhibited significantly worse contextual fear memory [CFM, t(1, 32) = 4.3, p = 0.0002]. ∗p < 0.05.

neighbors. Here we nominate the top four candidates from each
module as putative candidates that may be targeted to promote
cognitive resilience. As the pink module was largely enriched
for immune-related GO terms, a number of the candidates
that emerged from this module related to immune function.
Although neuroinflammation has repeatedly been identified as
a point of therapeutic intervention in AD (Bronzuoli et al.,
2016), our approach now provides precise targets that may be
leveraged early in disease. One target, integrin subunit beta 2
(Itgb2) has been identified as a member of the module identified
by Zhang et al. (2013) to be most highly associated with AD
onset in human patients, suggesting that target in particular
harbors translational relevance to human disease. Interestingly,
the candidates nominated by prioritization of members in the
darkgray module have more varied roles, as suggested by the
more diverse GO terms enriched within the darkgray module.
Two candidates, elastin (Eln) and actin, alpha 2, smooth muscle,

aorta (Acta2) again highlight the critical role of brain vasculature
in the maintenance of cognitive function, as Eln is a major
structural component of arterial walls and Acta2 has been
implicated in vascularization and vascular branching (Rudnicki
et al., 1990; Yamada et al., 1999; Wagenseil and Mecham, 2012).
The two remaining candidates, solute carrier family 6 member
13 (Slc6a13) and Gper1, are both ion channels and receptors
that have been implicated in neuronal signaling and synaptic
plasticity (Briz et al., 2015; Chazalon et al., 2018). Of particular
interest from the darkgray module is the gene Slc6a13, as this
gene, a GABA transporter, has been identified as a potential blood
biomarker in AD (Long et al., 2016), suggesting this gene (in
addition to Itgb2) may have translational relevance to human
disease. In summary, results here show that dampening specific
immune system processes while enhancing vascularization and
synaptic health early in life may promote cognitive resilience
later in disease. In combination with specific candidate gene
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prioritization, this analysis now provides specific candidates on
which to focus future studies.

Identification of Genetic Mediators of
Resilience
Here we show that genetic background explains a large portion
of variation (∼15–20%) in cognitive functioning among AD-
BXD strains. We then go on to identify a specific region on
chromosome 2 that directly influences expression of one of our
identified resilience modules, the darkgray module. While the
region was too large in the mouse to narrow down specific gene
variants involved in modifying resilience, a bulk of evidence
suggests this region is relevant to AD in human populations as
well. Portions of the identified QTL are syntenic to a region of
chromosome 9 (specifically 9q34) in the human genome, and
evidence that chromosome 9 may harbor variants that influence
AD susceptibility has emerged from a number of linkage studies
in FAD populations. Specifically, 9q34 was identified as linked
to AD onset in autopsy-confirmed familial AD patients in 1999
(Kehoe et al., 1999) and again in a study using 466 FAD families
in 2000 (Pericak-Vance et al., 2000). Future studies that add
additional AD-BXD strains in order to increase mapping power
may be able to narrow this genomic interval and identify causal
gene variants, which would better inform human studies seeking
to identify novel AD genes. As none of our identified hub genes
reside in this QTL, it is likely that the genes located within
the QTL exert their effect on module expression at the protein
level, a possibility that will be examined in future studies. In
addition, a number of non-protein coding genes exist in the
interval, such as micro-RNAs and long non-coding RNAs. These
types of molecules have been shown to exert large effects on
transcriptional networks (Gamazon et al., 2012; Jalali et al., 2013;
Brown et al., 2014), but were largely excluded from the WGCNA
module assembly, as our RNA isolation and library preparation
protocol targeted poly-A enriched mRNAs. Future work will
examine the possibility that genetic variation in a number of
these non-coding genes may work to influence transcriptional
networks underlying AD resilience.

Conclusions and Future Directions
Overall, work presented here takes advantage of the significant
opportunity provided by the AD-BXDs and the reproducibility
inherent to utilizing inbred mouse strains in a well-controlled
environment to make one of the first attempts to map the
transcriptional network underlying cognitive resilience to AD.
Our results suggest cognitive resilience results from fine-tuned
balance between low inflammation levels and high vascular and
synaptic function early in life, and provides not only general

pathways but specific candidates that may represent valuable
intervention points in future studies. Numerous validation
studies will need to be carried out to confirm or refute the
hypotheses presented here, but these studies will be greatly
facilitated due to the rigor and reproducibility afforded by
the AD-BXD panel. As there is currently no cure for AD,
understanding the mechanisms that protect some individuals
from developing this devastating disease would be instrumental
in developing novel therapeutics and ultimately, finding a cure.
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